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A B S T R A C T

In a recent magnetoencephalography (MEG) study, we found posterior-to-anterior information flow over the
cortex in higher frequency bands in healthy subjects, with a reversed pattern in the theta band. A disruption of
information flow may underlie clinical symptoms in Alzheimer's disease (AD). In AD, highly connected regions
(hubs) in posterior areas are mostly disrupted. We therefore hypothesized that in AD the information flow from
these hub regions would be disturbed. We used resting-state MEG recordings from 27 early-onset AD patients
and 26 healthy controls. Using beamformer-based virtual electrodes, we estimated neuronal oscillatory activity
for 78 cortical regions of interest (ROIs) and 12 subcortical ROIs of the AAL atlas, and calculated the directed
phase transfer entropy (dPTE) as a measure of information flow between these ROIs. Group differences were
evaluated using permutation tests and, for the AD group, associations between dPTE and general cognition or
CSF biomarkers were determined using Spearman correlation coefficients. We confirmed the previously reported
posterior-to-anterior information flow in the higher frequency bands in the healthy controls, and found it to be
disturbed in the beta band in AD. Most prominently, the information flow from the precuneus and the visual
cortex, towards frontal and subcortical structures, was decreased in AD. These disruptions did not correlate with
cognitive impairment or CSF biomarkers. We conclude that AD pathology may affect the flow of information
between brain regions, particularly from posterior hub regions, and that changes in the information flow in the
beta band indicate an aspect of the pathophysiological process in AD.

1. Introduction

Patients with Alzheimer's disease (AD) clinically suffer from cogni-
tive deficits in multiple cognitive domains, which is thought to be
caused by intracellular tau inclusions (tangles) and extracellular accu-
mulations of amyloid beta proteins (plaques) leading to synaptic loss,
neuronal cell death and brain atrophy. The hippocampi, together with
the posterior part of the default mode network (in particular the pre-
cuneus and posterior cingulate), are the most affected brain areas in
AD. Besides these changes in brain structure, functional connections
between distant brain areas are also affected in AD (e.g., refs. Alonso
et al., 2011; Berendse et al., 2000; Besthorn et al., 1994; Engels et al.,
2015; Franciotti et al., 2006; Wang et al., 2007; Zhang et al., 2009).

Functional connections can be evaluated by calculating the statis-
tical interdependencies between time series of neuronal activity
(Friston, 2011). It has been shown consistently, using different imaging

modalities, that the changes in functional connectivity in AD depend on
the brain regions involved: while mainly the posterior regions show
increased connectivity, decreased functional connectivity seems to be
much more widespread throughout the brain (Crossley et al., 2014;
Engels et al., 2015; Engels et al., 2017; Greicius et al., 2004).

Magnetoencephalography (MEG) can be used to study disease re-
lated changes in AD. MEG is reference free, and its large number of
sensors allows for sophisticated spatial filtering to accurately re-
construct neuronal activity for predefined cortical brain areas (Baillet
et al., 2001; Hillebrand et al., 2005, 2012; Hillebrand et al., 2016a,
2016b). We have recently used this approach to reliably reconstruct
oscillatory activity within the hippocampi of AD patients (Engels et al.,
2016). The hippocampus has also been shown to function as a hub in
the network (Battaglia et al., 2011; Yu et al., 2017), alongside the
posterior regions. MEG can also be used to study the direction of in-
formation flow in brain networks, as we have recently shown in a group
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of healthy subjects (Hillebrand et al., 2016a). This study revealed an
anterior-to-posterior pattern in the theta band (4–8 Hz) while a pos-
terior-to-anterior pattern was observed in the alpha1 (8–10 Hz), alpha2
(10–13 Hz), and beta bands (13–30 Hz). These directed connectivity
patterns may be a result of underlying network topology, e.g. hub status
of a region (Moon et al., 2015). Moon et al. (2015) demonstrated in an
electroencephalography (EEG) study that hubs have a more receiving
role in the network compared to non-hubs. These results may have been
affected by their reference choices (a common problem in EEG).
Moreover, their measures of directionality were based on phase dif-
ferences, which may provide misleading estimates of directionality (see
Hillebrand et al., 2016a). However, the exact relationship between hub-
status and preferred direction of information flow is as yet unclear.
Using EEG, two studies have reported disrupted information outflow
from the posterior regions to anterior regions in AD patients (Babiloni
et al., 2009; Dauwan et al., 2016), which confirms the hypothesis of an
affected pattern of information flow in the large-scale brain networks.
However, the patterns of information flow reconstructed from EEG data
are strongly dependent on the reference choice and should therefore be
interpreted with care (Guevara et al., 2005). Evaluating the information
flow using MEG discards the reference problem and allows for more
accurate source-estimation, which is crucial for a better understanding
of disease mechanism in AD.

We hypothesized that the dominant posterior-to-anterior pattern of
information flow seen in healthy controls would be disrupted in AD
patients. In particular, we expected that in higher frequency bands the
outflow from posterior regions would be reduced due to damage in
posterior hub regions, and that in the theta band the outflow from the
hippocampi would be reduced. This hypothesis was tested by com-
paring the directionality of information flow for cortical and sub-cor-
tical regions, as reconstructed from resting-state MEG data, between
healthy controls and patients with AD.

2. Methods

2.1. Subjects

Subjects used in this study have been previously described (Engels
et al., 2016; Yu et al., 2017). In summary, 27 patients with probable AD
with an early onset (age: 60.6 ± 5.4 years) from the Amsterdam De-
mentia Cohort in the Alzheimer Center of the VU University Medical
Center were included. All patients fulfilled NIA-AA criteria for probable
AD (McKhann et al., 2011). AD patients were assessed according to a
standard diagnostic workup for dementia screening including an in-
formant-based history of the patient (if available), physical-, neurolo-
gical and cognitive examinations (including the mini-mental state ex-
amination (MMSE)), laboratory tests (including cerebrospinal fluid
(CSF) amyloid and tau), structural brain imaging, and EEG. Diagnoses
were made in a multidisciplinary consensus meeting. Patients gave
written informed consent for use of their clinical data for research
purposes (van der Flier et al., 2014). Exclusion criteria for participation
in this study were: an active psychiatric or other neurologic disorder,
MMSE-score below 18, or age above 70 years. In addition to the patient
group, we included 26 out of 31 non-demented controls who responded
to an advertisement in a national newspaper. After a telephone inter-
view to exclude neurological or psychiatric disorders, subjects under-
went neuropsychological testing, MRI of the brain and an MEG re-
cording. One volunteer was excluded due to a meningioma found on the
MRI; four volunteers were excluded due to poor performance on the
neuropsychological tests. The local Ethics Committee approved the
study and all participants gave written informed consent prior to par-
ticipation.

2.2. Data acquisition

MEG recordings were obtained one to several hours before or more

than one week after the MRI-scan in order to avoid artifacts due to, for
example, magnetized dental material. The resting-state MEG recordings
consisted of a 5 min eyes-closed condition, followed by 2 min eyes
open, and again 5 min eyes-closed. In this protocol, to ensure that the
subjects stayed awake during recording, we asked them to open their
eyes for 2 min after 5 min eyes-closed recording. To avoid potential
confounders due to eye-blinks during the eyes-open condition, and
because EEG parameters during the eyes-closed condition are more
stable over sessions (Corsi-Cabrera et al., 2007), we only analysed the
second five-minute eyes-closed data segment (van Diessen et al., 2015).
The data were sampled at 1250 Hz, and an online anti-aliasing (410 Hz)
and a high-pass filter (0.1 Hz) were used. The head position relative to
the MEG sensors was recorded continuously using the signals from five
head-localization coils. The head-localization coil positions were digi-
tized, as well as the outline of the participant's scalp (~500 points),
using a 3D digitizer (Fastrak, Polhemus, Colchester, VT, USA). This
scalp surface was used for co-registration with the patient's MRI scan
(see below). The data were spatially filtered offline using the temporal
extension of Signal Space Separation (tSSS) (Taulu and Simola, 2006;
Taulu and Hari, 2009), using MaxFilter software (Elekta Neuromag Oy,
version 2.2.10). Channels containing excessive artifacts were manually
discarded after visual inspection of the data by one of the authors (ME)
before estimation of the SSS coefficients. The number of excluded
channels varied between one and twelve. After fine-tuning for acqui-
sition conditions at our site, the tSSS filter was used to remove noise
signals that SSS would fail to discard, typically from noise sources near
the head, using a subspace correlation limit of 0.9 (Medvedovsky et al.,
2009; Hillebrand et al., 2013) and a sliding window of 10 s. Typical
artifacts were due to (eye) movements, swallowing, dental prosthetics,
or drowsiness, although the subjects were instructed to stay awake and
reduce eye movements during the MEG recording.

CSF samples were obtained by lumbar puncture using a 25-gauge
needle, and collected in 10-mL polypropylene tubes (Sarstedt,
Nümbrecht, Germany) according to consensus protocols (Teunissen
et al., 2009) only in the AD patients. Amyloid-beta 1–42, total tau, and
p-tau were measured with commercially available ELISAs (Duits et al.,
2015).

Structural MRI scans were made for all participants. For one AD
patient, a computer tomography (CT) scan was obtained instead of an
MRI because of insufficient quality of the MRI. For all participants, the
outline of the scalp on the structural scans was extracted. The sphere
that best fitted the scalp surface was used as a volume conductor model
for the beamformer analysis described below. Co-registration of the
MEG data with the structural scans was achieved using surface
matching software, resulting in an estimated co-registration accuracy of
approximately 4 mm (Whalen et al., 2008). The result of the co-regis-
tration between the MEG- and the MRI/CT scalp surfaces was visually
inspected.

2.3. Source localization

In order to obtain source localized activity for all brain regions, we
applied an atlas-based beamformer approach (Hillebrand et al., 2012),
which projects the sensor signals to the 78 cortical regions-of-interest
(ROIs) (Gong et al., 2009), and 12 sub-cortical regions of the automated
anatomical labeling (AAL) atlas (Tzourio-Mazoyer et al., 2002) (Table
S1). Details about the beamformer are similar as described in
(Hillebrand et al., 2016a): The beamformer (Elekta Neuromag Oy;
version 2.1.28) sequentially reconstructs the activity for each centroid
by selectively weighting the contribution from each MEG sensor to a
centroid's time series. The beamformer weights are based on the data
covariance matrix and the forward solution (lead field) of a dipole
source at the centroid location (Hillebrand et al., 2005; Robinson and
Vrba, 1999; van Veen et al., 1997), where the optimum dipole or-
ientation was obtained using the eigendecomposition approach de-
scribed by Sekihara and colleagues (Sekihara et al., 2004; using a unity
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matrix as estimate for the noise covariance matrix). A time window of,
on average, 277 s (range 105–435 s) was used to compute the data
covariance matrix. Singular value truncation was used when inverting
the data covariance matrix to deal with the rank deficiency of the data
after SSS (~70 components). The time series for the 90 ROIs were
obtained by projecting the broad band (0.5–48 Hz) MEG data through
the normalized (Cheyne et al., 2007) broadband beamformer weights
for each ROI.

2.4. Data selection

For each subject, twenty artifact-free epochs of 4096 samples
(3.2768 s) were selected by one of the authors [ME]. A second re-
searcher [IN, in acknowledgements] independently evaluated a sub-set
of the selected epochs for quality. Epochs without consensus were re-
placed by new epochs. Selected epochs were converted to ASCII-files
and imported into an in-house developed software package (BrainWave
version 0.9.125.4.1, CS. Software available at: http://home.kpn.nl/
stam7883/brainwave.html). The ROI time series were digitally filtered
in the classical EEG frequency bands using a fast Fourier transform that
does not distort the phases: delta (0.5–4 Hz), theta (4–8 Hz), lower
alpha (8–10 Hz), upper alpha (10–13 Hz), beta (13–30 Hz), and gamma
(30–48 Hz).

2.5. Phase transfer entropy

The direction of information flow between ROIs was estimated
using the phase transfer entropy (PTE), which was introduced by Paluš
and Stefanovska (2003), and thoroughly evaluated by Lobier and col-
leagues (Lobier et al., 2014). The instantaneous phase time-series were
estimated using the Hilbert transform (Rosenblum et al., 1996). We
used the implementation as described in (Hillebrand et al., 2016a): PTE
quantifies the information flow between time series on the basis of
phase information. For the PTE the time series of the phases are used as
input for the transfer entropy (TE) (Schreiber, 2000), which is a specific
version of the Kullback-Leibler entropy (Kullback and Leibler, 1951) or
the conditional mutual information (Paluš and Stefanovska, 2003; Paluš
and Vejmelka, 2007; for review see Hlaváčková-Schindler et al., 2007).
As an information-theoretic measure, the TE characterizes the in-
formation transfer between time series. The TE can be easily understood
in terms of uncertainty: a source signal has a causal influence on a
target signal if the uncertainty of the target signal conditioned on both
its own past and that of the source signals is smaller than the un-
certainty of the target signal conditioned only on its own past. If the
uncertainty of a target signal Y at a delay δ is expressed in terms of
Shannon Entropy (Shannon, 1948), then the TE from source signal X to
target signal Y can be expressed as

∑ ⎜ ⎟= ⎛
⎝

⎞
⎠

+
+

+
TE p(Y , Y, X ) log

p(Y | Y, X )
p(Y | Y)xy t δ t t

t δ t t

t δ t (1)

where the definition for Shannon Entropy, H(Y)=− ∑p(Y)logp(Y),
was used, and the sum runs over all discrete time steps t.

For observed data, estimation of the probabilities in Eq. (1) is time-
consuming and requires fine-tuning of several parameters (Wibral et al.,
2011). To solve these problems, Staniek and Lehnertz proposed to es-
timate transfer entropy by converting observed time series into se-
quences of symbols (Staniek and Lehnertz, 2008). In the same spirit,
time series can be described in terms of their amplitudes and in-
stantaneous phases (Rosenblum et al., 2001), following which transfer
entropy can be estimated from the time series of the instantaneous
phases (PTE), at low computational cost (Paluš and Stefanovska, 2003;
Lobier et al., 2014). Dropping the subscript t for clarity, and to speed-up
the computations, we computed the PTE as:

∑ ⎜ ⎟= ⎛
⎝

⎞
⎠

PTE p(Y )p(Y)p(X) log
p(Y | Y, X)

p(Y | Y)xy δ
δ

δ (2)

where the probabilities are obtained by building histograms of occur-
rences of single, pairs or triplets of phase estimates in an epoch (Lobier
et al., 2014). In Eq. (2), we assumed that the probability distribution of
source signal X is independent with that of target signal Y, so p(Yδ,Y,X)
=p(Yδ)p(Y)p(X).This assumption has no influence on the information
flow patterns and could speed up the computation time (Prokopenko
and Lizier, 2014). The number of bins in the histograms was set as
e0.626+0.4 ln(Ns−δ−1) (Rosenblum et al., 2001), and the prediction
delay δ was set as (Ns × Nch) / N± , with Ns and Nch the number of
samples and channels (ROIs), respectively, and N± the number of
times the phase changes sign across time and channels. Previous results
have demonstrated that the choice of the delay does not influence the
results (Lobier et al., 2014). The prediction delays for different fre-
quency bands are given in Table S5.

Finally, because the PTE does not have a meaningful upper bound
(Lobier et al., 2014), and to reduce biases, i.e., the effect of having
(small) nonzero PTE values in situations when there is no actual in-
formation flow, we normalized the PTE,

=
+

dPTE
PTE

PTE PTExy
xy

xy yx (3)

The value of dPTExy ranges between 0 and 1. When information
flows preferentially from time series X to time series Y,
0.5 < dPTExy ≤ 1. When information flows preferentially towards X
from Y, 0 ≤ dPTExy < 0.5. In the case of no preferential direction of
information flow, dPTExy = 0.5.

Eq. (2) is a modified version of the PTE as introduced by Lobier et al.
(2014). To test the effect of making the assumption of independent
probability distributions (for the joint probability term only), we also
computed dPTE using Eq. (1) directly to compute the PTE. Eq. (3) and
permutation testing with FDR correction (see Statistical analysis) was
used again to compare the dPTE values between AD and control groups.
The comparison of the results between dPTE and the modified version
of dPTE, as by Lobier et al., 2014, can be found in the Supplementary
Material, which shows that both approaches give very similar results.

The dPTE value for all pairwise ROIs was computed, forming a dPTE
matrix, as well as the regional dPTE values, i.e. the average dPTE for
each ROI. The regional dPTE values were computed by averaging all
pairwise dPTE values from one ROI to all the other ROIs, and obtained
one regional dPTE value for each of the 90 ROIs. This was repeated for
all epochs in each frequency band, and for all subjects. The regional
dPTE values indicate that on average a brain area is a driver
(0.5 < dPTE ≤ 1) or receiver (0 ≤ dPTE < 0.5), relative to other
areas.

To establish whether there was a consistent pattern of information
flow in the MEG networks, a posterior-anterior index (PAx) (Hillebrand
et al., 2016a) was calculated as follows:

− −= −PAx {dPTE} {dPTE}posterior anterior (4)

where the dPTE was averaged over a set of anterior and posterior re-
gions, respectively (see Table S1 for the definitions of anterior, central
and posterior regions). PAx was normalized by the absolute maximum
PAx value that could have been obtained with the dPTE values for these
channels, respectively. A positive PAx indicates posterior-to-anterior
information flow, and negative PAx anterior-to-posterior information
flow.

To investigate whether there is different information flow from
central to anterior regions and from central to posterior regions be-
tween AD and HCs, we also computed a central-to-anterior index (CAx)
and a central-to-posterior index (CPx) for both groups. These results can
be found in the Supplemental materials.
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2.6. Statistical analysis

IBM SPSS Statistics 20.0 for mac was used for statistical analyses of
the subjects' demographics. Differences between groups in age, MMSE
and education were tested using unpaired Student's t-tests, while gender
differences between groups were tested using a chi-square test.

For each frequency band separately, we used permutation tests to
compare group-level 90 regional dPTE values between the two diag-
nostic groups, using the following approach:

1. Average the regional (AAL ROI) dPTE values for AD and control
groups over all the epochs;

2. Compute the observed absolute difference between the group-level
regional dPTEs of AD, and control groups;

3. Permute the group assignments of the individuals' dPTE matrices for
AD and control groups (the epochs for the same subjects were al-
ways permuted together);

4. Repeat steps 1 to 3 to obtain 50,000 permutations of absolute dif-
ferences for AD and control groups.

The observed absolute difference was tested against the sampled
distribution in order to obtain a p-value. The p-values of pairwise
comparisons were corrected by the false discovery rate (FDR)
(Benjamini and Hochberg, 1995). The FDR-corrected p-values were
considered to be significant at p < 0.05. Spearman correlation coeffi-
cients were calculated between the regional dPTE values of ROIs that
showed significant differences between groups and MMSE scores, as
well as protein biomarkers (CSF amyloid and tau).

We repeated the analyses for the individual dPTE values between all
pairs of ROIs (i.e. the individual dPTE values were used in step 1)
above, instead of the regional dPTE values), for which we included all
individual connections of the upper triangular part of the dPTE matrix
into the permutation test. Again, the permutations tests were FDR
corrected. We only considered the frequency bands that had shown
significantly different regional dPTE values between the groups.

The dPTE values for 90 ROIs were computed for AD and controls,
respectively. The observed PAx value was computed for the averaged
dPTE values for each group and the observed absolute difference be-
tween PAx values for two groups were computed. Significance of the
group difference in PAx value was estimated using permutation testing,
where dPTE values were permuted between groups, after which the
absolute differences of PAx values were re-computed. This was repeated
50,000 times to build a distribution of permuted absolute difference of
PAx values against which the observed absolute difference of PAx va-
lues was tested (p < 0.05).

The CPx and CAx values were compared between AD and controls
using the same permutation procedure as described above for the PAx.

3. Results

3.1. Demographics

Characteristics of the healthy controls and patients with AD are
presented in Table 1. Age (t(51) =−0.82, p= 0.673), education (t
(39) =−2.58, p= 0.462), and gender (c2(1, 53) = 0.50, p= 0.587)
did not differ between groups, while MMSE scores were lower in AD
patients than controls (t(51) = −9.82, p < 0.001).

3.2. Regional information flow

The beta band was the only frequency band showing differences in
dPTE between patients and controls (Fig. 1). Fig. 1A reveals a dominant
pattern of posterior-to-anterior information flow for healthy controls. In
AD patients (Fig. 1B), this characteristic posterior-to-anterior pattern
was disrupted, showing significantly lower mean dPTE values mainly in
occipital (MOG.L and MOG.R, CAL.L and CAL.R, CUN.L and CUN.R,

SOG.R), but also in parietal (PCUN.R), and temporal (FFG.L) regions,
and significantly higher mean dPTE values in prefrontal (REC.L, ORB-
supmed.L and ORBsupmed.R, ORBmid.R) and temporal regions (TPO-
sup.L) (p < 0.05) (Fig. 1C). The disruption of posterior-to-anterior
information flow in AD patients was also quantified by the significantly
lower (p = 0.004) PAx index in AD patients (PAx = 0.3689) compared
to healthy controls (PAx = 0.5870). In comparison with controls
(CPx = −0.3459), AD patients (CPx = 0.2238) showed a more cen-
tral-to-posterior information flow characterized by significantly higher
CPx (p < 0.001); AD (CAx = 0.4383) and control groups (C-
Ax = 0.4161) showed similar central-to-anterior information flow
(p = 0.73). Fig. S1 shows the results for the delta, theta, lower alpha,
upper alpha and gamma band, which did not reveal significant differ-
ences between the two groups.

3.3. Information flow between regions

Fig. 2A and B show the dPTE matrices in the beta band for the
healthy controls and AD patients, respectively. Abbreviations can be
found in Table S1. From these figures it is clear that the dPTE values for
the AD patients show less variation, and are more centered around the
equilibrium value of 0.5, i.e. no preferred direction of information flow,
compared to the controls. In controls (Fig. 2C), clear patterns of higher
left and right parieto-occipital dPTE values can be observed. The
strongest information flow was from posterior regions, including the
(primary) visual areas and posterior parts of the default mode network
(DMN), to anterior cingulate, frontal, and temporal regions. In contrast,
in the AD patients, the global posterior-to-anterior information flow
was disrupted (Fig. 2D). Specifically, the outgoing connections in AD
patients started in left central brain areas (postcentral gyrus) and pro-
jected to the frontal, parietal and occipital regions; and also started in
the right central regions (postcentral gyrus) and projected to the right
frontal and temporal regions. Fig. S4 shows that, in the beta band, the
strongest information flow in controls was between occipital-/parietal-/
central regions and frontal regions, whereas in AD patients the stron-
gest information flow was between central to frontal-/occipital-/tem-
poral-/limbic regions.

The significant differences between the dPTE matrices in AD and
controls are shown in Fig. 3 for the beta band. Fig. 3A shows that the
information flow between posterior regions and frontal regions was
decreased in AD patients, including occipital-to-frontal, occipital-to-
temporal, parietal-to-frontal, parietal-to-temporal and occipital-to-
limbic (limbic system: subcortical and cingulate gyrus) connections
(p < 0.05). The connections with the most significant group differ-
ences (p < 0.0001) are displayed in Fig. 3B and described in Table S2.
The most significant connections with lower dPTE values in AD patients
were located in multiple occipital regions (SOG.L, SOG.R, MOG.L,
MOG.R, CAL.L, CAL.R, CUN.L) and one temporal region (FFG.L) and
connected to frontal regions (REC.R, ORBsup.R, ORBsupmed.R,

Table 1
Subject characteristics. Abbreviations: Aβ42 = amyloid-β42; CSF = cerebrospinal fluid;
F = number of female subjects; M = number of male subjects; MMSE = Mini-Mental
State Examination; N = number of subjects; n.a. = not available; p-tau = tau phos-
phorylated at threonine 181; SD = standard deviation.

AD patients Healthy controls

N 27 26
Mean age (SD) 60.6 (5.4) 61.8 (5.5)
Gender (F/M) 12/15 14/12
Mean MMSE score (SD) 23.4 (2.6)⁎⁎ 28.9 (1.0)
Mean educational score (SD)a 4.84 (1.06) 5.71 (0.91)
Mean CSF Aβ42 (range, pg/mL) 509 (324–674) n.a.
Mean CSF tau (range, pg/mL) 715 (307–1677) n.a.
Mean CSF p-tau (range, pg/mL) 83 (44–173) n.a.

⁎⁎ p < 0.01.
a Level of education was rated according to Verhage (1964).
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Fig. 1. Disrupted mean dPTE in AD patients in the beta
band. Mean dPTE for the 78 cortical AAL ROIs only, dis-
played as a color coded map on a template mesh for healthy
controls (HC) (A) and AD patients (B). (C) Cortical surface
representation of the regions that demonstrated significant
between-group difference in mean dPTE; group-level per-
mutation tests with FDR correction (p < 0.05). Hot and
cold colors indicate whether the mean dPTE was sig-
nificantly higher or lower in controls than in AD patients,
respectively; dPTE for regions in grey were not significantly
different between controls and AD patients. The color bar
in (C) denotes the mean difference of the dPTE values be-
tween HC and AD groups for the significant ROIs. (For in-
terpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

Fig. 2. Direction of information flow patterns in the beta band. Mean dPTE matrices for controls (A) and AD patients (B). Preferred direction of information flow of the strongest senders
in controls (C) and AD patients (D). Colors and line thickness indicate the dPTE values (lower and upper thresholds: [0.5086, 0.5108] and [0.5060, 0.5085] for the controls and AD,
respectively), and arrows indicate the preferred direction of information flow. Thresholds were (arbitrarily) chosen to highlight the dominant patterns formed by the information flows
between regions. L = left; R = right; 0.5 < dPTE ≤ 1 represents information flow from region X to region Y; 0≤ dPTE < 0.5 represents information flow towards region X from region
Y, with X forming the columns and Y the rows in the matrix. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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ORBmid.R), temporal regions (TPOsup.R, TPOsup.L, TPOmid.R, TPO-
mid.L), limbic regions (ACG.R, MCG.R) and subcortical regions
(AMYG.L, CAU.R, CAU.L, PUT.L, PAL.L, THA.L). The most significant
connections with higher dPTE values in AD patients were located
mostly in frontal regions (REC.L, REC.R, ORBsup.L, ORBsup.R, ORB-
supmed.L, ORBsubmed.R, ORBmid.R, ORBinf.L, ORBinf.R, IFGtriang.L)
and temporal regions (STG.L, TPOsup.L, TPOmid.L) but also in two
central regions (PreCG.L, PCL.R), one limbic region (MCG.L), one in-
sular region (INS.L) and one posterior region (SMG.L) and connected
mainly to occipital regions (SOG.L, SOG.R, MOG.L, MOG.R, CAL.L,
CUN.L, CUN.R, LING.L), but also to two posterior regions (PCUN.R,
ANG.R) and two temporal regions (FFG.L, FFG.R). See Table S2 and Fig.
S4 for details.

3.4. Correlations with cognition and CSF amyloid and tau

Spearman correlations revealed several correlations between the
dPTE of each of the 90 AAL regions and MMSE, CSF tau and ptau and
CSF amyloid. This revealed a positive correlation between MMSE and
dPTE in the SMG.R region, and a negative correlation between MMSE
and dPTE in the PreCG.L, ROL.L and IFGtriang.R regions. CSF ptau
showed a negative correlation with dPTE in HIP.L, and CSF both tau
and ptau showed negative correlations with dPTE in PCG.L and PCG. R.
However, after FDR correction for multiple testing none of these cor-
relations survived (Fig. S2 and Table S3).

4. Discussion

We hypothesized that the dominant posterior-to-anterior pattern of
information flow would be disrupted in AD patients. In particular, we
expected that in higher frequency bands the outflow from posterior
regions would be reduced due to damage in posterior hub regions, and
that in the theta band the outflow from the hippocampi would be re-
duced. Using resting-state MEG data for patients with AD and healthy
controls, we studied these hypotheses using the dPTE as a measure of
the direction of information flow in large-scale brain networks invol-
ving the cortical and subcortical regions. Our hypothesis was confirmed
for the posterior regions. We found that the posterior-to-anterior pat-
tern of information flow in the beta band, dominated by the visual
cortex and posterior DMN in the controls, was decreased in patients
with AD. In this band, the posterior regions in AD patients were less
sending, and the pre-frontal regions were less receiving, than in con-
trols. The information flow from the precuneus and the visual cortex

was in particular affected in AD, as well as the information flow to-
wards subcortical structures. We did not find any group differences in
other frequency bands, including the theta band where we found a
preserved characteristic anterior-to-posterior pattern in AD patients.

4.1. Patterns of information flow

The patterns of information flow between cortical regions observed
in the controls were similar to those reported using a different cohort of
healthy individuals (Hillebrand et al., 2016a), despite the inclusion of
sub-cortical regions in the present study. In the healthy subjects we
found a posterior-to-anterior pattern of information flow in the higher
frequency bands (lower alpha, beta) and an opposite directional pattern
of information flow in the theta band. The disruption of posterior-to-
anterior information flow in AD patients in the beta band was not only
shown by comparing regional dPTE values between AD patients and
controls, but also quantified by the lower PAx index in AD patients. Of
note, the observed group difference in PAx values between AD and HC
were mainly due to the different directions of central-to-posterior in-
formation flow (as quantified by CPx values) between the two groups.
Moreover, because of the disruption of posterior regions in AD patients,
the information flow from central regions to posterior and anterior
regions in AD patients became more apparent than in the healthy
controls. In addition, the changes observed for the AD in the posterior-
to-anterior beta band pattern were in line with two previous studies
based on EEG (Babiloni et al., 2009; Dauwan et al., 2016), although
Dauwan et al. (2016) found these changes for both the alpha and beta
band, whereas we only observed significant differences in the beta
band. These differences could possibly be due to differences in patient
cohort, MEG versus EEG, or source-level versus sensor-level analysis.

4.2. Hubs and direction of information flow

Fig. 2A, B shows that the mean dPTE values in AD are more centered
around the equilibrium value of 0.5, suggesting that the posterior re-
gions are less sending and frontal regions are less receiving compared to
controls. A recent modeling study suggest that the balance of in-
formation flow depends on the hubness (measured by degree in this
case) of a region, which high degree nodes being stronger senders (Stam
et al., 2016). Moreover, strongly active hub regions seem to be parti-
cularly vulnerable in a neurodegenerative network model (de Haan
et al., 2012). These modeling results, together with the often reported
damage to posterior hub regions in AD and subsequent increase in

Fig. 3. Disrupted direction of information flow in AD patients in the beta band. (A) p-value (p < 0.05) matrix for each ROI showing significant between-group differences in directed
connections between pairwise ROIs; permutation tests with FDR correction. (B) For visualization purposes, only a subset of the significantly different connections, namely those with
p < 0.0001, between AD patients and controls is shown. Hot and cold colors indicate whether the strength of information flow (dPTE value) between pairs of brain regions was
significantly higher or lower in controls than in AD patients, respectively. The details of information flow between specific regions are shown Table S2. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

M.M.A. Engels et al. NeuroImage: Clinical 15 (2017) 673–681

678



hubness in other, more anterior located, regions (Engels et al., 2015),
may explain our observed disrupted pattern of information flow. These
observations are congruent with the cascading-hub hypothesis, namely
that signals are redirected when a hub fails, and the “next hub in line”
gets more of the load. Therefore, if typical hub regions decline then
other regions become more hub-like (Stam, 2014).

A study by Moon et al. (2015) reported the opposite relation be-
tween hubness of brain regions and the direction of information flow
between them. However, this difference is most likely due to the use of
a directed connectivity measure that is based on phase differences
(rather than phase transfer entropy), as we have recently shown that
such measures can give erroneous estimates of direction of information
flow (Hillebrand et al., 2016a).

4.3. Hippocampal information flow

We found altered information flow in AD not only between cortical
regions but also with subcortical regions. Previous MEG studies have
shown that subcortical brain activity can be estimated using beam-
forming (Engels et al., 2016; Tenney et al., 2013; Hillebrand et al.,
2016b). Since the hippocampi play a key role in AD pathology (Hampel
et al., 2008), and are also hub regions in the AD functional networks
(Battaglia et al., 2011), we hypothesized that information flow would
be impaired for these regions. However, we were not able to detect
differences in information flow between the groups with regard to the
hippocampi. One reason for this could be reduced signal-to-noise ratio
(SNR), and therefore lower spatial resolution for deeper regions
(Hillebrand and Barnes, 2002). This may explain why a decreased in-
formation flow from the occipital regions towards the amygdala, a
brain area that is not typically involved in AD, but has a close proximity
to the hippocampi, was found. Despite the successful placements of
virtual electrodes in previous studies (Engels et al., 2016; Hillebrand
et al., 2016b), interpretation of time series reconstructed for a deeper
region should be made with care since the presumed activity can ac-
tually arise from a broader area around the virtual electrode (Attal and
Schwartz, 2013; Wennberg and Cheyne, 2014). Thus, hippocampal
changes in information flow may simply be missed due to low SNR,
and/or the interference of surrounding sources on the reconstructed
time series. Another reason might be that hippocampal pathology did
not change the information flow with the hippocampi. However, after
calculating Spearman correlation coefficients between dPTE values in
all regions with MMSE, CSF Aβ42, tau and ptau, we found a negative
correlation in the left hippocampus between CSF ptau and dPTE. Al-
though this correlation was not significant after correction for multiple
comparisons this might hint to mechanisms that cause a pathological
flow in the hippocampi. Future studies should focus on determining the
relationship between disturbed information flow and pathological
hallmarks in AD.

4.4. Memory component alterations in AD

Our results show that the sending properties of the posterior brain
region and the receiving properties of the anterior brain region are
altered in AD. This finding is in agreement with previous research
showing DMN dysfunction regarding the anterior-posterior integration
in AD (Greicius et al., 2004; Toussaint et al., 2014). The observation of
a dominant posterior-to-anterior flow in the higher frequency range and
an anterior-to-posterior flow in the lower frequency range is suggestive
for a loop through which information circulates (Hillebrand et al.,
2016a). This circulation seems to be disrupted in AD, but only for the
posterior-to-anterior pattern in the higher frequency range. This may
seem counterintuitive since the theta band is involved in memory
processes in frontal areas and the hippocampi (Tóth et al., 2014).
However, lack of differences in the theta band between AD patients and
controls can possibly be explained by the relatively young age of the
included patients. It is often reported that AD has a clinically distinct

presentation at a young age compared to late-onset AD, where early
onset patients have fewer memory impairments (van der Flier et al.,
2011).

4.5. Disruption in the beta band

We reported disruption of information flow between posterior and
frontal regions, and between posterior and subcortical regions in AD in
the beta band. The beta band is altered in many neurodegenerative
disorders (Hughes and Rowe, 2013; Holschneider and Leuchter, 1995).
However, with regard to functional connectivity, other frequency bands
have also been reported to be altered in AD using MEG (Alonso et al.,
2011; Escudero et al., 2011; Franciotti et al., 2006; Stam et al., 2002,
2006, 2009). Overall, the most powerful beta band activity in resting
subjects is located in central brain areas, especially around the motor
cortex in AD (Engels et al., 2016), which is thought to be a higher
harmonic component of the rolandic mu-rhythm (for a review, see Hari
and Salmelin, 1997). Interestingly, in a previous study on the same
dataset (Engels et al., 2016), we reported that primary cortices are
spared in AD in terms of slowing of relative power, which seems to be in
concordance with the findings in the present study of a preserved in-
formation flow for these regions. In the supplemental material we show
the correlations between dPTE values and relative power values in all
frequency bands (Fig. S1, Fig. S5 and Fig. S6). Within the groups, the
patterns of relative power were similar to those obtained for the dPTE
(compare Fig. 1 and Fig. S1 to Fig. S5a), which is in accordance with the
findings of Hillebrand et al. (2016a, 2016b). Although the beta band
showed a significant positive correlation between relative power and
dPTE values, so did other frequency bands for which there were no
significant group differences in dPTE values (Fig. S6). Furthermore, the
beta band showed more widespread significant group differences for
relative power than for dPTE (compare Fig. 1 to Fig. S5a). This might
suggest that the observed differences in dPTE cannot be fully explained
by the group differences in relative power. However, one should take
into account that this result does not guarantee a true independent
relationship between dPTE and relative power values. For instance, the
relative power and signal-to-noise ratios are different for each fre-
quency band (Fig. S5b). This may affect phase estimates
(Muthukumaraswamy and Singh, 2011) and dPTE estimates (although
dPTE is relatively insensitive to SNR (Lobier et al., 2014), and therefore
affect the ability to detect group differences for dPTE at low SNRs (i.e.
within the constraints of inferential statistics, a non-significant differ-
ence does not necessarily equate the absence of a difference). Hence,
although these results suggest that power differences are not the main
driver of dPTE differences, we cannot fully rule out such an effect.

Activity in the beta band has also been associated with synchroni-
zation of long-distance interactions between brain regions (Kopell et al.,
2000). In patients with AD, the functional connectivity in the beta band
is frequently reported to be altered (Alonso et al., 2011; Stam et al.,
2002, 2006, 2009). These studies together suggest a key role for the
beta band to preserve long-range anterior-to-posterior functional con-
nections, which might be vulnerable in AD patients.

4.6. Correlations with cognition and CSF biomarkers

Spearman correlation coefficients between regional dPTE values
and MMSE and CSF biomarkers (Aβ42, tau and ptau) for the AD group
were not significant after correction for multiple comparisons using
FDR. However, the uncorrected significant correlations revealed trends
in several regions (Table S3). In AD, Aβ42 levels in the CSF are typically
decreased while tau and ptau levels are elevated (Mulder et al., 2010;
Duits et al., 2014; Scheltens et al., 2016). On the other hand, MMSE
scores are generally low in AD. With respect to the findings of decreased
dPTE values in the beta band for the posterior region in AD, one could
expect a positive correlation between the dPTE in those regions and
MMSE. Indeed, we found a positive correlation for the SMG.R region.
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The opposite pattern could be expected for the frontal regions, which
was indeed the case for PreCG.L, ROL.L and IFGtriang.R. Thus, al-
though these correlations with MMSE did not survive a multiple com-
parison correction, the correlations show a trend in the expected di-
rection. The CSF biomarkers showed correlations with dPTE for several
AD-related areas of which the left hippocampus (HIP.L) and left and
right posterior cingulate gyri (PCG.L and PCG.R) stood out the most.
HIP.L showed a negative correlation with CSF ptau, and PCG.L and
PCG.R showed a positive correlation with both CSF tau and ptau.
However, these correlations are not easy to understand since both
biomarkers are typically elevated in AD, while a decrease in dPTE va-
lues in the posterior regions was observed. Therefore, a negative cor-
relation was expected. For the hippocampi, no differences in dPTE
values were found and therefore, the negative correlation with CSF ptau
would suggest an increase of hippocampal information outflow. These
observations provide a possible link between hippocampal information
flow alterations and CSF biomarkers in AD patients.

4.7. Methodological considerations

We used a beamformer-based approach to reconstruct source-level
brain activity, not only in cortical regions, but also in deeper subcortical
structures. This allows for drawing more disease- and area-related
conclusions. With regard to the statistical testing, the applied permu-
tation tests combined with FDR correction (Benjamini and Hochberg,
1995) provide reliable statistical results (Ludbrook, 1994). However,
this study also has a limitation that deserves consideration. The FDR
(BHFDR; Benjamini and Hochberg, 1995) was controlled at an alpha
level of 5%, and therefore 5% of the significant ROIs could still be false
positive results. Furthermore, our results may have been influenced by
methodological choices such as the selection of artifact-free epochs. An
independent researcher (IN, in acknowledgements) double-checked our
selected epochs to ensure the epoch quality, with no artifacts or signs of
drowsiness.

5. Conclusion

In conclusion, we found a disrupted posterior-to-anterior pattern in
AD in the beta band involving both cortical and subcortical brain re-
gions. Most prominently, the information flow from the precuneus and
the visual cortex, towards frontal and subcortical structures, was dis-
rupted in AD. We conclude that AD pathology may affect the flow of
information between brain regions, particularly from posterior hub
regions, and that changes in the information flow in the beta band in-
dicate an aspect of the pathophysiological process in AD.
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