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A B S T R A C T   

Background: During the first wave of COVID-19 it was hypothesized that COVID-19 is subject to multi-wave 
seasonality, similar to Influenza-Like Illnesses since time immemorial. One year into the pandemic, we aimed 
to test the seasonality hypothesis for COVID-19. 
Methods: We calculated the average annual time-series for Influenza-Like Illnesses based on incidence data from 
2016 till 2019 in the Netherlands, and compared these with two COVID-19 time-series during 2020/2021 for the 
Netherlands. We plotted the time-series on a standardized logarithmic infection scale. Finally, we calculated 
correlation coefficients and used univariate regression analysis to estimate the strength of the association be-
tween the time-series of COVID-19 and Influenza-Like Illnesses. 
Results: The time-series for COVID-19 and Influenza-Like Illnesses were strongly and highly significantly corre-
lated. The COVID-19 peaks were all during flu season, and lows were all in the opposing period. Finally, COVID- 
19 meets the multi-wave characteristics of earlier flu-like pandemics, namely a short first wave at the tail-end of 
a flu season, and a longer and more intense second wave during the subsequent flu season. 
Conclusions: We conclude that seasonal patterns of COVID-19 incidence and Influenza-Like Illnesses incidence are 
highly similar, in a country in the temperate climate zone, such as the Netherlands. Further, the COVID-19 
pandemic satisfies the criteria of earlier respiratory pandemics, namely a first wave that is short-lived at the 
tail-end of flu season, and a second wave that is longer and more severe. 
This seems to imply that the same factors that are driving the seasonality of Influenza-Like Illnesses are causing 
COVID-19 seasonality as well, such as solar radiation (UV), temperature, relative humidity, and subsequently 
seasonal allergens and allergies.   

1. Introduction 

During the first wave of COVID-19 it was hypothesized that COVID- 
19 is subject to multi-wave seasonality [1,2], comparable to other res-
piratory viral infections and pandemics since time immemorial [3,4]. It 
is observed that the COVID-19 community outbreaks have a similar 
pattern as other seasonal respiratory viruses [5–7]. Already during the 
first COVID-19 cycle the data suggested seasonality, comparable to the 
seasonality of Influenza-Like Illnesses (ILI), although the time-series 
were typically too short for definitive conclusions [8]. Currently, we 
are one year into the COVID-19 pandemic, and we can witness in the 
temperate climate zone in the Northern Hemisphere, a second wave that 
appears to rise and peak during the boundaries of a typical flu season, as 
the first cycle before. 

Until now, it is not yet confirmed that COVID-19 behaves as seasonal 
as ILI. Therefore, we aim to test our hypothesis that COVID-19 has a 

similar seasonal pattern as ILI in a country in the temperate climate zone 
as the Netherlands. To test our hypothesis, we performed time-series 
analysis to compare the COVID-19 cycles with the multi-wave season-
ality patterns of flu-like illnesses. In addition, we analyzed to what de-
gree the COVID-19 pandemic fulfills the qualitative characteristics of 
earlier flu-like pandemics and seasonality as mentioned by Fox et al. 
Particularly, a short first wave at the tail end of a flu season, and a more 
severe second wave during the following flu season. We further expect 
peaks to occur within the seasonal boundaries between week 33 (± 2 
weeks) and week 10 (± 5 weeks), and the nadir in the opposing period 
which coincides with the allergy season [8,9]. 

The main objective of this study is to provide a predictive model for 
subsequent COVID-19 seasonal cycles. 
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2. Methods 

2.1. Data 

2.1.1. Incidence of influenza-like illnesses 
We used data from the Dutch State Institute for Public Health (RIVM) 

gathered by the Dutch institute for research of the health care (Nivel) 
about weekly flu-like incidence (WHO code “ILI” - Influenza-Like Ill-
nesses). ILI is defined by the WHO as a combination of a measured fever 
of ≥38 ◦C, and a cough, with an onset within the last 10 days. The Dutch 
ILI reports are gathered from primary medical care. Primary medical 
care is the first-line healthcare provided by general practitioners to their 
registered patients as typical in the Netherlands, with its current pop-
ulation of 17.4 million. The positive ILI results assessed via general 
practitioners are confirmed by a positive RIVM laboratory test for ILI. 
The ILI test covers influenza A and B strains, but also other viruses such 
as rhino viruses, enteroviruses, pseudo-influenza viruses, seasonal 
corona viruses [10]. 

The flu-like incidence metric is a weekly average based on a repre-
sentative group of 40 primary care units. It is calculated using the 
number of influenza-like reports per primary care unit divided by the 
number of patients registered at that unit. This is then averaged for all 
primary care units in the Netherlands, extrapolated to the entire popu-
lation, and reported as the ‘ILI incidence per 100,000 citizens in the 
Netherlands’. The datasets run from week 1 of 2016 up to week 52 of 
2019 to preclude the COVID-19 pandemic and avoid the impact of 
lockdowns and other measures on ILI incidence in the 2020/2021 season 
(see Fig. 1). Furthermore, it helps avoid collinearity caused by the in-
clusion of severe acute respiratory syndrome coronavirus 2 (SARS-CoV- 
2) in the metric from 2020 onward, and unreliability caused by referral 
of patients with ILI symptoms to COVID-19 test stations in stead. For 
earlier years, before 2016, we do not have complete ILI data sets at our 
disposal. We used these data to calculate the average ILI incidence per 
week (n = 52) as our baseline times series. 

2.1.2. COVID-19 incidence 
To calculate the COVID-19 incidence, we used the RIVM data set 

which reports the daily COVID-19 incidence per municipality [11]. The 
incidence per municipality is based on positive COVID-19 tests that are 
reported via the local municipality health services (Gemeentelijke 

Gezondheidsdienst; GGD), that are under the control of the RIVM. We 
aggregated the crude number into a weekly COVID-19 incidence for the 
Netherlands per 100,000 citizens, to create a metric on the same scale as 
the standard ILI metric. We calculated the values from week 13, 2020, 
the peak of the short first COVID-19 cycle in the Netherlands, till week 5, 
2021 (n = 45), before COVID-19 vaccination is scaled up. In week 5, still 
less than 2% of the Dutch population is vaccinated. We assume that the 
cycles themselves are sufficiently representative for time-series analysis, 
even though the COVID-19 incidence during the first cycle is most likely 
underestimated compared to incidence during the second cycle, due to 
test bias. With test bias, we mean that both the method of testing and the 
test capacity, altered during the development of the COVID-19 
pandemic. Especially, at the start of the pandemic, there was a 
shortage of test capacity in the Netherlands. The capacity shortage had 
considerably improved since the end of March, i.e., week 13 of 2020, but 
only in the first months of 2021 reached sufficient levels. 

Therefore, as a sensitivity analysis, we used a second dataset from 
RIVM, which is based on data from the Dutch national intensive care 
evaluation foundation [12]. Based on hospital admissions and subse-
quent serological tests per age group, the RIVM estimated the COVID-19 
incidence in the Netherlands. The following assumptions are used: the 
incubation time of SARS-CoV-2 is between 4 and 10 days and a further 
delay of 7 days between first COVID-19 symptoms and hospital admis-
sion. This so-called “prevalence” dataset provides the average COVID-19 
incidence per day with a 95% confidence interval (95% CI). Again, we 
calculated the average weekly COVID-19 incidence for the Netherlands 
per 100,000 citizens, to create a metric on the same scale as the standard 
ILI metric. 

2.2. Statistical analysis 

Variables are presented with their means (M) and standard de-
viations (SD). We calculated correlation coefficients to test the hy-
potheses and to assess the strength and direction of relationships. 

Because the time-series were nonlinear and somewhat skewed, we 
used the log10 transformation before applying linear regression and 
calculating correlation coefficients, which requires a normal distribu-
tion. After the log10 transformation, we multiplied the data with factor 2 
to create an intuitive scale from 0 to 10 for ILI and COVID-19, which is 
comparable to the 1 to 12 logarithmic Richter scale for earthquakes 
[13]. The logarithmic scale we elaborated is rational and plots expo-
nential characteristics on a linear infections scale [14]. We added 
descriptive labels to each scale as an aid for qualitative interpretation in 
intuitive, layman terms (see Table 1). Other advantages are that it makes 
a comparison between different epidemics or pandemics, and thus 
external validation, easier. Finally, it enlarges the critical early stages of 
an epidemic, and it reduces the extreme peaks and resulting test bias 
because of test capacity overloads. 

Linear regression (F-test) on the ILI and COVID-19 time-series is 
performed as a sensitivity analysis and used descriptively to determine 
the strength of the relationship between the COVID-19 and ILI time- 
series. More in detail to determine the equation using estimates and 
intercept values, probability, significance level, F-value, and the Multi-
ple R squared correlation to understand the predictive power of the 
respective relation. Standard deviations and errors and degrees of 
freedom (DF) were used as input for calculating the 95% probability 
interval. 

We have reported the results in APA style, adapted to journal 
requirements. 

Correlations are calculated manually in Excel, and for linear 
regression Graphpad 2021 is used (which we benchmarked on R version 
3.5). Fig. 1. Overview of Influenza Like Illnesses (ILI) in the Netherlands from 2016 

till 2021 based on NIVEL data. Whereby both the data gathering methods and 
incidence during the pandemic are heavily influenced because of lockdowns 
affecting access to primary care, standard referral of patients with ILI symptoms 
to COVID-19 test stations, and increased flu vaccination. 
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3. Results 

3.1. Data analysis 

The means and standard deviations of the dataset are summarized in 
Table 2. 

Fig. 2 shows a short first COVID-19 wave at the tail end of the 2019/ 
2020 flu season, and a more severe second wave during the 2020/2021 
flu season regarding the estimated total incidence. The peaks are all 
within the seasonal boundaries between week 33 (± 2 weeks) and week 
10 (± 5 weeks), and the nadirs in the opposing period. The 
hospitalizations-based estimates for COVID-19 incidence provide likely 
a more realistic picture of especially, the first wave, given test bias. 
However, on a logarithmic scale, the first COVID-19 wave appears 
visually more comparable in both time-series. Beyond the scope of our 
time series, the second wave has a third, somewhat lower peak, which 
ends, despite a relatively cold April month, in week 15 of 2021. From 
week 15 onward, the COVID-19 prevalence estimates and also the 
reproduction number (Rt) is structurally below 1 since then. However, 

the GGD COVID-19 incidence data, shows a last peak one week later, but 
again suffered from a change in methodology as also positive results of 
commercial self-test kits were included during this third peak. 

On our logarithmic infection scale (Fig. 3), the estimated COVID-19 
incidence tops around 6 (severe epidemic level), and the nadir bottoms 
out around 3 (severe outbreak level). Interestingly, on this scale, it be-
comes visible that COVID-19 incidence starts to rise slightly earlier than 
what is usual for ILI (week 33 ± 2 weeks). 

3.2. Statistical outcomes 

The COVID-19 time-series strongly and highly significantly corre-
lates with the ILI time-series r(45) = 0.75 (p < 0.00001). The 
hospitalizations-based, COVID-19 time-series, providing estimates that 

Table 1 
Logarithmic infection scale.  

2*LOG10(Incidence/ 
100 K) 

Incidence 
(/100 K 
citizens) 

Incidence (% of 
population 
infected) 

Description 

0 1 0.001% Isolated 
incidents 

1 3 0.003% Mild outbreak 
2 10 0.01% Moderate 

outbreak 
3 30 0.03% Severe outbreak 
3.5 58 0.06% Epidemic 

threshold 
(example) 

4 100 0.1% Mild Epidemic 
5 300 0.3% Moderate 

epidemic 
6 1000 1% Severe epidemic 
7 3000 3% Very severe 

epidemic 
8 10,000 10% Public health 

catastrophe 
9 30,000 30% Severe public 

health 
catastrophe 

10 100,000 100% Total public 
health 
catastrophe 

Table 1: Logarithmic scale (1 to 10) of Influenza-Like Illnesses or COVID-19 (or 
other) incidence because of the exponential nature of epidemics, with proposed 
qualitative descriptions for convenience. 

Table 2 
overview means (M) and standard deviations (SDs).     

2*Log10transformed 

Variable Mean SD Mean SD 

Average incidence ILI/100 K 2016 till 
2019 

46 36 3.07 0.69 

COVID-19 incidence/100 K 126 141 3.34 1.43 
COVID-19 incidence/100 K estimate 

based on hospitalizations (average) 
415 337 4.69 1.17 

COVID-19 incidence/100 K estimate 
based on hospitalizations (lower 95% 
CI) 

300 247 4.38 1.22 

COVID-19 incidence/100 K estimate 
based on hospitalizations (upper 95% 
CI) 

531 426 4.93 1.14 

Table 2: Overview of means (M) and standard deviations (SD) per variable in the 
ILI (Influenza-Like Illnesses) and COVID-19 datasets, including 2*Log10 trans-
formed data. 

Fig. 2. Historical ILI (Influenza-Like Illnesses) incidence (2016 till 2019) versus 
COVID-19 incidence per 100 K citizens during the 2020/2021 season. Peaks are 
all during flu season, and lows during the opposite season. The shaded periods 
are the typical period in which seasonal switching occurs. 

Fig. 3. Historical ILI (Influenza-Like Illnesses) incidence (2016 till 2019) versus 
COVID-19 incidence per 100 K citizens (2020/2021) on the 1 to 10 logarithmic 
scale. This figure visualizes the similarity of the COVID-19 time-series based on 
hospitalizations with the historic ILI time-series. The shaded areas are the 
typical seasonal switching periods. 
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control for test bias, correlated even somewhat stronger, (r(45) = 0.798, 
p < 0.00001), and as significantly (Fig. 4). The correlations (95% CI) of 
the estimated COVID-19 incidence time-series are almost equal, 
respectively r(45) = 0.788, p < 0.00001 and r(45) = 0.803, p < 0.00001. 
Therefore, we conclude that the COVID-19 time-series have a similar 
wave pattern to the ILI time-series, which have long been established as 
being seasonal. Furthermore, the COVID-19 peaks, similar to ILI peaks, 
all occur during flu season, i.e., between week 33 (± 2 weeks) and week 
10 (± 5 weeks). In addition, the COVID-19 nadirs, similar to ILI nadirs, 
occur all in the opposing allergy season. 

As a second sensitivity analysis, we performed univariate regression 
analyses between both the COVID-19 time-series, and the average ILI 
time-series. The outcomes were again highly significant: respectively F 
(1, 43) = 61.45, p < 0.0001, and F(1, 43) = 81.18, p < 0.0001 and the 
correlations (r2) are moderate to strong (see Table 3). 

4. Discussion 

Given the strong, and highly significant, correlations between the ILI 
and COVID-19 time-series, we conclude that COVID-19 incidence fol-
lows a seasonal pattern that is similar to ILI incidence in a country in the 
temperate climate zone, such as the Netherlands. Moreover, the COVID- 
19 peaks are all during flu season, and lows are all in the opposing period 
as expected. Furthermore, the COVID-19 time-series is in accordance 
with the two characteristics of earlier pandemics [4], namely a short 
first wave at the tail-end of a flu season, and a longer and more intense 
second wave during the subsequent flu season. This implies that the 
subsequent endings and starts of each following wave are more or less 
predictable. If the history of pandemics is followed, the third COVID-19 
wave would be less severe than the second one. Though nowadays 
COVID-19 vaccination will be a more important factor in determining 
the amplitude of the subsequent waves. On the other hand, if the pro-
tective immunity is short-lasting as is typically the case with infections 
with the common coronavirus, we might still be confronted with re-
surgences of COVID-19 [15]. Nevertheless, it is likely that such new 
waves, would they occur, are less intense, given longer lasting B-cell and 
T-cell memory of people that have been infected or are vaccinated 
already. 

Interestingly, all over Europe, the COVID-19 cycles were all more or 
less in sync with the Dutch COVID-19 cycle [16], and thus ILI season-
ality, independent of the start of the first cycle, the severity of lockdown 
measures taken, and given that herd immunity is not yet reached. More 
in detail, the first short-lived COVID-19 cycle in Europe (conforming to 
WHO’s definition of Europe), declines sharply during April 2020. The 
second cycle resurges from August, and peaks between the end of 
October and beginning of April, and declines sharply during the rest of 
April and May 2021. Also, the average Dutch flu season has the same 
pattern as the average European flu season [17]. 

The seasonality pattern of COVID-19 appears to be influenced 
though not caused by social distancing and lockdown measures as these 
measures were mainly anti-cyclical and following the trend. They were 
increasingly applied to flatten the curve after COVID-19 incidence in-
creases, gradually lifted after the sharper than expected COVID-19 
downcycles in Spring and Summer, and only re-applied after the sec-
ond wave seriously kicked in, during Autumn and Winter. It is beyond 
our research to quantify the considerable impact of lockdown and social 
distancing measures, although it might explain that COVID-19 incidence 
on the logarithmic scale (see Fig. 3) starts to rise slightly earlier than 
what is usual for ILI (week 33 ± 2 weeks) as social distancing and 
lockdown measures were increasingly relaxed and ignored in this 
period. Given that we did not have comparable, historical ILI datasets 
available from areas on the southern hemisphere, in particular areas in 
Argentina and Chile, it is not meaningful within the scope of our 
research to compare these areas with the Netherlands. Moreover, in case 
of Australia and New Zealand, the strict lockdown measures succeeded 
in all but eradicate COVID-19, making a meaningful seasonal compari-
son nearly impossible. 

What environmental factors have caused COVID-19 seasonality? We 
have analyzed before that the likely inhibiting factor causing ILI sea-
sonality, before or during COVID-19, are seasonal allergens (i.e, pollens) 
and seasonal allergies [8,9], given that meteorological factors alone are 
not sufficient to explain the seasonality of ILI [18] or COVID-19 [19]. We 
used data from a pollen station in Helmond, the Netherlands (latitude 
51.48167, longitude 5.66111). Spring in the Netherlands coincides with 
peaks in seasonal allergies. Pollens and allergy season typically ends 
around the beginning of August, and thus coincides with the typical flu- 
like low season period. On the other hand, we identified solar radiation 
(UV) as an ILI/COVID-19 co-inhibitor, and it is well-established that dry, 
warm, and sunny weather stimulates the maturation and dispersion of 
pollens. 

The inverse seasonality of seasonal allergens and ILI including 
COVID-19 is independently confirmed by a recent Chicago (latitude 
41.85003, longitude − 87.65005) study that covered not only pollens 
but also mold spores [20]. These findings seemingly contradict an early 
international study of pollen and COVID-19 [21], which suffers from the 
same issues as many other early environmental COVID-19 studies: both 
sub-seasonal bias and COVID-19 test bias. Sub-seasonal bias, means here 
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Table 3 
Outcomes linear regression.  

2*LOG10(ILI/100 
K) 

Estimate CI 
95% 

Intercept R2 F-stat 
on DF 

P<

2*LOG10(COVID- 
19 incidence/ 
100 K) 

1.81 1.34 
to 
2.28 

1.95 0.59 61.45 
(1, 43) 

0.0001 

2*LOG10(COVID- 
19 incidence/ 
100 K) estimate  
based on 
hospitalizations 

1.54 1.20 
to 
1.89 

0.19 0.65 81.18 
(1, 43) 

0.0001 

Table 3: Univariate regression analyses of the average Influenza-Like Illnesses 
(ILI) incidence/100 K citizens on both time-series for COVID-19 incidence/100 K 
citizens, whereby each time-series is 2*LOG10 transformed to compensate for 
non-linearity, and thus plotted on a 1 to 10 rational scale. 
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that a too limited time-series sample is used, namely from January till 
the beginning of April 2020, which coincides with only a small part of 
the early upswing in COVID-19 incidence in most countries, and mainly 
the upswing of allergens in the northern hemisphere. Additionally, 
conflicting local outcomes seem to have been selectively removed from 
the study. And, finally, in this short time window used it might have 
been better to correlate with a sound estimate of the reproduction 
number (Rt), correcting for test bias, than only the raw incidence figures, 
to be able to discern deceleration/acceleration effects during the 
upswing. 

We think that studies that are more geographically focused, and 
work with longer time-series, are in the current phase more meaningful 
for analyzing the pollen effect on COVID-19 incidence while controlling 
for deviations in other local circumstances. Therefore, we would expect 
that, ceteris paribus, the results of our COVID-19 and ILI pattern com-
parison in this study, implies that a 12-month time-series analysis of the 
reproduction number (Rt) of COVID-19 and pollen concentrations would 
falsify the outcomes of this international study, at least for the 
Netherlands. 

Upon the observation that allergic diseases are associated with lower 
rates of COVID-19 hospitalizations [26, 27], several pathophysiological 
explanations are provided: reduced expression of membrane-bound 
angiotensin-converting enzyme 2 (ACE-2) [28, 29] and. and Toll-Like 
Receptor 4 (TLR4) [20], the higher eosinophil count in patients with 
allergic diseases [30, 31], 

reduced chance on a cytokine storm and hyper-inflammation [32], 
and, allergen proteins directing T cell-mediated heterologous immune 
responses [33].  

4.1.1. Methodological concerns 
Test bias, especially for new viruses such as COVID-19, is a major 

methodological challenge. The approach to use more reliable metrics 
like the number of hospitalizations to generate an alternative incidence 
metric appears to be a good method to control for test bias. We could 
observe that the test bias slightly reduced the strength of correlations, 
which in our case did not affect the conclusions. During 2020–2021, the 
test capacity was scaled up significantly and sufficiently, which reduced 
the test bias concern over time. 

Another sound approach used seems to be excess mortality estimates. 
In this study, we decided not to use the latter, as there are other known 
factors than seasonal viruses that cause excess mortality, such as the 
heatwave during the Summer of 2020. Thus, using excess mortality 
would just introduce a measurement validity concern. 

Regarding the ILI data set, it would be better to have access to his-
torical incidence data from before 2016, which would improve the 
calculation of the average ILI cycle, but also improves empirical insight 
in the historical variances from the means. 

The end of the second COVID-19 season, beyond the scope of our 
dataset, around week 152,021, is not only influenced by seasonal fac-
tors, but also by the increased pace of vaccination, and the relaxation of 
lock-down measures. It will require additional data sets and multivariate 
variance analysis to try to determine the weight of each such factor, and 
their interactions. 

5. Conclusion 

The COVID-19 pandemic in the Netherlands is till now as seasonal as 
flu-like illnesses given the highly significant and strong correlations 
between both time-series. But, also given that COVID-19 waves till now 
rise between the temporal boundaries (week 10 ± 5 weeks and week 33 
± 2 weeks) of the typical flu-like season in The Netherlands, and go 
down in the opposing periods. Beyond `the scope of our selected time- 
series, it appears that the relatively cold April month of 2021 has 

lengthened the second wave slightly beyond the boundaries of our 
empirical model. Redefining the transition period from flu season to 
allergy season as week 11 (± 5 weeks) provides a slightly better fit with 
the available data. 

Further, the COVID-19 pandemic satisfies the qualitative criteria of 
earlier respiratory pandemics since 1889: the first wave is short-lived at 
the tail-end of flu season, the second wave is longer and more severe, 
peaks fall within the boundaries of flu-like season, and the lows are 
during the boundaries of the opposing season. 

This logically seems to imply that, ceteris paribus, the same factors 
that are driving the seasonality of Influenza-Like Illnesses are causing 
COVID-19 seasonality, such as solar radiation (UV), temperature, rela-
tive humidity, and subsequently seasonal allergens and allergies. 
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