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A B S T R A C T   

The input features of existing wind power time-series data prediction models are difficult to 
indicate the potential relationships between data, and the prediction methods are based on deep 
learning, which makes the convergence of the models slow and difficult to be applied to the actual 
production environment. To solve the above problems, an ultra-short-term wind power prediction 
model based on the XGBoost algorithm combined with financial technical index feature engi
neering and variational ant colony algorithm is proposed. The model innovatively applies 
financial technical indicators from financial time series data to wind power time series data and 
creates a class of model input features that can highly condense the potential relationships be
tween time series data. A bionic algorithm is used to search for the best computational parameters 
for financial technical indicators to reduce the reliance on financial experts’ experience. Taking 
the German power company Tennet wind power data set as an example, the prediction model 
proposed in this study has an mean absolute error of 0.859 and a root mean square error of 1.329, 
and it takes only 244 ms to complete the prediction. Thus, this study provides a new solution for 
ultra-short-term wind power prediction.   

1. Introduction and related work 

In light of the rapid development of the global economy in the 21st century, energy demand has surged, while traditional fossil fuel 
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sources face the threat of depletion. Renewable energy has emerged as a viable solution to address energy security and the climate 
crisis [1]. The wind power industry experienced a remarkable year in 2022, with a staggering 78 GW of new installed capacity 
worldwide. This represents the third-highest annual increase in history, and total installed capacity is anticipated to rise to 906 GW, 
reflecting an impressive 9% year-on-year increase. Wind power has gained significant momentum as a practical response to energy 
security and the climate crisis. Precise wind power generation prediction is vital to the development of effective power consumption 
plans, implementation of power generation tasks, and adjustment of national strategies. Additionally, accurate wind power prediction 
is an essential step towards achieving net-zero emissions and carbon neutrality [2]. 

However, the uncertainty of natural conditions such as wind speed and direction makes wind power generation highly random, 
volatile, and uncontrollable. This will lead to a serious wind abandonment phenomenon, and the grid connection of wind power will be 
somewhat affected. In addition, the accurate prediction of ultra-short-term wind power becomes challenging. Researchers have 
designed many ultra-short-term wind power prediction models to address this problem, including statistical regression models, ma
chine learning models (including deep learning models), and combined models using parametric optimization methods. 

Statistical models are autoregressive models, moving average models, and correlated variant models. They are used in small 
sample, linear and smooth wind power prediction tasks because of their ease of computation and flexibility [3]. For example, Zhang W 
et al. used the SARIMA model to effectively extract signals with seasonal characteristics from wind power time series data considering 
the influence of season on wind power time series data, which improved the prediction accuracy of the model. However, the missing 
data may cause the model to deviate from the actual application scenario [4]. Zhang F et al. used a dynamic adaptive prediction model 
based on an autoregressive model. The model coefficients were adaptively updated according to wind power time series data char
acteristics, which improved the model’s prediction accuracy. However, abnormal data can significantly reduce the prediction accuracy 
of this model and make the prediction results lag [5]. In summary, statistical models only analyze the potential relationships between 
time series data and can hardly be used to explore their nonlinear relationships. Therefore, such models are only applicable to static 
data analysis, which is an obvious disadvantage of such models. Wind power time series data are usually large sample data with 
nonlinear characteristics. There are often limitations when applying such models to wind power prediction [6]. 

With the rapid development of artificial intelligence, machine learning algorithms and deep learning algorithms have been widely 
used in wind power prediction tasks [7]. Shi K et al. improved the random forest algorithm and removed the redundant features using 
the variable importance measure method, improving the model prediction accuracy. However, there is a defect of poor model 
interpretability [8]. Ju Y et al. improved the accuracy and robustness of the prediction model by combining the LightGBM algorithm 
with the CNN algorithm. However, the model will occupy more computational resources, with room for further performance 
improvement [9]. Sasser C et al. constructed a wind power prediction model combining physical features and a decision tree algorithm, 
and their use of feature engineering improved the model’s prediction accuracy. However, the model requires extremely high input 
features [10]. Dong J et al. combined the XGBoost algorithm with a weather prediction correction system, which effectively improved 
the model defects caused by data errors but led to the model’s prediction accuracy being closely related to the season [11]. Machine 
learning-based prediction methods can learn their features adaptively based on the data and have higher prediction accuracy than 
statistical models. However, these models have high requirements for data variety and completeness. 

Today, deep learning is evolving rapidly. This technique has a wide range of applications in various fields. Among the common 
deep learning algorithms, Farah S et al. combined the LSTM algorithm with the GRU algorithm to achieve multi-step prediction of 
ultra-short-term wind power [12]. Zhang Y et al. used a deep learning method with an attention mechanism combined with the 
Seq2Seq model to improve the model prediction accuracy. However, the large amount of parameter setting work significantly affected 
the performance of this model [13]. Chengqing Y et al. combined graph attention network, GRU algorithm, and TCN algorithm to 
effectively extract features from wind power time series data, which significantly improved the accuracy and robustness of the model, 
but the model needed to define the graph structure in advance and could not explore the deep relationships between data [14]. Yuan R 
et al. improved the GAN algorithm. They proposed a PG-GAN-based wind power prediction algorithm, which can improve efficiency 
while ensuring model prediction accuracy, but the model does not consider meteorological features [15]. In summary, deep learning 
models can better exploit inter-data information and effectively improve model prediction accuracy compared with statistical and 
machine learning models. However, the increase in data volume, especially when the model is too complex, requires more compu
tational resources and training time. It is not easy to meet the task timeliness of ultra-short-term wind power prediction. Meanwhile, 
the interpretability of the deep learning model still has room for further improvement. 

However, machine learning and deep learning models require setting many parameters, and the hyperparameters set by expert 
experience often differ from the optimal parameters required by the model. Today, the growing popularity of bionic algorithms is 
bringing new ideas to solve real-world problems. The basic rules followed by many tiny creatures in nature create collective intelli
gence at the macro level. The way of life of swarming insects perfectly illustrates this mode of existence, which is very different from 
that of human society. Therefore, many combinatorial models for ultra-short-term wind power prediction have emerged with the rapid 
development of parameter optimization methods based on bionic algorithms. Li L et al. constructed a wind power prediction model 
based on a wavelet decomposition algorithm, support vector machine algorithm, and atomic optimization algorithm, which optimized 
the hyperparameters of the support vector machine and reduced the time required for prediction but was too demanding on the input 
features [16]. Liu M et al. constructed a prediction model based on the SVM and grey wolf optimization algorithms, optimizing the 
model’s hyperparameters. However, its application to stock screening strategies ignores the allocation of unequally weighted capital 
[17]. Li C et al. constructed a prediction model based on the SVM and cuckoo search algorithm. This model can effectively handle the 
errors while the support vector machine hyperparameters are further optimized. However, this model cannot be applied to long-term 
wind power prediction or identify abnormal data [18]. In summary, current parametric optimization methods based on bionic al
gorithms are often applied to the hyperparameter optimization of models. Generally, the optimized models have better prediction 
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performance but require longer prediction times. 
The authors found in many wind power prediction studies that the input features of the model are mostly historical and meteo

rological data. The single features make it difficult to grasp the potential relationships between the data, and the redundant meteo
rological data increase the model’s computational burden and reduce the model’s prediction speed. Meanwhile, acquiring highly 
accurate meteorological data imposes a certain economic burden on the electric field. In addition, most ultra-short-term wind power 
prediction models are based on deep learning models, which take much time for training and prediction. Ultra-short-term wind power 
prediction task often predicts wind power after 15 min. However, the model training and prediction time are more than 15 min, so such 
models cannot be practically applied to wind farms. Research has shown that machine learning models combined with well-designed 
feature engineering can yield prediction accuracies that rival or exceed deep learning models [19]. 

The main contributions of this study are twofold：  

● An input feature for an ultra-short-term wind power prediction model is provided. By looking at the financial time series and the 
wind power time series, the authors argue that there is some similarity and that the wind power time series is likely to have a similar 
pattern or nature to the financial time series [6]. FTIs are common and important model input features in financial time series data 
prediction. Using FTIs to predict financial market movements is a common method [20]. In this study, K-line and FTIs are con
structed using wind power time series data, and this project is named financial technology feature engineering. Experiments show 
that FTIs based on wind power time series data can significantly improve model prediction accuracy when used as model input 
features, replacing meteorological data in common model input features.  

● A parameter optimization method applicable to the present model when performing feature calculations is provided. FTIs of wind 
power time-series data should not rely on financial experts’ experience in their calculation and need to be calculated using pa
rameters that match the current data. This study transforms this problem into a multivariate function optimal solution problem, 
and a variational ant colony algorithm is designed to search for optimal parameters for calculating FTIs, using the bionic algorithm 
as an entry point [21]. The algorithm is a combination of the Monte Carlo algorithm [22], rank-based ant colony algorithm [23], 
and simulated annealing algorithm [24]. Experiments show that it effectively solves the over-reliance on financial experts’ 
experience when calculating FTIs. 

This study uses a wind farm data set in Inner Mongolia, China, to verify the validity of the FTIs, a UK onshore wind data set to verify 
the effectiveness of the variational ant colony algorithm for optimizing the parameters of the FTIs calculation, a German power 
company Tennet wind power data set to verify the superiority of the prediction model proposed in this study. 

The rest of the paper is organized as follows: Section 2 presents the computation of the FTIs in the model, the workflow of the 
variational ant colony algorithm, and the derivation process of the objective function of the XGBoost algorithm. Section 3 details the 
data sets used in the experiments and the evaluation metrics. Section 4 conducts ultra-short-term wind power prediction experiments 
and analyzes the results. Section 5 discusses the importance of FTIs and variational ant colony algorithms. Section 6 concludes the 
paper. 

2. Key algorithms 

2.1. Model introduction 

There are five steps to construct the prediction model designed in this study, and the main work performed in each step is as follows. 
A schematic diagram of the model construction and the experimental process is shown in Fig. 1. The diagram was drawn concerning 
the drawing method of the schematic diagram in reference [25]. In addition, the presentation of parts of this paper mimics the pre
sentation in Ref. [26].  

● Step1: Collect the required raw data from the wind farm/ENTSO-E system/NWP system and construct the original data set.  
● Step2: (1) Check data integrity. (2) Determine the categories of FTIs needed for the model. (3) Construct time window and K-line 

data to prepare for the calculation of FTIs.  
● Step3: (1) Set the search range for the calculation parameters of FTIs. (2) Setting the number of rounds of algorithm operation. (3) 

Generate computational parameters of FTIs by the Monte Carlo method in the specified range. (4) Record the top 10 groups of 
parameters with the best results in each round of experiments, and set each parameter’s maximum and minimum values in these 10 
groups of parameters as the parameter search range in the next round of experiments. In addition, to avoid the problem of an 
optimal local solution, there is a certain probability that the search range will be expanded when reset. When the maximum value of 
the parameter search range is the same as the minimum value, the search range will be forced to expand. (5) When the number of 
rounds of algorithm operation is reached, the calculated parameters of FTIs corresponding to the best experimental results are 
output.  

● Step4: (1) Calculate the FTIs based on the K-line data provided in step 2 and the optimal financial technical indicator calculation 
parameters provided in step 3. (2) Combine the FTIs into the data set and remove the K-line data. Use this data set to divide the 
model training set and test set. 

Fig. 1. Model construction and experimental flow chart.  
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● Step5: (1) Train the prediction models proposed in this study with the comparison models using the training set. (2) Use the test set 
to verify the prediction performance of all models. (3) Report the prediction results to the dispatch center to assist in generation 
planning and power consumption schedule. 

2.2. FTIs construction algorithm 

The calculation of FTIs is inseparable from the data in financial K-line charts. Before calculating the FTIs based on wind power time 
series data, a suitable time window should be selected and converted to K-line data. Then, the FTIs should be calculated according to 
the relevant algorithm. 

Wind power timing data are generally stream data collected 24 h a day without interruption. This study aims to solve the ultra- 
short-term wind power prediction problem (predicting the wind power in the next 15 min), so the time window is set to 1 h to 
calculate the FTIs. It further means that the data acquisition step of this study is 5, using 5 points of data to synthesize 1 K-line data. 
Shorter acquisition steps would lead to distortion of the FTIs and would not effectively capture the characteristics and trends in the 
wind power time series data. Longer acquisition steps would lead to blunting of the FTIs, causing them to lag and not synchronize with 
the current trend. 

A rectangular bar in the daily K-line of the financial markets represents a trading day’s open, close, high, and low prices. If the 
opening price is lower than the closing price, the bar is shown in red (generally in China, but in the U.S. market, it is in green). If the 
opening price is higher than the closing price, the bars are shown in green (generally in China, but in the U.S. market, it is in red). A 
detailed explanation of the K-line is shown in Fig. 2. 

The open, close, high, and low prices in the K-line data can be replaced by the start, end, high and low values in the time window of 
the wind power time series data. In this study, the time window is set to 1 h to calculate the K-line data based on the above contents. 
The calculation process is shown in Fig. 3. Taking the red dashed line as an example, in steps 1–2 of Fig. 3, this study combined the 5- 
time series data corresponding to 00:00–01:00 into 1 K-line data. Further, the K-line graph was plotted in step 3 of Fig. 3 based on the 
K-line interpretation of Fig. 2, where the horizontal axis represents the time collection point, and the vertical axis represents the power 
value. 

2.2.1. Financial technical indicators KDJ 
KDJ first originated in the futures market and was pioneered by George C. Lane. It combines the advantages of the momentum 

concept, strength and weakness indicators, and moving averages. It measures the degree of variation of values from the normal interval 
[27]. In the calculation of KDJ data, there are variables in its formula that are used to limit the calculation period and weights. For the 
ultra-short-term wind power prediction, the calculation period is set to 3 h. The details of the algorithm are shown below. 

Algorithm input: The wind power time series data. Where the power value at the end of 3 h is recorded as C3, the highest power 
value during 3 h is recorded as H3, and the lowest power value during 3 h is recorded as L3. 

Algorithm steps:  

a) RSV is the immature random value. Set the RSV value at hour x to RSVx. K is the fast confirmation indicator. Set the K value at hour 
x to Kx. D is the slow confirmation indicator. Set the D value at hour x to Dx. j is the trend direction indicator, set the J value at hour 
x to Jx.  

b) Based on RSV = C3 − L3
H3 − L3

× 100, calculate the value of RSV.  
c) Let Kx− 3 be the K value for the first 3 h. If not present, use 50 instead. Using the RSV found in step b, calculate the K value according 

to Kx = 3
4Kx− 3 +

1
4 RSVx. The K value varies in the interval 0–100.  

d) Let Dx− 3 be the D value for the first 3 h. If not present, use 50 instead. Using the K found in step c, calculate the D value according to 
Dx = 3

4Dx− 3 +
1
4Kx. The D value varies in the interval 0–100.  

e) Using K from step c and D from step d, calculate the value of J from Jx = 3Kx − 2Dx. 

Algorithm output: The K, D, and J values of the FTIs. 

Fig. 2. Standard K-line detail chart.  

S. Guan et al.                                                                                                                                                                                                           



Heliyon 9 (2023) e16938

6

2.2.2. Financial technical indicators MACD 
MACD is a common technical analysis indicator in financial market trading, introduced by Gerald Appel in the 1870s. It is used to 

study the strength, direction, and energy of stock price changes and the trend cycle [28]. In this study, MACD is migrated from financial 
time series data to wind power time series data to determine the strength, direction, trend, etc., of forecast target changes. For 
ultra-short-term wind power forecasting, the fast-moving average calculation period in MACD is set to 3 h, and the slow-moving 
average calculation period is set to 5 h in this study. The details of the algorithm are shown below. 

Algorithm input: The wind power time series data. where the power value at the end of x hours is recorded as Cx. 
Algorithm steps:  

a) Let EMAfast
x be the average of the fast-moving line at hour x. EMAfast

x− 3 is the EMAfast value for the first 3 h with hour x as the base. If 
the value does not exist, use 0 instead. According to EMAfast

x = 2
3 EMAfast

x− 3 +
1
3Cx, the EMAfast value is calculated, and the EMAfast value 

can be negative.  
b) Let EMAslow

x be the average of the slow-moving line at hour x. EMAslow
x− 5 is the EMAslow value for the first 5 h with hour x as the base. If 

the value does not exist, use 0 instead. According to EMAslow
x = 4

5 EMAslow
x− 5 +

1
5Cx, the EMAslow value is calculated, and the EMAslow 

value can be negative.  
c) Let DIFx be the deviation value at hour x. Using the EMAfast found in step a, and the EMAslow found in step b, calculate the DIFx value 

according to DIFx = EMAfast
x − EMAslow

x .  
d) Let DEAx be the smoothed moving average at hour x. Using the EMAfast found in step a with the EMAslow and EMAslow

x− 5 found in step b, 
calculate the DEAx value according to DEAx = EMAfast

x + 3
4 EMAslow

x− 5 +
1
4 EMAslow

x .  
e) Let MACDbar

x be the MACD value at hour x. Use the EMAfast found in step a with the EMAslow and EMAslow
x− 5 found in step b to calculate 

the MACDbar
x value based on MACDbar

x = EMAfast
x + 3

4 EMAslow
x− 5 −

7
4 EMAslow

x . 

Algorithm output: The DIF, DEA, and MACD values of the FTIs. 

2.2.3. Financial technical indicators RSI 
RSI is a technical analysis indicator proposed by Willis Wilde, an American mechanical engineer, in June 1978. In this study, the 

RSI indicator from financial time series data is migrated to wind power time series data. All three financial technical indicators, MACD, 
KDJ, and RSI, are used as model input features to construct an ultra-short-term wind power prediction model. The details of the al
gorithm for the construction of the financial technical indicator RSI are shown below. 

Algorithm input: The wind power time series data. where the power value at the end of x hours is recorded as Cx. 
Algorithm steps:  

a) Let the magnitude of the upward fluctuation of power in 6 h be A, and let the magnitude of the downward fluctuation of power in 6 
h be B.  

b) If Cx − Cx− 1 > 0, then A+ = Cx − Cx− 1. If Cx − Cx− 1 < 0, then B+ = Cx− 1 − Cx. Calculate the values for 6 consecutive sampling 
points.  

c) RS = A
B, RSI1X =

(
1 − 1

1+RS
)
× 100%.  

d) Usually, the RSI1X, RSI2X, and RSI3X need to be calculated. RSI1X represents the value of 6 consecutive samples, RSI2X represents 
the value of 12 consecutive samples, and RSI3X represents the value of 24 consecutive samples. 

Algorithm output: The RSI1X, RSI2X, and RSI3X values of the FTIs. 
Meanwhile, this study aims to apply FTIs to wind power time series data. Since there are some differences between financial time 

series data and wind power time series data, the financial experts’ experience (e.g., the financial technical indicator KDJ has a 
calculation period of 3 h) cannot be directly applied to the calculation of FTIs for wind power time series data. Therefore, this study 
proposes a variational ant colony algorithm to solve this problem. 

Fig. 3. Wind power K-line construction schematic.  
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2.3. Variational ant colony algorithm 

FTIs in financial time series data require a large number of parameters to be set in the calculation, and the existing parameter 
setting schemes are mostly based on financial experts’ experience. This study proposes a parameter adaptive optimization algorithm 
based on a variational ant colony algorithm to make the FTIs better fit the required predicted wind power time series data. The al
gorithm combines the Monte Carlo method, simulated annealing algorithm, and rank-based ant colony algorithm. The idea is to set the 
parameters randomly by the Monte Carlo method in the limited parameter search range, number of running rounds, and times. The 
rank-based ant colony algorithm narrows the parameter search range. A simulated annealing algorithm prevents the optimal local 
solution. Meanwhile, due to the extremely fast computation speed of the XGBoost algorithm, the variational ant colony algorithm can 
dynamically adjust the computation parameters of the FTIs according to the recent time series data to achieve the best fitting effect. 
The flowchart of the algorithm operation is shown Fig. 4. 

2.3.1. Monte Carlo method 
Statistically, the three types of FTIs used in this study require the setting of six parameters. More than 600,000 parameter setting 

options exist after delineating the parameter search range based on the short-term prediction objectives. According to the measure
ment, the XGBoost algorithm used in this study takes about 250 ms to complete a prediction (the average prediction time for all data 
sets). After traversing all setting schemes, the program runs for more than 40 h, which significantly reduces the usability of this model. 

To this end, this study uses the Monte Carlo method to solve the parameter setting problem of FTIs so that the parameter setting of 
FTIs no longer depends on expert experience. It also benefits from the efficient and parallel computation of the Monte Carlo method, 
which significantly reduces the optimal parameter search time. 

2.3.2. Rank-based ant colony algorithm 
Setting parameters for calculating FTIs no longer relies on expert experience. However, there are still problems with the inefficient 

search for optimal parameters and large search ranges. For this reason, this study designs a rank-based ant colony algorithm to solve 
this series of problems. 

The development of ant colony algorithms is closely related to the foraging habits of ants. The pheromones left on the ground by 
ants can guide the colony to find food effectively [29]. Further, this study used a rank-based ant colony algorithm in which the top 10 
records in each round of R2Score ranking were considered the best ants. The records corresponded to parameters similar to phero
mones in the ant colony algorithm. Before the next round of parameter search, the search range of each parameter is updated to the 
maximum and minimum values of this parameter in these 10 records. The rank setting in the rank-based ant colony algorithm is 

Fig. 4. Variational ant colony algorithm running flowchart.  
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described in detail in Section 4.1.2. 
In addition, the experimental results show that after adding the rank-based ant colony algorithm, the parameter search range is 

rapidly reduced, the parameter search efficiency is significantly improved, and the model usability is substantially enhanced. 

2.3.3. Simulated annealing algorithm 
According to the method described in Section 2.3.2, the search efficiency of the optimal parameters has been significantly 

improved. However, after a certain number of rounds of operations, a situation arises where the upper bound of the search range of 
certain parameters to be determined is equal to the lower bound. At this time, the model has a problem with local optimal solutions. 
This study adds the simulated annealing algorithm to the variational ant colony algorithm to solve the problem of locally optimal 
solutions. 

In this study, two simulated annealing schemes are proposed. One option is probabilistic annealing, which has a 10% probability of 
doubling the search range of all parameters before each round of parameter search range update (the setting of this probability will be 
described in detail in Section 4.1.3), and this is done to reduce the cumulative impact of the rank-based ant colony algorithm on the 
optimal local solution. Another option is forced annealing, which necessarily doubles the search range of all parameters to search for 
the optimal global solution when the maximum value of the partial parameter search range is the same as the minimum value. In 
addition, the flow of the simulated annealing algorithm is described in detail in Fig. 4. 

At this point, the variational ant colony algorithm is constructed. Taking the optimization of the calculation parameters of the 
financial technical indicator MACD as an example, the parameter optimization strategy of the variational ant colony algorithm is 
shown below. 

Algorithm input: The range of values of the parameters to be determined, the raw wind power time series data for which features 
need to be extracted. 

Algorithm steps:  

a) Let the search range for the fast-moving average period in the financial technical indicator MACD be [FastMin,FastMax]. Let the search 
range for the slow-moving average period in the financial technical indicator MACD be [SlowMin,SlowMax]. Let the search range for 
the weight value of DEA in the financial technical indicator MACD be [DeaMin,DeaMax].  

b) Set the number of running rounds, set the number of single rounds running.  
c) Set the number of records used to update the parameter search range (set to 10 in this case), and set the probabilistic annealing 

trigger rate (set to 10% in this case).  
d) Determine whether to perform probabilistic annealing or forced annealing.  
e) Compare all recorded R2Scores for this round. Select the parameter corresponding to the top 10 highest R2Scores in the record and 

update the parameter search range. The updated search range is [FastNew
Min , FastNew

Max] for the fast-moving average period, [SlowNew
Min ,

SlowNew
Max] for the slow-moving average period, and [DeaNew

Min ,DeaNew
Max] for the DEA weight value.  

f) Repeat steps b, c, d, and e until the experiment proceeds to the set number of running rounds. Compare the R2Score recorded in the 
last round, select the best combination of parameters, and output the combination of parameters. 

Algorithm output: The optimal calculation parameters of the FTIs MACD. 

2.4. XGBoost algorithm 

XGBoost comprises multiple CART trees and realizes the integrated learning of multiple CART trees through Gradient Tree 
Boosting. In the training phase, each decision tree learns the residual error between the target value and the sum of the predicted values 
of all previous trees. Similar To balanced binary trees, the decision tree construction process will select the optimal segmentation point 
according to the optimal characteristics. In the end, multiple decision trees make decisions together, and the results of all trees are 
accumulated as the final prediction result. 

The unique feature of the XGBoost algorithm is that the objective function contains both a loss function and a regularization term. 
The loss function represents how well the model fits the data, and it calculates the second-order derivative of the loss function, which 
further considers the trend of the gradient change. The regularization term is used to control the complexity of the model. The reg
ularization term of XGBoost has a penalty mechanism, and the higher the number of leaf nodes, the higher the penalty, thus limiting 
the number of leaf nodes. In addition, the biggest improvement of the XGBoost algorithm is the significant improvement in compu
tational speed. The most time-consuming part of the tree model construction process is sorting the feature values to determine the best 
classification point. The XGBoost algorithm sorts the features before training the model. It dumps them into a block structure, which is 
reused during the computation to reduce the computational effort of the algorithm [30–32]. 

In summary and combined with references [33–35], the XGBoost model is defined as follows: 

ŷm
i =

∑Z

z=1
fz(xi)= ŷ(m− 1)

i + ft(xm) (1)  

In Equation (1), ̂ym
i is the prediction result of sample i after m iterations, Z is the set of all CART trees, fz is the prediction result of the z- 

th tree, xi is the i-th sample of the input, ̂ym− 1
i is the prediction result of the first m-1 trees, and ft(xm) is the prediction result of the m-th 
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tree. Further, the XGBoost model objective function is as follows: 

Obj=
∑n

i=1
l(yi, ŷi)+

∑r

j=1
Ω(fi) (2)  

In Equation (2), the objective function Obj consists of two terms; the first is the loss function, which is used to evaluate the error 
between the predicted and actual values of the model. Where l is the model loss function, n is the total number of data, i is the ordinal 
number of data, yi is the i-th data actual value, and ̂yi is the i-th data predicted value. The second term is the regularization term, which 
controls the model complexity and avoids overfitting. Where r is the total number of trees, j is the ordinal number of trees, fj is the j-th 
tree, and Ω is the regularization function of the model. The Taylor series of the loss function is generally calculated to the second order, 
and the constant term is removed. When there are m CART trees, the objective function is as follows: 

Obj =
∑n

i=1

(

gifm(xi) +
1
2

hif 2
m(xi)

)

+ Ω(fm)

gi = ∂ŷ(t− 1)
i

l
(
yi, ŷm− 1

i

)

hi = ∂2
ŷ(t− 1)

i
l
(
yi, ŷm− 1

i

)

(3) 

In Equation (3), gi and hi are the first-order and second-order derivatives. In addition, the regularization term in this objective 
function is defined as: 

Ω(f )= γT +
1
2

λ
∑T

j=1
w2

j (4)  

In Equation (4), wj is the weight fraction of the j-th child node in tree f; T is the total number of leaf nodes in tree f; γ and λ are the 
custom parameters of XGBoost, γ is the penalty term of the L1 norm, γT controls the complexity of the tree through the number of leaf 
nodes and coefficients, thus suppressing the complexity of the model. λ is the penalty term of the L2 norm. 12 λ

∑T
j=1w2

j is used to control 
the weight fraction of the leaf nodes to avoid overfitting. 

3. Experimental preparation work 

3.1. Data sets used in the experiments 

3.1.1. Inner Mongolia, China wind power data set (IM WPD) 
This data set records ultra-short-term wind power data from a wind farm in Inner Mongolia, China, from January 1, 2019, to May 

22, 2019, with a collection frequency of 15 min/time. The data contained missing values, which were processed to make a total of 
12,520 data. The prediction target is the wind power generation power value after 15 min. The data set comes with meteorological 
data, and this study plans to conduct ablation experiments on this data set. To demonstrate that the FTIs can effectively improve the 
model prediction accuracy and reduce the dependence of the model on NWP data. 

3.1.2. UK-wide onshore wind power data set (UK WPD) 
In this study, ultra-short-term wind power data for the UK from 2015 to 2020 were obtained by ENTSO-E with a collection fre

quency of 15 min/time. The data do not contain missing values and anomalies, totaling more than 200,000 data. The prediction target 
is the wind power generation power value after 15 min. This study plans to conduct an important validation experiment of variational 
ant colony algorithm on this data. To prove that the variational ant colony algorithm can effectively optimize the calculation pa
rameters of FTIs and reduce the model’s reliance on financial experts’ experience. 

3.1.3. German power company Tennet wind power data set (Tennet WPD) 
In this study, ultra-short-term wind power data for the German power company Tennet from 2015 to 2020 were obtained by 

ENTSO-E with a collection frequency of 15 min/time. The data do not contain missing values and anomalies, totaling more than 
200,000 data. The prediction target is the wind power generation power value after 15 min. This study plans to conduct model 
comparison experiments on this data set to obtain the prediction effects of different machine learning models and deep learning models 
to prove that the prediction model proposed in this study has an excellent performance in terms of prediction accuracy and feasibility. 

Table 1 
Key information of the data set.  

Data set name Collection time Number of data Train/Test ratio Number of features Predictive target 

IM WPD 2019.1–2019.5 12520 75%/25% 14 Future wind power (15 min) 
UK WPD 2015.1–2020.9 201500 75%/25% 10 Future wind power (15 min) 
Tennet WPD 2015.1–2020.9 201500 75%/25% 10 Future wind power (15 min)  
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For readers to understand the wind power time series data used in this study more intuitively, the key information of the three data 
sets has been summarized in Table 1. 

3.2. Evaluation metrics 

3.2.1. Mean absolute error 
MAE represents the average absolute error between the actual and predicted values in the test set, negatively correlated with the 

prediction effect. This indicator can accurately reflect the actual prediction error. It is worth noting that the same data set must be 
selected when using this indicator. It is not available to compare the model prediction effect between different data sets using this 
indicator. 

Setting m as the total number of samples and n as the sample number. yn and ̂yn are the actual and predicted values of the nth sample 
respectively. The calculation method of MAE is shown in Equation (5). 

MAE=
1
m

∑m

n=1
|yn − ŷn| (5)  

3.2.2. R2Score 
R2Score is the most commonly used index to evaluate the degree of merit of the regression model. Setting y as the sample mean. The 

meanings of other variables are the same as those in MAE. If R2score<0, then the prediction error is greater than the error of the mean, 
which means the current model is meaningless. If R2score = 0, the predicted value equals the mean value, which means the model is 
still meaningless. If R2score = 1, the predicted value equals the actual value, which means the model can make error-free predictions. 
Therefore, the closer the R2score is to 1, the better the model prediction is. The calculation method of R2Score is shown in Equation (6). 

R2Score= 1 −

∑m
n=1(yn − ŷn)

2

∑m
n=1(yn − y)2 (6)  

3.2.3. Root mean square error 
RMSE refers to the square root of the mean squared error between the predicted value of the model and the actual value. Because 

the dimensionality can be reduced, RMSE is easier to calculate and compare. The meanings of the variables in its calculation method 
are consistent with those in the MAE calculation method. The calculation method of RMSE is shown in Equation (7). 

RMSE=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
m

∑m

n=1
(yn − ŷn)

2

√

(7)  

4. Experimental results and analysis 

4.1. The importance of variational ant colony algorithm 

This section explains the importance of the variational ant colony algorithm. Three experiments demonstrate the significant ad
vantages of the variational ant colony algorithm, solve the ant colony rank selection problem, and the annealing probability setting 
problem. This section uses the UK-wide onshore wind power data set. All experiments in section 4.1 was done based on the XGBoost 
algorithm, and all data in the tables are the average of 100 experiments. 

4.1.1. The significant advantages of the variational ant colony algorithm 
The experiments were divided into three groups, each group was conducted for six rounds, and 200 parameter combinations were 

performed in each round. The method used in group I was the Monte Carlo method. The method used in group II was a rank-based ant 
colony algorithm. The method used in group III was the variational ant colony algorithm. The evaluation metrics are MAE (mean and 
maximum values), R2Score (mean and maximum values), super excellent rate (percentage of the number of experiments with R2Score 
greater than 0.950 out of the total number of experiments), and excellent rate (percentage of the number of experiments with R2Score 
between 0.948 and 0.9499 out of the total number of experiments). The meanings and value ranges of the parameters to be determined 

Table 2 
Pending parameter meaning and value range table.  

Parameter name Parameter meaning Parameter initial value range 

KDJ-time A specified period in the FTIs KDJ, used to calculate RSV 3–20 
KDJ-w FTIs KDJ used to calculate the weighting values of K and D 2–6 
MACD-f The calculation period of the fast moving average in the FTIs MACD 2–12 
MACD-s The calculation period of the slow moving average in the FTIs MACD 12–32 
MACD-dea The weighting value used to calculate dea in the FTIs MACD 7–14 
RSI-time A specified period in the FTIs RSI, used to calculate RSI1x 3–9  
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are shown in Table 2. The parameter optimization performance of the variational ant colony algorithm is shown in Table 3. 
As shown in Table 3, the bolded data are the best results, and the underlined data are the second-best results. The evaluation 

indexes of group II and group III were significantly better than those of group I. The rank-based ant colony algorithm and the parameter 
optimization method based on the variational ant colony algorithm significantly improved the model prediction accuracy. Although 
group II achieved a better prediction effect in some evaluation methods, this study requires the best computational parameters to 
calculate the FTIs. Observe the third and fifth columns (extreme value records) in Table 3. The variational ant colony algorithm can 
always search for the best FTIs calculation parameters. 

Figs. 5, 6 and 7 represent the setting of the calculation parameter MACD-s of the financial technical indicator MACD under different 
parameter optimization algorithms, respectively, and the red dots in the figures all represent the parameter taking values. 

Combining Table 3 with Fig. 5, the search method using only the Monte Carlo method cannot effectively find the optimal 
computational parameters required for this study. Combining Table 3 with Fig. 6, the combination of Monte Carlo method and rank- 
based ant colony algorithm results in a significant improvement in the optimal parameter search capability. However, Fig. 6 shows that 
this method has a local optimal solution problem, and the parameter search range is limited to a specific range. 

In combination with Table 3 and Fig. 7, a simulated annealing algorithm is added to the Monte Carlo method combined with the 
rank-based ant colony algorithm. The evaluation metrics show that the best parameters appear in this group of experiments. It can be 
seen from Fig. 7 that although a relatively clear parameter search range appeared in the fifth round of experiments, the sixth round of 
experiments adjusted to expand the search range and solve the local optimal solution problem by benefiting from the addition of the 
simulated annealing algorithm. Meanwhile, the experimental results show that the parameter combination with the best prediction 
effect appears in the sixth round of experiments. 

4.1.2. Selection of ant colony rank 
In variational ant colony algorithms, it is necessary to set a specific “rank” for the rank-based ant colony algorithm. This study 

conducts five groups of comparison experiments to demonstrate the performance of the variational ant colony algorithm with different 
“rank”. Each group of experiments is conducted for six rounds, with 200 parameter combinations. The parameter ranges corresponding 
to the top 5, 10, 15, 20, and 30 records of R2Score in each round was used as the parameter search ranges for the next round of ex
periments. The results of the experiments are shown in Table 4. 

In Table 4, the bolded data are the best results, and the underlined data are the second-best results. Table 4 shows no significant 
differences between the five experimental groups’ R2Score (mean and maximum values) and MAE (mean and maximum values). 
However, the two assessment indicators, super excellent rate, and excellent rate, showed a large difference, and the changing trend was 
ascending and then descending. Combining the above analysis and the experimental results, the best prediction accuracy (the super 
excellent rate and excellent rate) can be obtained using the parameter range corresponding to the first ten records of R2Score ranking as 
the search range for the parameters of the new round of experiments. Therefore, group II’s “rank” setting effectively updated the 
parameter search range and significantly improved the model prediction accuracy. This study also applied this setting to all subsequent 
experiments. 

4.1.3. Setting of annealing probability 
In the variational ant colony algorithm, regarding the probabilistic annealing in the simulated annealing algorithm, a specific 

annealing probability needs to be set to ensure that the parameter search range can be effectively narrowed while solving the local 
optimal solution problem. In this study, five sets of comparative experiments are conducted to demonstrate the performance of the 
variational ant colony algorithm under different annealing probabilities. Each set of experiments is conducted for six rounds, with 200 
parameter combinations. The annealing probabilities were set to 3%, 5%, 10%, 15%, and 25% for the group I to group V experiments, 
respectively. The experimental results are shown in Table 5. 

In Table 5, the bolded data are the best results, and the underlined data are the second-best results. As shown in Table 5, no 
significant differences were seen in R2Score (mean and maximum values) and MAE (mean and minimum values) for the first four 
groups of experiments. The MAE (mean value) and R2Score (mean value) of the experiments in group V were significantly lower. This 
shows that the higher annealing probability is not conducive to the model to improve the prediction accuracy and cannot be used with 
the rank-based ant colony algorithm to narrow down the parameter search effectively. From the two types of evaluation indexes, the 
super excellent rate and excellent rate, multiple annealing causes the relevant evaluation indexes to be similar to those of the Monte 
Carlo method parameter optimization method proposed in this study, resulting in the variational ant colony algorithm losing its 
significance. 

Combining the above analysis and experimental results, group III of experiments (annealing probability set to 10%) achieved better 
prediction accuracy, effectively narrowed the parameter search range, and solved the local optimal solution problem faced by the 

Table 3 
Optimization experimental performance table of different algorithm parameters.  

Experimental 
Group 

MAE (Mean 
value) 

MAE (Minimal 
value) 

R2Score (Mean 
value) 

R2Score (Maximal 
value) 

Super excellent 
rate 

Excellent 
rate 

I 0.7600 0.6794 0.9405 0.9526 0.33% 1.53% 
II 0.7042 0.6714 0.9463 0.9534 9.20% 25.20% 
III 0.7089 0.6693 0.9457 0.9544 6.60% 18.33%  
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Fig. 5. Schematic diagram of the effect of parameter optimization with MACD-s as an example (Group I).  

Fig. 6. Schematic diagram of the effect of parameter optimization with MACD-s as an example (Group II).  

Fig. 7. Schematic diagram of the effect of parameter optimization with MACD-s as an example (Group III).  
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parameter optimization algorithm, and this study also applied this setting to all subsequent experiments. 

4.2. Analysis of the validity of FTIs 

This section demonstrates the positive impact of FTIs on model prediction accuracy. This section uses a wind power data set from a 
wind farm in Inner Mongolia, and six groups of experiments are conducted based on the XGBoost algorithm. The data in the table are 
the average of 100 experiments. The details of the experimental groups are shown in Table 6, and the experimental results are shown in 
Table 7. 

In Table 6, the prediction targets for all experimental groups are the wind power generated in the next 15 min. The input feature of 
group I is the historical power data. The input features of group II are historical power data with NWP data. The input features of 
groups III and IV are historical power data and FTIs. The input features of groups V and VI are historical power data, FTIs, and NWP 
data. In addition, this section additionally adds a comparison experiment for wind power prediction using different FTIs calculation 
methods. Because groups I and II do not involve FTIs, they do not have FTIs calculation methods. Groups III and V use financial experts’ 
experience to calculate FTIs, while groups IV and VI use variational ant colony algorithms to calculate FTIs. 

As shown in Table 7, the bolded data are the best results, and the underlined data are the second-best results. Comparing groups I 
and II, the MAE is reduced by 9.17%, and the RMSE is reduced by 4.07% when the traditional covariates (e.g., wind speed and wind 
direction in meteorological data) in the wind power time series data are used as the model input features. The meteorological data 
slightly enhance the model prediction accuracy. Comparing groups I, III, and IV, the model prediction accuracy is significantly 
improved with the FTIs as model input features. MAE decreases by 18.33%, and RMSE decreases by 21.11% when FTIs based on 
financial experts’ experience are used as model input features. The MAE is reduced by 22.31%, and the RMSE is reduced by 25.43% 
when the FTIs based on the variational ant colony algorithm are used as model input features. Comparing groups III and V, groups IV 
and VI, the model’s prediction accuracy did not improve significantly when both meteorological data and FTIs were used as model 
input features but decreased. This is because adding redundant features reduces the attention of the XGBoost model to important 
features. Some invalid features are also used to construct the XGBoost model’s CART tree. 

Further, this study refines the experimental groups III and IV in Table 7. The FTIs calculated by relying on financial experts’ 
experience and those calculated by relying on the variational ant colony algorithm and their prediction effects are shown in Table 8. 

As shown in Table 8, the computational parameters of the FTIs derived using the variational ant colony algorithm on the wind 
power data set of Inner Mongolia, China, are significantly different from those provided by the financial experts’ experience. The 
results show that the variational ant colony algorithm reduces the MAE by about 4.87% and the RMSE by 5.48% in this data set. It can 

Table 4 
Experimental performance table of different “rank” in variational ant colony algorithm.  

Experimental 
Group 

MAE (Mean 
value) 

MAE (Minimal 
value) 

R2Score (Mean 
value) 

R2Score (Maximal 
value) 

Super excellent 
rate 

Excellent 
rate 

I 0.7089 0.6693 0.9457 0.9541 6.60% 18.33% 
II 0.7083 0.6705 0.9461 0.9535 8.20% 22.27% 
III 0.7099 0.6709 0.9458 0.9537 7.30% 21.06% 
IV 0.7190 0.6725 0.9449 0.9539 7.26% 15.00% 
V 0.7139 0.6713 0.9454 0.9540 5.13% 17.20%  

Table 5 
Experimental performance table of different annealing probabilities in variational ant colony algorithm.  

Experimental 
Group 

MAE (Mean 
value) 

MAE (Minimal 
value) 

R2Score (Mean 
value) 

R2Score (Maximal 
value) 

Super excellent 
rate 

Excellent 
rate 

Annealing 
times 

I 0.7082 0.6721 0.9460 0.9530 7.53% 22.13% 0 
II 0.7150 0.6746 0.9453 0.9534 7.27% 21.39% 0 
III 0.7160 0.6781 0.9452 0.9537 3.60% 15.13% 1 
IV 0.7280 0.6748 0.9438 0.9526 2.60% 10.93% 2 
V 0.7474 0.6731 0.9415 0.9527 1.47% 5.60% 3  

Table 6 
FTIs importance experiment grouping details table.  

Experimental Group Model input features Calculation method of FTIs parameters Predictive target 

I historical power – next 15 min power 
II historical power, NWP data – next 15 min power 
III historical power, FTIs Financial expert experience next 15 min power 
IV historical power, FTIs Variational ant colony algorithm next 15 min power 
V historical power, FTIs, NWP data Financial expert experience next 15 min power 
VI historical power, FTIs, NWP data Variational ant colony algorithm next 15 min power  
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be seen that the calculation parameters of FTIs matching with the current wind power time series data can effectively improve the 
model prediction accuracy. 

In order to visually represent the prediction differences, this study plots the actual values against the predicted values. As shown in 
Fig. 8, the black line indicates the actual value, the red line indicates the predicted value after calculating the FTIs using the financial 
experts’ experience, and the blue line indicates the predicted value after calculating the FTIs using the variational ant colony 
algorithm. 

In Fig. 8, the blue line is significantly better fitted than the red line. In the first subplot pointed out by the orange dashed line, we can 
find that the prediction model with the variational ant colony algorithm always has a good grasp of the trend and magnitude of the 
power variation in wind power data with short-time fluctuations. In the second subplot pointed out by the orange dashed line, we can 
see that the prediction model with the variational ant colony algorithm also performs well in smoother wind power data. 

Further, on this data set, feature selection experiments were conducted in this study. Three groups of experiments were designed 
using the FTIs calculated by the variational ant colony algorithm combined with the historical wind power data. The prediction 

Table 7 
FTIs importance experiment results.  

Experimental Group MAE RMSE R2Score 

I 2.138 3.146 0.936 
II 1.942 3.018 0.942 
III 1.746 2.482 0.949 
IV 1.661 2.346 0.955 
V 1.764 2.533 0.945 
VI 1.702 2.446 0.951  

Table 8 
Parameter optimization effect.  

Parameter name Financial expert experience setting parameters Variational ant colony algorithm setting parameters 

KDJ-time 9 7 
KDJ-w 3 2 
MACD-f 12 2 
MACD-s 26 23 
MACD-dea 9 5 
RSI-time 6 3 

Evaluation metrics Financial expert experience setting parameters Variational ant colony algorithm setting parameters 

MAE 1.746 1.661 
RMSE 2.482 2.346 
R2Score 0.949 0.955  

Fig. 8. Predictive effect of FTIs obtained by different methods in the model.  
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algorithm for three groups of experiments was the XGBoost algorithm. The details of the experimental groups are shown in Table 9, and 
the experimental results are shown in Table 10, where the data in Table 10 are the average of 100 experiments. 

In Table 9, the prediction target for all experimental groups is the wind power generation in the next 15 min. The input features for 
three sets of experiments are historical power data and FTIs. Group I uses only the XGBoost algorithm’s feature selection method. 
Group II adds the PCA method. Group III adds the GRA method and PCA method. 

As shown in Table 10, the bolded data are the best results, and the underlined data are the second-best results. To indicate the 
complexity of the model, the run time of the model is added in Table 10. This time is the model’s total time from reading the data to 
outputting the prediction results. Three experiments were done on computers with the same environment and configuration. The data 
in the table indicate that the experimental group that did not perform additional feature selection work achieved the best prediction 
results. The experimental group that added the PCA method or combined PCA and GRA had poor prediction results. The experimental 
group that combined PCA and GRA had slightly better prediction results than those that used only the PCA method. Comparing Group I 
(experimental group without additional feature selection work) with Group III (experimental group combining PCA and GRA), the 
MAE of Group I is 11.34% lower than the MAE of Group III, and the RMSE of Group I is 4.83% lower than the RMSE of Group III. 
Looking at the complexity of the model in terms of model running time, the running time of group I is much smaller than that of group 
II and group III, and adding additional feature selection work algorithms will certainly increase the complexity of the model. 

Combining the above analysis with the experimental results in Table 10. The additional feature selection effort did not improve the 
model prediction accuracy but made it less accurate. The authors believe that there are two reasons for this result. First, during 
dimensionality reduction, the PCA and GRA methods may have changed the temporal order information and the data’s original time 
series structure. The financial technical indicators MACD, KDJ, and RSI are different from each other in dimension, and normalizing 
them into the same dimension may easily cause the phenomenon of feature loss. Secondly, the XGBoost algorithm comes with a feature 
importance assessment function, which can consider the nonlinear relationship between features and the combination effect and 
interaction effect between features to select the most suitable features for ultra-short-term wind power prediction. Therefore, the 
features processed by PCA and GRA methods will change or lose some information, which affects the work of the XGBoost algorithm in 
constructing CART trees so that it cannot consider the combined effect, interaction effect, and nonlinear relationship among features. 
In this way, the experimental group I, which does not carry additional feature selection work, achieves the best prediction results. 

Analysis of several sets of comparison experiments using NWP data as model input features showed that NWP data did not 
significantly improve model prediction accuracy. The FTIs designed in this study can replace NWP data as the input features of the 
model. The FTIs feature engineering reduces the dependence of the prediction model on high-precision and high-frequency NWP data. 
It reduces the economic cost of obtaining such covariates for wind farms. Meanwhile, with the wind power data in Inner Mongolia, we 
again confirm that the calculated parameters of FTIs derived by the variational ant colony algorithm can effectively improve the model 
forecasting capability and capture the trend and magnitude of wind power time series data changes. In addition, the experimental 
results and analysis show that since XGBoost comes with a feature importance assessment method, the prediction model proposed in 
this study does not need to add additional feature selection methods, such as the PCA method and the GRA method, to obtain the best 
prediction results. In summary, obtaining FTIs from wind power time series data is an effective and novel feature engineering. Using 
the variational ant colony algorithm to find the computational parameters of fintech indicators is an effective means to reduce the 
reliance on the experience of financial experts. 

4.3. Comparison experiments between different prediction models 

In this section, the German power company Tennet wind power data set is used to verify the accuracy and performance of the model 
proposed in this study. For information about the data set, see Section 3.1.3. This section uses the LightGBM, Decision Tree, IHBA-SVM, 
LSTM, TCN, and GRU models to conduct comparative experiments. Use the evaluation indicators mentioned in Section 3.2 and the 
comparison chart between the actual value and the predicted value to evaluate the prediction effect of the model. 

The experiments in this section use the variational ant colony algorithm to search for the best computational parameters of the FTIs, 
combined with the historical wind power data to calculate the financial technical indicators MACD, KDJ, and RSI. These FTIs are used 
as the input features of the prediction model along with the historical wind power, and the prediction target is the wind power 
generation value after 15 min. The details and prediction results of the experimental group are shown in Table 11, and the data in the 
table are the average of 100 experiments. The bolded data in the table are the best results, and the underlined data are the second-best 
results. The comparison chart of predicted and actual values is shown in Figs. 9–14. The black line in the figure indicates the actual 
value, the red line indicates the predicted value of the XGBoost model, and the other colored lines represent the models shown in the 
legend of each figure. 

Comparing Group I (XGBoost model) with Group II (LightGBM model), the MAE of the XGBoost model is 7.34% lower than that of 
the LightGBM model, and the RMSE of the XGBoost model is 4.04% lower than that of the LightGBM model. In addition, the XGBoost 

Table 9 
Feature selection experiment group details table.  

Experimental Group Model input features Feature selection method Predictive target 

I FTIs, historical power – next 15 min power 
II FTIs, historical power PCA next 15 min power 
III FTIs, historical power GRA + PCA next 15 min power  
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model saves 64.17% of the prediction time. 
Observing Fig. 9, the predicted values of the LightGBM model and the XGBoost model are almost identical. In the subplots of Fig. 9, 

the prediction error of the LightGBM model is slightly higher than that of the XGBoost model at some time collection points. 
Considering both the prediction accuracy and the prediction task time requirement, the prediction effect of the proposed model in this 
study is better than that of the LightGBM model. 

Comparing Group I (XGBoost model) with Group III (Decision Tree model), the MAE of the XGBoost model is 63.08% lower than 
that of the Decision Tree model, and the RMSE of the XGBoost model is 56.38% lower than that of the Decision Tree model. In addition, 

Table 10 
Feature selection experiment results.  

Experimental Group MAE RMSE R2Score Running Time 

I 1.493 2.303 0.956 0.268s 
II 1.689 2.462 0.950 0.325s 
III 1.684 2.420 0.951 0.411s  

Table 11 
Experimental grouping details and predicted results.  

Experimental Group Prediction model Model input features Predictive target MAE RMSE R2Score Running time 

I XGBoost (GPU) historical power, FTIs next 15 min power 0.859 1.329 0.997 0.244s 
II LightGBM historical power, FTIs next 15 min power 0.927 1.385 0.994 0.681s 
III Decision tree historical power, FTIs next 15 min power 2.327 3.047 0.975 0.905s 
IV IHBA-SVM historical power, FTIs next 15 min power 2.397 3.002 0.962 4617s 
V LSTM historical power, FTIs next 15 min power 0.832 1.239 0.998 2248s 
VI TCN historical power, FTIs next 15 min power 0.941 1.376 0.992 4164s 
VII GRU historical power, FTIs next 15 min power 8.019 10.606 0.907 2394s  

Fig. 9. Comparison of prediction results between the XGBoost and LightGBM models.  

Fig. 10. Comparison of prediction results between the XGBoost and Decision Tree models.  
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the XGBoost model saves 73.04% of the prediction time. 
Observing Fig. 10, the predicted value image of the Decision Tree model is stepped, which can only roughly predict the trend of 

wind power variation and cannot accurately predict the power value. In the subplot of Fig. 10, the Decision Tree model has a larger 
prediction error compared to the XGBoost model. Considering both the prediction accuracy and the prediction task time requirement, 
the prediction effect of the proposed model in this study is better than that of the Decision Tree model. 

Comparing Group I (XGBoost model) with Group IV (IHBA-SVM model), the MAE of the XGBoost model is 64.16% lower than that 
of the IHBA-SVM model, and the RMSE of the XGBoost model is 55.73% lower than that of the IHBA-SVM model. In addition, the IHBA- 
SVM model requires 75 min for training and prediction, and the ultra-short-term wind power prediction task needs to predict the wind 
power in the next 15 min, so it does not meet the time requirement of the task. Under the same experimental environment, the training 
and prediction time of the XGBoost model is much lower than that of the IHBA-SVM model, which can meet the time requirement of the 

Fig. 11. Comparison of prediction results between the XGBoost and IHBA-SVM models.  

Fig. 12. Comparison of prediction results between the XGBoost and LSTM models.  

Fig. 13. Comparison of prediction results between the XGBoost and TCN models.  
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prediction task. 
Observing Fig. 11, the prediction images of the IHBA-SVM model are jagged, and the prediction error is close to 30% at some time 

collection points. In the subplots of Fig. 11, the predicted values of the XGBoost model are significantly closer to the actual values. The 
predicted values of the IHBA-SVM model fluctuate too much and fail to capture the changing trend of wind power generation. 
Considering both the prediction accuracy and the prediction task time requirement, the prediction effect of the proposed model in this 
study is better than that of the IHBA-SVM model. 

Comparing Group I (XGBoost model) with Group V (LSTM model), the MAE of the LSTM model is 3.14% lower than that of the 
XGBoost model, and the RMSE of the LSTM model is 6.77% lower than that of the XGBoost model. In addition, the LSTM model re
quires 35 min for training and prediction, and the ultra-short-term wind power prediction task needs to predict the wind power in the 
next 15 min, so it does not meet the time requirement of the task. Under the same experimental environment, the training and pre
diction time of the XGBoost model is much lower than that of the LSTM model, which can meet the time requirement of the prediction 
task. 

Observing Fig. 12, the predicted values of the LSTM model are similar to those of the XGBoost model, and the predicted values of 
both models are basically consistent with the actual values, which can accurately grasp the changing trend of wind power generation. 
Considering the prediction accuracy, the prediction effect of the LSTM model is slightly better than that of the model proposed in this 
study. Further considered in conjunction with the prediction time, the LSTM model requires too long modeling and prediction time and 
lacks usability. The model proposed in this study still has the best prediction results under the premise of meeting the time requirement 
of the prediction task. 

Comparing Group I (XGBoost model) with Group VI (TCN model), the MAE of the XGBoost model is 8.71% lower than that of the 
TCN model, and the RMSE of the XGBoost model is 3.42% lower than that of the TCN model. In addition, the TCN model requires 70 
min for training and prediction, and the ultra-short-term wind power prediction task needs to predict the wind power in the next 15 
min, so it does not meet the time requirement of the task. Under the same experimental environment, the training and prediction time 
of the XGBoost model is much lower than that of the TCN model, which can meet the time requirement of the prediction task. 

Observing Fig. 13, the predicted values of the TCN model and the XGBoost model are almost the same, the prediction curves of the 
two models overlap, and the prediction effects of the two models are similar from the comparison graph the actual and predicted 
values. However, considering both the MAE and RMSE analysis and the prediction task time requirement, the prediction effect of the 
proposed model in this study is better than that of the TCN model. 

Comparing Group I (XGBoost model) with Group VII (GRU model), the MAE of the XGBoost model is 89.29% lower than that of the 
GRU model, and the RMSE of the XGBoost model is 87.47% lower than that of the GRU model. In addition, the GRU model requires 40 
min for training and prediction, and the ultra-short-term wind power prediction task needs to predict the wind power in the next 15 
min, so it does not meet the time requirement of the task. Under the same experimental environment, the training and prediction time 
of the XGBoost model is much lower than that of the GRU model, which can meet the time requirement of the prediction task. 

Observing Fig. 14, the prediction error of the GRU model is the highest among all the compared models. The predicted value of the 
GRU model is far from the actual value and cannot grasp the changing trend of wind power generation. Considering both the prediction 
accuracy and the prediction task time requirement, the prediction effect of the proposed model in this study is much better than that of 
the GRU model. 

Groups II-IV used comparative models based on machine learning algorithms. The analysis of MAE and RMSE and the comparison 
graph of the actual and predicted values (Figs. 9–11) show that the model proposed in this study has the highest prediction accuracy. 
Group V-VII used a comparison model based on deep learning (neural network) algorithm. From the analysis of MAE and RMSE coming 
and the comparison graphs of actual and predicted values (Figs. 12–14), the prediction effect of the LSTM model shows a competitive 
advantage compared with the model proposed in this study, the prediction effect of the TCN model is similar to the model proposed in 
this study. The prediction effect of the GRU model is not as good as the model proposed in this study. In general, the proposed model 
outperforms the common machine learning models in terms of prediction accuracy and can be comparable to or even exceed the 
common deep learning models. 

Fig. 14. Comparison of prediction results between the XGBoost and GRU models.  
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In addition, ultra-short-term wind power needs to predict the wind power values for the next 15 min. For the dispatching center to 
adjust the distribution plan and the trading center to make power futures trading strategies on time, the model construction and 
prediction time must be much less than 15 min. At the same time, considering that short-term data greatly impacts FTIs, the model 
needs to be re-modeled for each prediction, so the model construction and prediction time will no longer have application value if it 
exceeds 15 min. As can be seen from Table 11, the construction time of deep learning (neural network) models is much longer than 15 
min, and some models even take more than 60 min to build. The LSTM model with the most competitive prediction accuracy takes 35 
min to complete the construction and prediction. In this way, deep learning cannot complete the prediction task in the required time, 
making it unsuitable for application to power prediction for ultra-short-term wind power generation. Further, the XGBoost model used 
in this study takes only 244 ms to complete modeling and prediction, which meets the prediction time requirement for ultra-short-term 
wind power generation and has the possibility of application in wind farms or data centers. 

In summary, the model proposed in this study has a very fast prediction speed, which can match or even exceed the prediction 
accuracy of deep learning models, and has greater application prospects as an effective algorithm for ultra-short-term wind power 
prediction. In addition, this study carefully designed the FTIs based on financial technology and developed the optimization strategy of 
calculation parameters corresponding to it, which can provide an effective basis for wind power prediction for wind farms lacking NWP 
data, and can also provide support for regional prediction (Generally speaking, NWP data for a region cannot be used for wind power 
prediction, and NWP data is only valid for individual turbine output prediction). Overall, this model provides a new solution for ultra- 
short-term wind power prediction. 

5. Discussion 

5.1. The role of FTIs in this study 

Financial time series data and wind power time series data have similarities and correlations. The FTI based on wind power time 
series data uses the start, end, maximum, and minimum values of wind power data over a short period, combined with mathematical 
theorems (e.g., momentum theory, moving average theory, etc.) perform the calculation. The authors consider this process similar to 
constructing a long and short-term memory network. The FTI algorithm is similar to a long and short-term memory network with a 
given calculation method and period. Once the period and computation parameters are specifically set, the computation speed of the 
features will increase significantly. The modeling and prediction time is significantly reduced by the carefully designed feature en
gineering with the XGBoost algorithm to build the prediction model. 

In addition, using FTIs to predict stock movements is a common approach in financial markets. However, the migration of fintech 
indicators to wind power time series data is relatively new in the current study, and using fintech indicators to predict future wind 
power is innovative. The experiments in this study show that the model with FTIs has higher prediction accuracy than the model with 
NWP data. FTIs can be used as input features of the prediction model instead of NWP data. At the same time, the calculation of FTIs 
relies only on historical wind power data and does not require NWP data. This technique can eliminate the need for NWP data by wind 
farms and thus reduce the operating costs of wind farms. 

5.2. The role of variational ant colony algorithm in this study 

Although financial time series data and wind power time series data have similarities, they have some differences. This study points 
out that FTIs based on wind power time series data need to set many parameters (e.g., KDJ-time, KDJ-w, MACD-f, etc.) in the 
calculation. Since the study’s goal is ultra-short-term wind power prediction, setting parameters cannot rely on financial experts’ 
experience and requires using parameters more consistent with the wind power variation pattern. In this context, the variational ant 
colony algorithm is designed in this study to solve this problem. 

The variational ant colony algorithm combines the Monte Carlo method, rank-based ant colony algorithm, and simulated annealing 
algorithm. The Monte Carlo method is a valuation method that can deal with nonlinear and large fluctuation problems, and the 
property is very consistent with the wind power variation law. The rank-based ant colony algorithm can effectively narrow the 
parameter search range and improve the parameter search efficiency. The simulated annealing algorithm can prevent the phenomenon 
of locally optimal solutions of parameters and, at the same time, alleviate the cumulative effect caused by the rank ant colony al
gorithm. Multiple sets of experiments in this study demonstrate that the variational ant colony algorithm can find the optimal pa
rameters for the computation of FTIs. The FTIs calculated based on the variational ant colony algorithm can give the model higher 
prediction accuracy than the FITs calculated based on expert experience. 

6. Conclusion 

Wind energy is one of the more important renewable energy sources, and wind power generation is an important initiative to cope 
with the climate crisis and energy security. With the global development of wind power construction, accurate prediction of ultra- 
short-term wind power generation is particularly important. This is because it is crucial to planning power dispatch, buying and 
selling power futures, and planning the power generation capacity of power farms. Fast and accurate forecasting of ultra-short-term 
wind power will provide a strong guarantee for the above work. Therefore, this paper proposes an ultra-short-term wind power 
prediction model based on the XGBoost algorithm combined with financial technology. In addition, a parameter search method based 
on the variational ant colony algorithm for calculating FTIs is also proposed. Fast and accurate wind power prediction can be achieved 
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using the variational ant colony algorithm to search for the best calculation parameters of FTIs and using the FTIs and historical wind 
power data as the model’s input. 

In order to effectively analyze the validity and reliability of the proposed model, this study carried out wind power prediction using 
three real wind power data sets. In addition, the proposed model is compared with LightGBM, Decision Tree, IHBA-SVM, LSTM, TCN, 
and GRU models. The experimental results show that:  

● Financial technology feature engineering is an effective feature engineering in the field of wind power prediction, which can 
construct multiple FTIs to represent the potential relationships among wind power data. This engineering reduces the reliance of 
wind power prediction models on NWP data and effectively improves model prediction accuracy.  

● The variational ant colony algorithm can adaptively find the parameters for calculating FTIs based on wind power time series data, 
reduce the reliance on financial experts’ experience, and make the FTIs more consistent with the variation pattern of wind power 
time series data.  

● The proposed model in this study is based on the XGBoost algorithm, and the proposed model has the fastest prediction speed 
among all the comparison models. Regarding accuracy, it outperforms all the machine learning models in the comparison models 
and can match or even exceed the deep learning models. Since the XGBoost algorithm does not require high computing power for 
hardware support, the model can be deployed to wind farms for real-time prediction and put into wind farm scheduled operation. 

In conclusion, this study provides a new solution for ultra-short-term wind power prediction. The calculation of FTIs does not 
depend on NWP data, so an important contribution of this study is to provide a power prediction solution for wind farms that lack NWP 
data and ideas for regional wind power prediction. In addition, highly accurate NWP data require a high price to obtain. Since the FTIs 
proposed in this study are calculated without relying on NWP data, wind farms will save some operating costs when using this model to 
predict wind power. 

At the same time, there are some shortcomings and limitations due to this study. The integrity of wind power data directly affects 
the calculation of FTIs. However, due to various reasons, there are outliers and missing values in wind power data, and proper handling 
of outliers and missing values will further enhance the model’s prediction accuracy. In addition, MACD, KDJ, and RSI are all short-term 
FTIs, which do not apply to long-term wind power prediction. Further exploration of the role of FTIs for long-term wind power 
prediction would benefit the development of wind power generation. Therefore, the outlook of this study for future work is as follows:  

● The use of outlier detection and missing value interpolation techniques to improve the reliability and integrity of the data may be a 
meaningful study, which will potentially further improve the model’s prediction accuracy. However, attention should be paid to 
anomaly detection and missing interpolation efficiency, ensuring that the model still meets the prediction time requirements for 
ultra-short-term wind power after these works are added. A prediction model that does not meet the time requirements will be 
meaningless.  

● Medium and long-term wind power prediction using medium and long-term FTIs. Medium and long-term wind power predictions 
are useful for assessing the location of wind farms, maintenance and repair of wind turbines, and planning and evaluating wind 
power projects.  

● The authors argue that there is room for further research in FTIs. Considering “wind speed” as “trading volume” in financial 
markets, more FTIs can be obtained, and these FTIs may further improve model prediction accuracy, but further experiments and 
proofs are needed. 
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