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A B S T R A C T   

Data science has been an invaluable part of the COVID-19 pandemic response with multiple applications, ranging 
from tracking viral evolution to understanding the vaccine effectiveness. Asymptomatic breakthrough infections 
have been a major problem in assessing vaccine effectiveness in populations globally. Serological discrimination 
of vaccine response from infection has so far been limited to Spike protein vaccines since whole virion vaccines 
generate antibodies against all the viral proteins. Here, we show how a statistical and machine learning (ML) 
based approach can be used to discriminate between SARS-CoV-2 infection and immune response to an inacti-
vated whole virion vaccine (BBV152, Covaxin). For this, we assessed serial data on antibodies against Spike and 
Nucleocapsid antigens, along with age, sex, number of doses taken, and days since last dose, for 1823 Covaxin 
recipients. An ensemble ML model, incorporating a consensus clustering approach alongside the support vector 
machine model, was built on 1063 samples where reliable qualifying data existed, and then applied to the entire 
dataset. Of 1448 self-reported negative subjects, our ensemble ML model classified 724 to be infected. For 
method validation, we determined the relative ability of a random subset of samples to neutralize Delta versus 
wild-type strain using a surrogate neutralization assay. We worked on the premise that antibodies generated by a 
whole virion vaccine would neutralize wild type more efficiently than delta strain. In 100 of 156 samples, where 
ML prediction differed from self-reported uninfected status, neutralization against Delta strain was more effec-
tive, indicating infection. We found 71.8% subjects predicted to be infected during the surge, which is concor-
dant with the percentage of sequences classified as Delta (75.6%–80.2%) over the same period. Our approach 
will help in real-world vaccine effectiveness assessments where whole virion vaccines are commonly used.   

1. Introduction 

Mathematical and statistical methods have not only proven helpful 

to model epidemiological data but also handled the ever-growing host- 
pathogen data to combat COVID-19 effectively. So far, diverse COVID- 
19 disease outcome models have been developed using electronic 
health records, epidemiological and symptoms data [1–3]. Transmission 
rate and viral load kinetics have been studied using mathematical 
models on vaccination data [4]. Antibody kinetic analysis found 36% 

1 These authors contributed equally. 
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anti-S antibodies after one year of infection in a serological setting [5]. 
Modeling based on RT-PCR-based outcomes relies on infection status 

but misses past infection history. Serological studies provide comple-
mentary information about the infection history of the individual, 
especially when the previous infection generates the anti-SARS-CoV-2 
antibodies in addition to those elicited by vaccination [6]. Moreover, 
serological data can identify asymptomatic infection which are missed 
by infection-driven testing methods such as RT-PCR. Serological data 
does come with challenges such as waning immunity with time, which 
may lead to false-negatives. Serosurveys in combination with vaccina-
tion status and infection profile can be valuable in determining true 
vaccine effectiveness. 

Inactivated whole virion vaccine BBV152 has shown encouraging 
results in protection against COVID-19 [7] and was approved by WHO 
on November 3rd, 2021, under the Emergency Use Listing (EUL) cate-
gory. Recent pilot studies have shown BBV152/Covaxin effectiveness 
based on neutralization and antibody response against variants of 
SARS-CoV-2 [8–11]. Recent studies based on RT-PCR have also shown 
that Covaxin had a protection effectiveness of 47% in previously unin-
fected individuals, after two doses for symptomatic presentation in 
health care workers [12]. However, these studies lack a method to detect 
past undetected infections. 

The overarching objective of this study was to determine the effec-
tiveness of BBV152 whole virion vaccines in the general population 
which requires an accurate estimation of the COVID-19 infection status 
of the recipients. While the vaccine effectiveness is popularly deter-
mined through a test-negative design, it is limited to symptomatic cases, 
who present for RT-PCR testing and their contacts while asymptomatic 
infections are largely ignored. In contrast, serology-based assessment of 
vaccine effectiveness becomes more pertinent in the context of the 
general population, especially where RT-PCR testing is infrequent and 
viral load is insignificant [13,14]. Vaccines targeted specifically to the 
spike protein (anti-S) do not pose a problem since antibodies against 
Nucleocapsid proteins (anti-NC) is taken as a marker of infection [15]. 
However, for whole virion vaccines, anti-NC is induced by the vaccine 
itself [7] that poses challenges in identifying infection status and hence 
ascertaining the vaccine protection effectiveness. 

To address this gap, we developed a hybrid machine learning 
approach based on serological indicators to anti-NC and anti-S along 
with other parameters such as prior history of infection (for Covaxin 
recepients whose serology history was available), days since last vacci-
nation, gender, age and number of doses taken, as these may have an 
impact on assessing the infection status of an individual [16,17]. Ma-
chine learning (ML) based approaches have shown the ability to inte-
grate multiple parameters to provide a holistic impression of the output 
variable [18]. ML algorithms are tuned based on the assumptions they 
follow. Unsupervised ML approaches can identify inherent patterns in 
the data but are biased towards minor differences in the structure of the 
data. Supervised ML approaches are biased towards learning the best 
possible function to approximate the output parameters/labels [19,20]. 
Hence, integrating the unsupervised and supervised ML algorithms to-
wards ascertaining the infection status of an individual could enable a 
more generalized assessment of the input parameters. 

To develop and validate our method, we used the serosurvey data 
from the CSIR Cohort, a longitudinal cohort that was developed to assess 
the disease burden across India and to ascertain the stability of anti-
bodies during post-infection/vaccination [15,21,35]. Population-based 
cohorts could help to determine confident estimates of vaccine effec-
tiveness with a heterogenous accommodation of larger geographical 
regions. To robustly ascertain the infection status, we took the consensus 
of two approaches - an unsupervised clustering approach and a super-
vised SVM-based approach followed by an ensemble model for final 
infection prediction. We also validated the outcomes of ML models using 
the surrogate Virus Neutralization Test (sVNT). To the best of our 
knowledge, this is the first work to predict the infection status and 
protection effectiveness of Covaxin-vaccinated individuals based on 

serological analysis and clinical history. 

2. Methods 

2.1. Data/cohort description 

The samples analyzed in this study were from a longitudinal cohort 
of staff, students and their family members belonging to 43 CSIR labo-
ratories and centers of the Council of Scientific and Industrial Research 
(CSIR) spread across India (CSIR Cohort; [15]) who had taken one or 
two doses of Covaxin. The longitudinal cohort study was approved by 
the Institutional Human Ethics Committee of CSIR-IGIB vide approval 
CSIR-IGIB/IHEC/2019–20. To date, samples have been collected from 
this cohort in three phases: between June–September 2020 (Phase 1; 
P1), between January 2021–March 2021(Phase 2; P2), and May–August 
2021 (Phase 3; P3). Phase 3 was incidentally bracketed with the 
COVID-19 second wave (April 2021–August 2021) in the country and 
dominated by the Delta variant of SARS-CoV-2 [21]. 

All subjects participated voluntarily and filled out an online ques-
tionnaire form which included information on the date of birth, gender, 
blood group, type of occupation, comorbidities such as Diabetes, Hy-
pertension, Cardiovascular Diseases, etc, diet preferences, mode of 
travel, symptomatology, vaccine status, hospitalization (if any), and 
post-vaccine symptomatology (if any). These forms were then down-
loaded in MS-Excel data format and merged with registration forms 
filled at the time of sample collection based on unique IDs. 

Blood samples (6 mL) were collected for each subject in an EDTA- 
coated vacutainer and centrifuged at 1800 g for 15 min at 4 ◦C. Sepa-
rated plasma was stored at − 80 ◦C until used to assess antibodies against 
recombinant protein representing Nucleocapsid (anti-NC) and Spike 
(anti-S) antigens of SARS-CoV-2 using Elecsys Anti-SARS-CoV-2 kits 
(Roche Diagnostics) based on Electro-chemiluminescence Immunoassay 
(ECLIA) according to manufacturer’s procedure. Individuals with a Cut- 
off index (COI) value of >1.0 and a value of >0.8 units/milliliter (U/mL) 
were considered to be positive for anti-NC and anti-S antibodies, 
respectively. Wherever necessary, samples were appropriately diluted 
for the anti-S antibody measurements [21]. 

2.1.1. Input parameters to the ML algorithms 
The antibodies to Spike (anti-S) and Nucleocapsid (anti-NC) antigens 

are the primary serological determinants of infection in an individual as 
they indicate the presence of antibodies. In our collected samples, both 
Anti-NC and Anti-S show a bimodal distribution and hence indicate the 
presence of two subgroups in the data. Since the data had a large vari-
ance, it was log-transformed. 

To ensure a holistic determination of infection status, we included 
important covariates as inputs to the ML algorithms along with the 
serological values. First, the number of doses that a person can be 
administered was either one or two. Two doses of the vaccine have been 
reported to elicit higher antibody levels compared to one dose [7,16,17]. 
Second, the number of days between the last vaccination date and the 
date of sample collection has been found to be an indicator of the 
increasing or decreasing trend of Anti-S and Anti-NC levels. A difference 
of greater than 8 weeks may indicate a decline in antibody levels [17]. 
Studies have also reported a 3-fold decrease in antibody levels post 6 
months of the last vaccine dosage [16]. mRNA vaccines also witness a 
decrease (half-life of 52 days) in antibody levels after 43 days since last 
vaccination for all ages [22]. Third, gender (Male/Female) can influence 
differences in antibody levels [16]. Fourth, the age of the person has 
been reported as an indicator for antibody levels. Though the effect of 
age has not been reported as significant for BBV152 vaccines (Covaxin), 
ChAdOx1-nCOV (Covishield) vaccinated individuals aged greater than 
60 years have been reported to have lower antibody formation 
compared to other age groups [16]. The covariates vary in importance to 
the prediction process. A PCA biplot was performed to ascertain the 
contribution of these covariates in explaining the variance of the data 
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and their relationship with each other (Supplementary Fig. S1). The 
inclusion of these covariates as input further reduces bias in the output 
thereby increasing robustness of the methods. 

2.2. Algorithm development 

For a supervised and an unsupervised approach, Phase 3 (P3) sam-
ples with sero history information in Phase 1 and/or Phase 2 (P1/P2) 
were included. In P3, people were categorized as “self-reported infected” 
if they had confirmed RT-PCR results or no RT-PCR but with symptoms 
(“not confirmed”). Similarly, people without any symptoms or with RT- 
PCR negative reports were categorized as “self-reported not infected”. 
Those who were seropositive in P1/P2 (before vaccination was initiated 
in India), were henceforth considered as infected irrespective of their 
RT-PCR status or symptomatology. This was an important consideration 
as P2 negative samples helped us ascertain protection against Delta 
strain, as that was the period when Delta strain was the predominant 
variant. Finally, 1063 out of 1823 individuals qualified as input data for 
downstream analyses (414 infected and 649 not infected samples). The 
workflow for the pipeline to predict the final inection status is depicted 
in Fig. 1. 

The elements of input data included serological assays - qualitative 
anti-NC (COI) and quantitative anti-S (U/mL) values of samples along 
with age, gender, number of vaccination doses and days since the last 
vaccination. Further, COI, U/mL values and days since the last vacci-
nation were log10 transformed and distribution was calculated using 
density plots. The supervised approach included SVM-based model 
development over 100 iterations with the random splitting of 70:30 ratio 
of training and testing datasets, where final labels were assigned based 
on the consensus of 100 iterations. Unsupervised clustering itself con-
sisted of two orthogonal approaches, concordance of which was carried 

forward as cluster 1 and cluster 2. The consensus of the supervised and 
the unsupervised approaches in addition to P1/P2 seropositive in-
dividuals was further used for the final ensemble ML model to predict 
the full dataset (Fig. 1). Both the approaches are explained in the 
following sections. 

2.2.1. Unsupervised clustering approach 
For robustness of the unsupervised analysis, we used two separate 

approaches namely K-prototype and VarSelLCM. These methods have 
the best performance benchmark on heterogeneous data for distance- 
based and model-based clustering methods, respectively, as per a 
recent comparative study [23]. K-prototype [24] is a distance-based 
mixed-mode (numerical and categorical) clustering method that uses 
distance as a measure to define the clusters while VarSelLCM [25] is a 
mixed-mode model-based method that uses probabilities derived from a 
model defined using Latent Class Analysis for defining the clusters. The 
number of clusters best describing the data was first established based 
on silhouette score (for the K-prototype algorithm) while the VarSelLCM 
clustering algorithm chooses the best number of clusters automatically. 
The concordance of cluster assignment between the two methods was 
ascertained as Cluster 1 and Cluster 2 and discordant labels were 
labelled ‘Undetermined’. Cluster 1 was predominantly the region that 
included self-reported infected samples while cluster 2 had a wider 
dispersion and included self-reported non-infected samples. 

2.2.2. Supervised machine learning 
Input data features were preprocessed for feature scaling using the 

standard scaler library in scikit-learn [26] and data was split in a 70:30 
ratio for training and testing sets, respectively. Briefly, to ensure that 
each data point gets a chance to be treated as test data multiple times, 
70% (training set) of 1063 entries were trained on the machine learning 

Fig. 1. Workflow of the study to identify COVID-19 infection status. Using a consensus of supervised (machine learning) and unsupervised (clustering) ap-
proaches, COVID-19 Infection status was ascertained in 1063 individuals who provided samples in Phase 3 (P3) and also in Phase 1 or Phase 2 (P1/P2). The final 
ensemble model was used to predict the COVID-19 infection status for all Covaxin administered individuals in P3. 
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model and the rest 30% (319) was used as (blind set) for validation. In 
every iteration, data splitting from 1063 samples was randomized i.e. no 
two iterations had identical data as training set or blind set for testing. 

The SVM uses a hyperplane with a boundary parameter to separate 
two classes. It was used for model development as it applies trans-
formation on multi-dimensional data to learn optimal separating pa-
rameters for two classes of data. SVM, unlike similar ML algorithms like 
Logistic Regression, needs to maximize margin for only a subset of 
points. Therefore, it achieves a better optimal global solution and thus is 
practically better performing and computationally efficient than most of 
the algorithms [18]. The hyperparameters for the SVM were chosen 
based on Grid Search (Supplementary Table S3). The SVM was trained 
on 70% of training data with a 5-fold cross-validation technique where 
grid search was used for best parameters selection and validated on a 
30% blind dataset. 100 such iterations each with an area under the 
receiver operating characteristic curve (AUROC) of greater than 0.80 
was performed. 

The robustness of ML prediction was ensured by iterating the whole 
pipeline 100 times. A sample was considered infected or not infected 
only if they were classified as such in at least 75% of the total times 
predicted, else they were marked as indeterminate. 

2.2.3. Ensemble clustering 
The outputs of the unsupervised and the ML-based analysis were 

then compared. We found the concordance between ML-based infected 
samples with cluster 1 of consensus clustering approach (labelled 
infected class) and ML-based uninfected samples with cluster 2 of 
consensus clustering approach (labelled uninfected class). About 1.8% 
(19/1063), who had a previous positive history of seropositivity but 
classified as not infected/cluster 2 or indeterminate by both the 
methods, were reassigned to be positive. These consensus samples were 
then used to develop an ensemble of 5 ML classifiers (SVM, Logistic 
Regression, K-Nearest Neighbors, Random Forest, and Gradient Boost). 
The hyperparameters for each algorithm were chosen based on Grid 
Search (Supplementary Table S3). Voting over the outputs of ML algo-
rithms with varying data assumptions provides more specific predictions 
compared to each individual algorithm. The trained ensemble model 
was then used to predict the infection status of all the samples. 

2.3. Validation of potential asymptomatic samples with neutralizing 
antibodies 

The final model was validated by testing a few samples for their 
neutralizing activity against Delta infection. For this, a surrogate 
neutralization was performed against both wild-type and Delta 
Receptor-Binding Domain (RBD) using GenScript cPass SARS-CoV-2 
surrogate Neutralization Antibody detection kit (sVNT) assay (Gen-
Script, USA) as per manufacturer’s instruction [15]. Since the vaccine 
was developed against the wild-type variant, it is expected that the 
neutralization will be higher if the neutralizing activity is due to 
vaccination or infection with wild-type virus or both. However, if a 
person has been infected with Delta variant, then the neutralizing ac-
tivity against the Delta RBD will be higher or equal to that of wild-type 
RBD. Where required, samples were diluted five times. A neutralization 
of 30% or more in undiluted samples was considered to be positive. To 
determine the Delta Infection status of the remaining, we first deter-
mined the standard error between technical replicates of the samples at 
various inhibition percentages. Using this, we decided on the Lower 
bound (LB) of the wild-type inhibitions percentage and Upper bound 
(UB) of the delta-type inhibition percentage as inhibition percentage 
subtracted and added by twice the average standard error, respectively. 
Using these criteria, we called any sample with UB of delta > LB of 
wild-type to be a possible Delta infection. 

2.4. Vaccine effectiveness calculation 

The unvaccinated group comprised 910 participants who were 
negative in Phase 2 of the CSIR cohort study. Of these, 567 had become 
seropositive in Phase 3 of sample collection, while 349 remained unin-
fected. Of the 164 subjects who took Covaxin from January–May 2021 
and were negative in Phase 2, 45 were predicted to be positive by the ML 
algorithm. Thus, protection was calculated using the following formula 
[35];  

(1-RR) x 100                                                                                        

where RR is the relative risk for the vaccinated group to the unvacci-
nated group. 

2.5. Statistical analysis 

We used the R software version 3.5.1 for the data curation, man-
agement, and clustering analysis. We used the Python library, namely, 
Scikit-learn (version 0.24.1) for predictive modeling. 

3. Results 

3.1. Data/cohort details 

Blood samples from 1823 Covaxin administered participants 
belonging to phase 3 (22 May 2021–Aug 09, 2021) of CSIR-cohort were 
processed for the anti-NC and anti-S antibody assays. Location-wise 
distribution of individuals has been described in Supplementary 
Table S1. The details of baseline characteristics are presented in Sup-
plementary Table S2. Out of the 1823 individuals, 772 had taken one 
dose while 1051 had taken two doses of Covaxin. Of these, 789 and 792 
individuals provided samples in P1 and P2, respectively (Fig. 2A). 

The preliminary density distribution in terms of anti-NC and anti-S 
antibodies showed bimodal distribution indicating the presence of two 
subgroups (Fig. 2B). Further, PCA transformation of the full data, 
including similar parameters given for supervised/unsupervised ap-
proaches (see methods), was analyzed using the top three principal 
components PC1, PC2, and PC3, which explained 31.1%, 25.1%, and 
17.3% of the variance of the data, respectively (Supplementary Fig. S1 
(B)). On exploring the PCA biplot (Supplementary Fig. S1(A)) of these 
variables, anti-NC and anti-S were found to play an important role in 
explaining the variance of the data. The age of the individual and the 
days since the last vaccination also contributes to the variance in an 
orthogonal direction. The number of doses and gender showed limited 
contribution to the variance. The PCA plot (Fig. 2C) shows the distri-
bution of self-reported infected (red color) and uninfected individuals 
(grey color). Self-reported infected individuals formed a cluster, while 
the self-reported negative individuals were spread throughout. It should 
be noted that although confirmed positive RT-PCR or presence of 
symptoms most likely indicate infection, a negative PCR test or absence 
of symptoms does not rule out infection since the RT-PCR test is positive 
only during a short window of infection [27]. Also, we and others have 
earlier shown that a large proportion of individuals infected with 
SARS-CoV-2 are asymptomatic [15,28–30]. This was also observed 
when the anti-NC and anti-S antibody levels were plotted for 
self-reported positive and negative subjects (Supplementary Fig. S2). 
This was irrespective of the vaccine doses, since self-reported positive 
subjects with one (N = 176) and two doses (N = 199) had similar levels 
of antibodies forming a single cluster, while those of self-reported 
negative with one (N = 596) or two doses (N = 852) showed two 
distinct clusters and had large contours of distribution (Fig. 2D). 

The observations are suggestive of a probable undiagnosed infection 
among the self-reported uninfected individuals. To ascertain the extent 
of infection in these individuals, we developed a two-step workflow 
consisting of unsupervised clustering and supervised SVM-based ML 
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model in parallel, followed by an ensemble model whose inputs con-
sisted of consensus classifications obtained from the two methods in Step 
1 (Fig. 1). 

3.1.1. Unsupervised clustering identifies two clusters 
1063 participants, whose prior serology status at phase 1 or phase 2 

was available, were subject to K-prototype and VarSelLCM clustering 
algorithms. To consider all relevant confounders while creating the 
clusters, log10 of Antibody to Nucleocapsid, log10 of Antibody to Spike, 
age, gender, number of doses, and days since last vaccination (log10) for 
each person were provided as input to the algorithms. Statistical 
methods in respective clustering methods identified the ideal number of 
clusters to be two (see methods). Between the two methods, there was a 
concordance of 96.05% (1021/1063) as shown in the consensus clus-
tering output, while 42 (3.95%) discordant samples were mainly 
concentrated at the junction of the two clusters (black dots, Fig. 3A). Of 
the 236 self-reported infected samples, 93.2% (220/236) were found to 
be in cluster 1, while of the 827 self-reported uninfected, 50.4% (417/ 
827) were in cluster 2. 

3.1.2. Supervised ML to predict infection rate 
In parallel to the clustering approach, we also developed an SVM- 

based ML model. For this, as before, we used the 1063 samples of 

which 414 samples which either had an earlier (P1/P2) seropositive 
history or self-reported infection status in P3 were considered to be 
infected, and 649 samples with previous seronegative history and self- 
reported uninfected status at P3 were considered to be uninfected. 
SVM-based ML model with 5-fold cross-validation was built on 70% of 
the randomly selected data (N = 744), while the same model was tested 
on 30% of the data (N = 319), as mentioned in the methods. If the 
prediction on blind data was >0.80 AUROC, only then that prediction 
iteration was considered valid, and this step was repeated for 100 valid 
iterations. This process reinforced the robustness of the pipeline, where 
each sample was tested at least 16 times (ranging from 16 to 44). 

The average accuracy and AUROC obtained after 100 iterations were 
81.3% and 0.88, respectively (Supplementary Fig. S3). The predicted 
labels over 100 iterations were plotted as sigmoid curves, and samples 
that were predicted to be positive (531/1063; 49.95%) or negative 
(493/1063; 46.37%) in at least 75% of the models were labelled infected 
and uninfected, respectively, while the rest (39/1063; 3.66%) were 
indeterminate (Fig. 3B). 

3.1.3. Ensemble ML model results 
We calculated the concordance of ML and clustering approaches with 

their respective final 1063 labels. Cluster 1 and cluster 2 were enriched 
in infected and not infected individuals, respectively. We found 526 

Fig. 2. Data structure and antibody level distribution. A): Sample distribution and overlap among three phases [P1 (June–November 2020), P2 (December 
2020–April 2021), P3 (May–August 2021)] of CSIR Cohort of Covaxin administered individuals (N = 1823), B): Distribution of Antibodies to Nucleocapsid (COI) and 
Spike (U/mL) in the form of density histograms of 1823 individuals, C): PCA plot of 1823 Covaxin administered individuals based on six features including COI, U/ 
mL, age, gender, days since last vaccination, and the number of doses. COVID-19 self-reported infection is depicted in red color, D): Sample distribution stratified via 
self-reported COVID-19 infection status and doses taken (N = 1823). Density-based contours indicate the presence of two subgroups amongst both in 1 dose and 2 
doses administered self-reported not infected individuals. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version 
of this article.) 

P. Singh et al.                                                                                                                                                                                                                                    



Computers in Biology and Medicine 146 (2022) 105419

7

individuals predicted to be infected by ML and were present in Cluster 1, 
while 424 individuals were predicted to be uninfected by ML and pre-
sent in Cluster 2, overall leading to 89.3% concordance. There was one 
sample which was indeterminate in both cases. As expected, P1/P2 
seropositive samples (N = 282) were mostly enriched in the concordant 
infected panel. The 19 P1/P2 seropositive samples (6.7%) that were 
assigned negative or indeterminate in the consensus model were reas-
signed as positive (infected) to build the final model as the seropositivity 
indicated definite infection. Out of these 19 samples, 4 were classified as 
concordant “not infected” but were reclassified as infected based on 
their P1/P2 seropositivity status. Supplementary Fig. S4 shows one to 
one comparison of three categories of both ML and clustering 
approaches. 

For the final ML ensemble model, we picked concordant (infected, 
red-colored (N = 545) as well as not infected grey-colored (N = 420)) 
samples. An ensemble model based on 965 concordant samples was 
developed using 5 ML algorithms, namely SVM, RF, Gradient Boost, 

KNN, and Logistic Regression. Using this final model, we assigned 
infection status to all the 1823 subjects who had taken Covaxin (Fig. 3C). 
The ensemble model was able to correctly recognize as infected 95% 
(356/375) of the self-reported infected and 99% (279/282) of the P1/P2 
seropositive individuals. Further, the model also assigned 50% (724/ 
1448) of the self-reported negative samples as infected. The prediction 
on blind 858 individuals stratified by self-reported infection status and 
the number of doses is represented in Supplementary Fig. S5. 

3.2. Validation 

The final predictions of the ensemble model were validated using 
surrogate virus neutralization (sVNT) assays as described in the methods 
section. All the vaccines have been developed against the wild-type 
SARS-CoV-2 strain. Hence, it is expected that neutralization against 
wild-type RBD will be higher if it is due to vaccination or prior infection 
with the wild-type variant. However, if a person has been infected with 

Fig. 3. Development and validation of prediction models. A): Consensus clustering with k-prototype and VarSelLCM methods (N = 1063). Light Brown and blue 
colour represent concordance between two clustering approaches for Cluster 1 and Cluster 2, respectively. The black color represents discordance between the two 
methods, hence indeterminate; B): Supervised machine learning (SVM method) based prediction of the infection status (N = 1063), further stratified via self-reported 
COVID-19 infection status and the number of vaccine doses; C): Ensemble ML model-based prediction of COVID-19 infection in all individuals (N = 1823), further 
stratified via self-reported infection status and the number of vaccine doses; D): Phase 2 seronegative subjects who gave samples in Phase 3 analyzed using a surrogate 
virus neutralization assay (sVNT) and predicted to be infected by Ensemble model (N = 39). 71.8% of samples predicted to be infected by Ensemble were found to be 
Delta infected utilizing a variant-specific sVNT assay. Delta infected was labelled when Delta Inhibition % > WT Inhibition % with a margin based on standard error. 
Delta Not infected were labelled when samples processed without dilution had less than 30% inhibition. All other data points were labelled Delta Uninfected. (For 
interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 
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the Delta variant which was predominant (75–80% of all infections [31, 
32]) during this period across the country, then the neutralization 
against Delta RBD will be equal to or greater than wild type RBD. We 
found that 64.1% (100/156) individuals who self-reported uninfected 
but were predicted to be infected by the ensemble model, neutralized 
Delta RBD greater than or equal to that of wild type, suggesting that 
these individuals were probably infected by Delta variant although they 
were asymptomatic (Supplementary Fig. S6). Of these, 71.8% (28/39) 
who were seronegative in P2 i.e., before the second wave and 
self-reported negative, were found to have higher Delta neutralization 
(Fig. 3D), which was similar to the frequency of Delta infection across 
the country. 

3.3. Vaccine effectiveness results 

Based on the ML outcomes, the vaccine effectiveness was calculated 
against the unvaccinated group. Amongst the samples collected in P3 of 
CSIR-Cohort, 34% were unvaccinated of which 567/916 (61.9%) sub-
jects, who were uninfected in P2, were found to be infected in P3 (based 
on sero values). Thus, the protection effectiveness of Covaxin was 
calculated to be 55.67% (95% CI 42.9% – 65.6%) after two doses of 
vaccine. 

4. Discussion 

It is difficult to distinguish the systemic immune response elicited by 
the whole virion vaccine from the pathogen infection response of the 
host. We identified two subgroups of people agnostic to their self- 
reported infection status from the serosurvey data of Covaxin adminis-
tered individuals based on the analysis of anti-NC and anti-S antibody 
response. One subgroup was highly enriched in self-reported positive 
individuals, while the self-reported negative individuals were distrib-
uted across the two subgroups. We hypothesized that the self-reported 
negative individuals who are in the same group as that of self-reported 
positive individuals may have had silent undetected (asymptomatic) 
infections. 

To independently determine the infection status of RT-PCR negative 
individuals, we obtained the seropositivity status in the previous phases 
of the serosurvey, along with the self-reported infection status. These 
datasets were run through supervised and unsupervised machine 
learning approaches. A consensus was built on the infection status for 
90.8% (965 out of 1063) individuals. To further validate the infection 
status proposed by our pipeline, sVNT assays were performed on sam-
ples from Phase 3 individuals, which lead to identification of Delta 
infected individuals who were self-reported as uninfected. The Delta 
infected samples were highly correspondent with the ML predicted 
infected people, thereby reinforcing our hypothesis. Therefore, in this 
study, we provide a machine learning method for objectively annotating 
the infection status of individuals. This method can be invaluable in 
predicting the infection status of participants administered Covaxin. 

This study fills a gap in the field, however it comes with certain 
limitations. First, the self-reported status is questionnaire-based, which 
comes with a level of inconsistency. Second, uninfected individuals 
might get infected at any time between the questionnaire filling and 
sample collection. Third, the samples come from employees of different 
CSIR institutes and their relatives, which might not be the real repre-
sentation of the overall country’s population, especially in rural areas. 
Fourth, ML methods can only learn a representation of the available 
data. Therefore, despite best efforts to reduce bias, the models may have 
difficulty generalizing to populations that are under-represented in the 
survey. The geographical locations covered by our study include CSIR 
labs located throughout the country [15], which complements the pre-
dominantly rural locale by the ICMR study [33]. Further, a recent ICMR 
pilot study with 114 participants showed that individuals with infection 
and 1 dose of Covaxin developed similar antibody levels to that of in-
dividuals who are infection-naïve and received two doses of Covaxin 

[34]. 
Finally, we were able to calculate the vaccine protection effective-

ness (PE) using our method. We found that Covaxin has a PE of 55.67% 
(95%CI 42.9%–65.6%) for fully vaccinated subjects. This was similar to 
the recently published real-world effectiveness of 47% (95%CI 29%– 
61%) after two doses in previously uninfected individuals who had a 
symptomatic presentation [12]. However, phase 3 trial results of the 
vaccine reported 63.6% (95%CI 29.0%–82.4%) PE against asymptom-
atic infection after two doses of vaccine [7]. This proves the importance 
of our work and how the ML-based approach could be utilized to study 
real-world effectiveness, even in asymptomatic population-based on 
serological methods. Our study was able to address an important gap in 
the literature for calculating vaccine effectiveness in the case of whole 
virion vaccines from serology-based surveys. 

5. Conclusion 

Compared to Spike-inducing vaccines where an increase in the 
Nucleocapsid antibody levels can be taken as an indicator for infection, 
whole-virion vaccines such as BBV152, induce both spike and nucleo-
capsid antibodies. This makes serological determination of infection 
status in the general population non-trivial. As RT-PCR tests may miss 
significant proportion of asymptomatic infections, determination of 
infection status using serological indicators (Anti-S and Anti-NC) be-
comes important for studies on vaccine effectiveness. 

We developed a hybrid ML-based approach, integrating unsuper-
vised and supervised learning to ascertain the infection status. Further, 
we built an ensemble model (five ML algorithms) that combines sero-
logical indicators with important demographic parameters to predict 
prior infection status in partially and fully vaccinated Covaxin recipients 
with significant accuracy. Using this approach, we could observe a 
Protection Effectiveness of 55.67% (95%CI 42.9%–65.6%) in fully 
vaccinated subjects. This work fills an important gap towards identifying 
the infection status of whole virion vaccine recipients through serolog-
ical data in conjunction with an ML-based approach. 
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