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Abstract 

Background:  Preservatives have to be added in food, pharmaceuticals and cosmetics products to maintain their 
shelf life. However, the existing chemical based preservatives have been associated with severe side effects that 
compel the researchers to find better safe preservatives based on natural products. G-6-P synthase is an important 
enzyme for bacterial and fungal cell wall synthesis and offers as a potential target to find better G-6-P synthase inhibi-
tors based antimicrobial compounds. Naringenin, a flavanone, has been reported for a wide range of pharmacological 
activities including antimicrobial activity, which makes it a potential candidate to be explored as novel G-6-P synthase 
inhibitor.

Results:  The synthesis of naringenin derivatives with potent G-6-P synthase inhibitor having remarkable antioxi-
dant, antimicrobial and preservative efficacy was performed. Among the synthesized compounds, the compound 1 
possessed good antioxidant activity (IC50 value, 6.864 ± 0.020 µM) as compared to standard ascorbic acid (IC50 value, 
8.110 ± 0.069 µM). The antimicrobial activity of synthesized compounds revealed compound 1 as the most potent 
compound (pMIC 1.79, 1.79, 1.49, 1.49, 1.49 and 1.49 μM/mL for P. mirabilis, P. aeruginosa, S. aureus, E. coli, C. albicans 
and A. niger respectively) as compared to standard drugs taken. The compound 2 showed comparable activity against 
P. mirabilis (pMIC 1.14 μM/mL), C. albicans (pMIC 1.14 μM/mL) while the compound 3 also showed comparable activity 
against C. albicans (pMIC 1.16 μM/mL) as well A. niger (pMIC 1.46 μM/mL), likewise the compound 4 showed compa-
rable activity against P. mirabilis (pMIC 1.18 μM/mL) as compared to the standard drugs streptomycin (pMIC 1.06, 1.36, 
1.06 and 1.96 μM/mL for P. mirabilis, P. aeruginosa, S. aureus and E. coli respectively), ciprofloxacin (pMIC 1.12, 1.42, 1.12 
and 1.42 μM/mL for P. mirabilis, P. aeruginosa, S. aureus and E. coli respectively), ampicillin (pMIC 1.14, 0.84, 0.84 and 
1.74 μM/mL for P. mirabilis, P. aeruginosa, S. aureus and E. coli respectively) and fluconazole (pMIC 1.08 and 1.38 μM/mL 
for C. albicans and A. niger respectively). The molecular docking with the target G-6-P synthase pdb id 1moq resulted 
with an better dock score for compound 1 (− 7.42) as compared to standard antimicrobial drugs, ciprofloxacin 
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Introduction
The use of packaged foods containing various additive’s 
viz. artificial sweeteners, colorants, stabilizers, preserva-
tives etc. has greatly increased in recent years. As per 
recent data available it is estimated that 75% of the con-
temporary diet is packaged food and on an average every 
person consumes 3.6 to 4.5 kg of food additives per year 
[1].

Among other additives the preservative such as 
sodium benzoate, ethyl paraben, propyl paraben, butyl-
ated hydroxytoluene (BHT), butylated hydroxyanisole 
(BHA), etc. plays a vital role to maintain the shelf life 
of various food, pharmaceuticals and cosmetic prod-
ucts [2–4]. However, the existing chemical preservatives 
have been associated with serious side effects viz. estro-
genic effect, breast cancer, malignant melanoma, contact 
eczema, endocrine disruption, etc. [5–12]. Hence, there 
is an urgent need for the discovery of novel and safer pre-
servatives for use in food, pharmaceuticals and cosmetic 
products.

G-6-P synthase is a complex enzyme involved in the 
formation of UDP-N-acetyl glucosamine and catalyzes 
the initial step in hexosamine biosynthesis. One of these 
catalyzed products, N-acetyl glucosamine, is an impor-
tant part of the peptidoglycan layer of bacterial and fun-
gal cell wall. Hence, G-6-P synthase may act as potential 
target for discovery of novel antimicrobial compounds 
which could be evaluated for their preservative efficacy to 
find better and safe preservatives [13, 14].

The complex 3-D crystal structure of G-6-P syn-
thase can be utilized for molecular docking to 
explore the structural requirements for the pharma-
cophore complex. Flavonoids such as luteolin, cat-
echin, (4S)-2-Methyl-2-phenylpentane-1,4-diol, 
7-Methoxy-2,3-dihydro-2-phenyl-4 quinolone, 3-(tert-
Butoxycarbonyl)-6-(3 benzoylprop-2-yl)phenol and 
(3R,4S)-4-(methylamino)-1-phenylpent-1-en-3-ol also 
have been explored for G-6-P synthase inhibition [15–
18]. Some flavonoids along with their G-6-P synthase 
inhibitory dock score have been shown in Fig. 1.

Naringenin is a naturally occurring bioflavonoid pre-
sent in various fruits, vegetables and honey which is used 
as a dietary supplement due to its low toxicity [19–21]. 
Naringenin has been reported for its diverse pharma-
cological profile including its antibacterial property as 
shown in Fig. 2 [22–41].

Further, naringenin could be utilized as a potential 
candidate for evaluation of its G-6-P synthase inhibitory 
response. Hence, it was planned to synthesize and inves-
tigate the naringenin derivatives for their antioxidant, 
antimicrobial, preservative efficacy and in silico evalua-
tion for G-6-P synthase inhibition.

Results and discussion
Chemistry
Naringenin derivatives were synthesized according to 
Kriza et  al. 2011 with slight modifications as shown in 
Scheme 1 [42]. The chemical structures of all the synthe-
sized compounds were confirmed by FTIR, 1H NMR, 13C 
NMR, mass spectroscopy and elemental analysis which 
were in agreement with the structures.

For the synthesis of naringenin derivatives substituted 
aniline (0.01 mol) was taken in a round bottom flask and 
concentrated hydrochloric acid was added drop wise with 
continuous stirring. Equimolar concentration of narin-
genin (0.01  mol) was dissolved in ethanol (50  mL) and 
was refluxed for 80–100 h at 80 °C on heating mantle. All 
the compounds in series were synthesized according to 
the standard procedure outlined in Scheme  1. Comple-
tion of reaction was confirmed by TLC under UV lamp 
and FTIR spectra.

Formation of compound 1, 2, 3 and 4 was confirmed by 
peaks of IR, NMR, mass spectroscopy. In positive chemi-
cal ionization most of the naringenin derivatives showed 
(M++1), M+ (molecular ion peak), (M++2) and in neg-
ative chemical ionization mode showed (M+1), (M+2), 
M+. The elemental analysis established the synthesis of 
naringenin derivatives where the percentage of C, H and 
N in the synthesized compounds was observed within 
defined limits. The reaction mixture was concentrated, 

(− 5.185), ampicillin (− 5.065) and fluconazole (− 5.129) that supported the wet lab results. The preservative efficacy 
test for compound 1 in White Lotion USP showed the log CFU/mL value within the prescribed limit and results were 
comparable to standard sodium benzoate, ethyl paraben and propyl paraben as per USP standard protocol.

Conclusions:  The synthesized naringenin derivatives exhibited significant G-6-P synthase inhibitory potential with 
good selectivity towards the selected target G-6-P synthase. Compound 1, bearing nitro group showed good antioxi-
dant, antimicrobial and preservative efficacy compared with the standard drugs taken. The mechanistic insight about 
the compounds within the active site was completed by molecular docking that supported the results for novel 
synthesized G-6-P synthase inhibitors.

Keywords:  G-6-P synthase, Naringenin derivatives, DPPH, Preservative efficacy
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after that precipitates formed were filtered off and dried. 
Crude products were recrystallized by alcohol which 
yielded the final compounds 1–4.

Antioxidant activity
DPPH radical scavenging activity
All the synthesized compounds were evaluated for 
antioxidant profile by using DPPH radical scaveng-
ing assay method (Table  1). The compound 1 was 
observed as the most potent antioxidant compound (IC50 
6.864 ± 0.020  µM) as compared to standard L-ascorbic 
acid (IC50 8.110 ± 0.069  µM). However, compounds 
3 and 4 showed moderate antioxidant activity (IC50 
7.170 ± 0.028  µM and 7.801 ± 0.077  µM, respectively) 
as compared to standard. The electron withdrawing 
strongly deactivating nitro group in compound 1 may be 
responsible for better antioxidant activity. The presence 
of weakly deactivating electron withdrawing chloro and 
fluoro groups present in compound 3 and 4 have moder-
ate antioxidant activity. IC50 value of synthesized narin-
genin derivatives has been shown in Fig. 3.

Antimicrobial activity
Minimum inhibitory concentration
The antimicrobial activity of synthesized compounds 
revealed compound 1 as the most potent compound 
(pMIC 1.79, 1.79, 1.49, 1.49, 1.49 and 1.49  μM/mL for 
P. mirabilis, P. aeruginosa, S. aureus, E. coli, C. albi-
cans and A. niger respectively) as compared to standard 
drugs taken. The compound 2 showed comparable activ-
ity against P. mirabilis (pMIC 1.14 μM/mL), C. albicans 
(pMIC 1.14 μM/mL) while the compound 3 also showed 
comparable activity against C. albicans (pMIC 1.16 μM/
mL) as well A. niger (pMIC 1.46  μM/mL), likewise the 
compound 4 showed comparable activity against P. mira-
bilis (pMIC 1.18  μM/mL) as compared to the standard 
drugs streptomycin (pMIC 1.06, 1.36, 1.06 and 1.96 μM/
mL for P. mirabilis, P. aeruginosa, S. aureus and E. coli, 
respectively), ciprofloxacin (pMIC 1.12, 1.42, 1.12 and 
1.42 μM/mL for P. mirabilis, P. aeruginosa, S. aureus and 
E. coli, respectively), ampicillin (pMIC 1.14, 0.84, 0.84 
and 1.74 μM/mL for P. mirabilis, P. aeruginosa, S. aureus 
and E. coli, respectively) and fluconazole (pMIC 1.08 and 
1.38 μM/mL for C. albicans and A. niger, respectively). In 

Fig. 1  G-6-P synthase inhibitory profile of flavonoids and their derivatives cited in the recent literature
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general, the results of MIC studies (Table 2) revealed that 
the synthesized compounds have better anti bacterial 
and anti fungal potential as compared to standard drugs 
streptomycin, ciprofloxacin, ampicillin and fluconazole. 
The graphically representation of the pMIC values of test 
and standard compounds have been shown in Fig. 4.

Preservative efficacy study
The most active antimicrobial compound 1 was selected 
for the evaluation of its preservative efficacy. The results 
of preservative efficacy testing performed in triplicate 
and were reported as mean values in Table 3.

Compound 1 showed the values of log CFU/mL reduc-
tion within the prescribed limit and the results were 
comparable to that of the standard preservatives sodium 
benzoate, propyl paraben and methyl paraben. The pre-
servative efficacy of compound 1 in White lotion USP 

and degree of microbial log reduction has been repre-
sented in Fig. 5.

Structure activity relationship (SAR) studies
Design strategy of naringenin derivative for G-6-P inhi-
bition and antioxidant activity has been represented in 
Fig.  6. The structure activity relationship of the synthe-
sized naringenin derivatives with their antioxidant activ-
ity results were summarized as:

(1)	 Substitution of naringenin with aliphatic amines 
produced biological activity but aromatic substitu-
tion showed greater activity than aliphatic i.e. com-
pound 2 showed the lowest activity as compared to 
other.

Fig. 2  Pharmacological potential of Naringenin
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(2)	 Substitution with aromatic amine at para position 
increased the activity with increase in electronega-

tivity i.e. compound 1 was more active than com-
pound 3 and 4.

(3)	 Replacement of para position with nitro group 
produced the highest activity i.e. compound 1 was 
most active in the series.

(4)	 Exchange at para position produced more activity 
as compared to ortho position substitution.

Molecular docking study
Molecular docking studies were carried out to identify 
the binding affinities and interaction between the inhibi-
tors and pdb id 1moq of G-6-P synthase protein by using 
Glide software (Schrodinger Inc. U.S.A. Maestro version 
11). Dock score and binding of compound 1, 2, 3 and 4 
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Scheme 1  Synthetic route for the synthesis of naringenin derivatives

Table 1  Antioxidant IC50 values of synthesized compounds

a  Values are expressed as mean ± SEM, n = 3

S. no. Compound(s) IC50 (µM)a

1. Compound 1 6.864 ± 0.020

2. Compound 2 26.210 ± 0.151

3. Compound 3 7.170 ± 0.028

4. Compound 4 7.801 ± 0.077

5. Naringenin 13.765 ± 0.408

6. Standard (l-ascorbic acid) 8.110 ± 0.069
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Fig. 3  IC50 value of different synthesized compunds with respect to standard l-ascarbic acid

Table 2  pMIC values (μM/mL) of synthesized naringenin derivatives against different standard microbial strains

Compound(s) PMIC values in μM/mL

P. mirabilis P. aeruginosa S. aureus E. coli C. albicans A. niger

Compound 1 1.79 1.79 1.49 1.49 1.49 1.49

Compound 2 1.14 1.14 0.83 1.14 1.14 0.83

Compound 3 0.86 1.16 0.86 0.86 1.16 1.46

Compound 4 1.18 0.88 0.88 1.18 0.88 1.18

Naringenin < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73

Streptomycin 1.06 1.36 1.06 1.96 – –

Ciprofloxacin 1.12 1.42 1.12 1.42 – –

Ampicillin 1.14 0.84 0.84 1.74 – –

Fluconazole – – – – 1.08 1.38
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Fig. 4  Antimicrobial activity (pMIC in µM/mL) of synthesized naringenin derivatives against different microorganisms
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with G-6-P synthase have been shown in Table  4 and 
Fig. 7. After, docking results of compound 1 with G-6-P 
synthase protein suggested the formation of the hydro-
gen bond between NO2 and Thr 402. Additionally, the 
molecule has been stabilized by residues such as Ser 347, 
Thr 352, Ser 303, Gln 348, Ala 602, Asn 600 and Asp 354. 
The binding orientation of compound 2 within the cata-
lytic site of G-6-P synthase exhibited backbone hydrogen 
bonding with Glu 488. The molecule is stabilized by resi-
dues such as Asp 354, Lys 603, Glu 488, Lys 487 and Ala 
400. The compound 3 showed interaction with Arg 599. 
The molecule was enclosed by residues such as Val 399, 
Thr 302, Lys 487 and Leu 484. In compound 4 hydrogen 
bonding was shown by Thr 606 and ligand was entrapped 
by the residue sequence of Val 399, Lys 487, Cys 300 and 
Ser 328. Docking results of G-6-P synthase showed that 
the synthetic compounds have comparable docking score 
as compared to the standard drugs taken. All the ligands 
showed variable degrees of hydrogen bond interaction, 
hydrophobic interactions, electrostatic interactions, ionic 
interactions and π–π stacking with the various amino 
acid residues in the binding pockets of G-6-P synthase.

ADME study
The evaluation of different ADME parameters has been 
represented in Table 5. It was observed that all the syn-
thesized compounds fulfilled the standard Rule of Five 
[43]. All the synthesized compounds qualified the condi-
tions for various descriptors like LogP, HBA, HBD and 
MW. All these parameters were in suitable range for 
drug-like characteristics. In addition, according to Veber 
et  al., 2002 for better bioavailability rotatable bonds 
should be ≤ 10 as the rotatable bonds in ligand impart 
elasticity [44]. The values of QPlogBB should be > 1.0 
CNS active compounds and value < 1.0 CNS inactive 
compounds. QPPCaco cell permeability should be in 
a range from 4–70 [45–47]. In the present study, all the 
synthesized compounds exhibited a suitable drug-like 
profile.

Conclusion
In conclusion, the above mentioned wet and dry labo-
ratory studies highlight the underlying mechanism of 
G-6-P synthase inhibition. The rational development 
of inhibitors and specificity of naringenin derivatives to 
be discovered as the novel preservatives. Moreover, the 
synthesized compounds were also found as wonderful 
antioxidants towards DPPH with remarkable potential as 
compared to the reference compounds.

Table 4  G-6-P synthase inhibition showed by  synthesized 
naringenin derivatives

S. no. Compound(s) Structure of G-6-P synthase 
inhibitors

Dock 
score

1. Compound 1 − 7.42

2. Compound 2 − 4.29

3. Compound 3 − 3.30

4. Compound 4 − 4.02

5. Naringenin − 6.36
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Experimental
Materials and methods
All the chemicals required for experiments were of 
analytical grade and were purchased from Loba Che-
mie (Mumbai, India), SRL (Mumbai, India), and Sigma 
Aldrich (Germany). Nutrient agar, nutrient broth, sab-
ouraud dextrose agar and sabouraud dextrose broth 
required for antimicrobial and preservative efficacy were 
obtained from Hi-media Laboratories. Streptomycin, 

Table 4  (continued)

S. no. Compound(s) Structure of G-6-P synthase 
inhibitors

Dock 
score

6. Standard Streptomycin − 5.795

Ciprofloxacin − 5.185

Ampicillin − 5.065

Fluconazole − 5.129

Compound 1                                                         Compound 2 

Compound 3                                                            Compound 4 

Fig. 7  Binding of compounds 1, 2, 3 and 4 with G-6-P synthase
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ciprofloxacin, ampicillin and fluconazole were obtained 
as gift sample from Belco Pharma, Bahadurgarh, India. 
Microbial strains S. aureus MTCC​ 3160, P. aeruginosa 
MTCC​ 1934, E. coli MTCC​ 45, C. albicans MTCC​ 183 
and A. niger MTCC​ 282 strains were purchased from 
MTCC, Chandigarh, India. Chemical reactions were 
monitored by TLC on silica gel plates in iodine and UV 
chambers. Sonar melting point apparatus in open capil-
lary tube was used for the recording of melting points. 
1H NMR and 13C NMR spectra were confirmed in 
DMSO and deuterated CDCl3 on Bruker Avance II 400 
NMR spectrometer at a frequency of 400  MHz down-
field to tetramethyl silane standard. FTIR spectra were 
recorded on Perkin Elmer FTIR spectrophotometer with 
the help of KBr pellets technique. Waters Micromass 
Q-ToF Micro instrument was used for Mass spectrum 
recording.

General procedure for the synthesis of naringenin 
derivatives
Substituted aniline (0.01 mol) was taken in a round bot-
tom flask, concentrated hydrochloric acid was added 
drop wise with continuous stirring. Equimolar concen-
tration of naringenin (0.01  mol) was dissolved in etha-
nol (50  mL) and was re fluxed for 80-100  h on heating 
mantle. All the compounds in the series were synthe-
sized according to the standard procedures as outlined 
in Scheme 1. Completion of reaction was monitored by 
TLC. Reaction mixture was concentrated and the pre-
cipitates formed were filtered off and dried. The crude 
product was recrystallized using alcohol which yielded 
the final compounds 1-4.

Spectral data
2‑(4‑hydroxyphenyl)‑4‑(4‑nitrophenylimino) chroman‑5, 
7‑diol
Rf TLC mobile phase: Chloroform: Acetone (8:5) = 0.63; 
Yield = 55%; M.P. = 190–192  °C; M.Wt. = 317.29; IR 
(KBr pellets) cm−1: 1081 (–C–O–C), 1156 (–C–C–), 
1305 (–NO2), 1599 (–C=C–), 1632 (–C=N–), 2921 
(–C–H–), 3479 (–OH–); 1H NMR (400 MHz, DMSO-d6) 
δ = 11.94 (s, 1H), 11.10 (s, 1H), 8.17 (d, J = 8.5  Hz, 2H), 

8.04 (s, 1H), 7.29 (d, J = 9.3 Hz, 2H), 7.28 (d, J = 7.5 Hz, 
2H), 6.80 (d, J = 7.3  Hz, 2H), 6.28 (s, 1H), 6.27 (s, 1H), 
5.28 (t, J = 9.0 Hz, 1H), 3.15 (d, J = 7.3 Hz, 1H), 3.00 (d, 
J = 7.3 Hz, 1H); 13C NMR (400 MHz, CDCL3) δ = 166.11, 
165.34, 163.98, 161.90, 153.71, 152.59, 146.42, 133.96, 
131.14, 126.43, 125.72, 124.08, 123.64, 117.42, 103.05, 
97.89, 95.36, 77.13, 38.79, 27.19, 22.70; MS ES + (ToF): 
m/z 392.10 [M++2]; CHNS: Calc (C12H16N2O2): C, 64.28; 
H, 4.11; N, 7.14; O, 24.47; Found C, 64.25; H, 4.14; N, 
7.17; O, 24.44.

4‑(1,3‑dihydroxypropan‑2‑ylimino)‑2‑(4‑hydroxyphenyl)
chroman‑5,7‑diol
Rf TLC mobile phase: Chloroform: Acetone (8:5) = 0.66; 
Yield = 50%; M.P. = 173–175 °C; M.Wt. = 345.32; IR (KBr 
pellets) cm−1: 1074 (–C–O–C–), 1251 (–C–C–), 1513 (–
C=C–), 1631 (–C=N–), 2831 (–C–H–), 3295 (–OH–); 
1H NMR (400 MHz, DMSO-d6) δ = 11.60 (s, 1H), 11.10 
(s, 1H), 8.04 (s, 1H), 7.28 (d, J = 7.2  Hz, 2H), 6.80 (d, 
J = 7.3 Hz, 2H), 6.28 (s, 1H), 6.24 (s, 1H), 5.25–5.24 (m, 
1H), 3.95 (d, J = 8.1 Hz, 2H), 3.64 (q, J = 9.0 Hz, 2H), 3.50 
(q, J = 9.6 Hz, 2H), 3.47–3.45 (m, 1H), 3.13 (d, J = 8.6 Hz, 
1H), 2.86 (d, J = 8.6  Hz, 1H); 13C NMR (400  MHz, 
CDCL3) δ = 164.81, 162.47, 161.87, 161.58, 158.28, 
130.84, 128.42, 115.98, 107.15, 103.33, 96.95, 78.20, 72.30, 
63.75, 37.92, 27.60, 22.32, 14.16; MS ES + (ToF): m/z 
345.12 [M++2]; CHNS: Calc (C18H19NO6): C, 62.60; H, 
5.55; N, 4.06; O, 27.80; Found C, 62.63; H, 5.52; N, 4.09; 
O, 27.82.

4‑(2‑fluorophenylimino)‑2‑(4‑hydroxyphenyl)
chroman‑5,7‑diol
Rf TLC mobile phase: Chloroform: Acetone (8:5) = 0.64; 
Yield = 23%; M.P. = 165-167  °C; M.Wt. = 365.35; IR (KBr 
pellets) cm−1: 753 (–F–), 1082 (–C–O–C), 1241 (–C–
C–), 1612 (–C=C–), 1632 (–C=N–), 2833 (–C–H–), 
3350 (–OH–); 1H NMR (400 MHz, DMSO-d6) δ = 11.78 
(s, 1H), 11.10 (s, 1H), 8.04 (s, 1H), 7.47 (d, J = 8.8  Hz, 
1H), 7.31 (dt, J = 15.7, 8.4  Hz, 2H), 7.28–7.26 (m, 3H), 
6.80 (d, J = 7.4 Hz, 2H), 6.31 (s, 1H), 6.28 (s, 1H), 5.33 (t, 
J = 8.5 Hz, 1H), 3.04 (d, J = 7.7 Hz, 1H), 2.92 (d, J = 8.5 Hz, 
1H); 13C NMR (400  MHz, CDCL3) δ = 165.92, 165.91, 

Table 5  ADMET profile of various newly synthesized naringenin derivatives

Compound(s) Mol. Wt. No. of rotatable 
bond

DonorHB AcceptHB QPlogPo/w QPlogBB QPPMDCK QPPCaco

Compound 1 392.10 5 5 4 2.084 0.081 0.053 1.877

Compound 2 345.12 3 3 3 2.490 0.138 11.251 2.773

Compound 3 365.11 4 2 4 4.29 2.445 0.282 10.982

Compound 4 381.08 3 4 2 1.278 3.355 0.162 20.169



Page 12 of 15Lather et al. BMC Chemistry           (2020) 14:41 

165.24, 163.73, 161.86, 132.64, 132.61, 126.96, 126.94, 
126.50, 126.48, 125.25, 114.89, 114.86, 102.91, 97.83, 
95.53, 72.64, 39.18, 20.46; MS ES+ (ToF): m/z 365.11 
[M++2]; CHNS: Calc (C21H16FNO4): C, 69.04; H, 4.41; F, 
5.20; N, 3.83; O, 17.52; Found C, 69.01; H, 4.44; F, 5.23; N, 
3.84; O, 17.55.

4‑(2‑chlorophenylimino)‑2‑(4‑hydroxyphenyl)
chroman‑5,7‑diol
Rf TLC mobile phase: Chloroform: Acetone (8:5) = 0.66; 
Yield = 60%; M.P. = 155-157  °C; M.Wt. = 381.81; IR (KBr 
pellets) cm−1: 754 (–Cl–Str), 1062 (–C–O–), 1155 (–C–
C–), 1602 (–C=C–) 1633 (–C=N–), 2834 (–C–H–), 
3284 (–OH–); 1H NMR (400 MHz, DMSO-d6) δ = 11.78 
(s, 1H), 11.10 (s, 1H), 8.04 (s, 1H), 7.55 (d, J = 6.9 Hz, 1H), 
7.39 (t, J = 8.0 Hz, 1H), 7.28 (d, J = 8.0 Hz, 2H), 7.26 (d, 
J = 8.3 Hz, 1H), 7.17 (d, J = 7.6 Hz, 1H), 6.80 (d, J = 7.5 Hz, 
2H), 6.19 (s, 1H), 6.17 (s, 1H), 5.34 (t, J = 8.9 Hz, 1H), 3.04 
(d, J = 8.7  Hz, 1H), 2.94 (d, J = 9.1  Hz, 1H); 13C NMR 
(400  MHz, CDCL3) δ = 165.10, 163.08, 161.26, 159.81, 
143.28, 139.86, 129.24, 128.98, 128.45, 128.28, 127.73, 
127.42, 126.85, 124.29, 107.38, 102.08, 95.02, 76.72, 38.77, 
17.39, 14.71; MS ES+ (ToF): m/z 381.08 [M++2]; CHNS: 
Calc (C21H16ClNO4): C, 66.06; H, 4.22; Cl, 9.29; N, 3.67; 
O, 16.76; Found C, C, 66.09; H, 4.20; Cl, 9.26; N, 3.69; O, 
16.72.

Antioxidant activity
DPPH radical scavenging assay
Antioxidant activity of the synthesized compounds was 
determined by DPPH (2, 2-diphenyl-1-pycrilhydrazil 
hydrate) radical scavenging method. Briefly, 0.1 mM solu-
tion of DPPH in methyl alcohol was prepared and 1 mL 
of this solution was added to 3 mL of sample or standard 
with a concentration of 12.5, 25, 50, 75 and 100 μg/mL. 
Discolorations were measured at 517 nm after incubation 
for 30 min at 30 °C in the dark. Lower absorbance of the 
reaction mixture indicates higher free radical scavenging 
activity. The IC50 values of given samples were calculated 
by using formula:

 Here, Ac was the absorbance of the control and As was 
the absorbance of the sample [48, 49].

Antimicrobial activity
Minimum inhibitory concentration (MIC)
The antimicrobial activity of the synthesized compounds 
were performed against S. aureus MTCC​ 3160, P. aerugi-
nosa MTCC​ 1934, E. coli MTCC​ 45, P. mirabilis MTCC​ 
3310, C. albicans MTCC​ 183 and A. niger MTCC​ 282 
by using the tube dilution method [50]. Dilutions of 
test and standard compounds were prepared in double 

IC50 = (Ac − As) × 100/Ac

strength nutrient broth I.P. (bacteria) or sabouraud dex-
trose broth I.P. (fungi) [51, 52]. The slants of E. coli, P. 
aeruginosa, P. mirabilis and S. aureus were incubated 
at the 30-35  °C for 24 h. The slants of C. albicans were 
incubated at 20–25 °C for 48 h whereas; the slants of A. 
niger were incubated at 20–25  °C for 5  days. After the 
incubation period sterilized 0.9% NaCl solution was used 
to harvest the bacterial and fungal cultures from agar 
slant through proper shaking and then the suspensions 
of microorganisms were diluted with the sterile 0.9% 
NaCl solution to CFU count was adjusted by adjust-
ing the density of microorganism suspension to that of 
0.5 McFarland standards by adding distilled water. The 
number of CFU was determined by dilution pour-plate 
method [53]. A serial dilution of 50  µg/mL, 25  µg/mL, 
12.5  µg/mL, 6.25  µg/mL, 3.12  µg/mL and 1.62  µg/mL 
was used for determination of MIC. The samples tubes 
were incubated at 37 °C for 24 h (bacteria), at 25 °C for 
7 days (A. niger), and at 37 °C for 48 h (C. albicans) and 
the results were recorded in pMIC.

Preservative effectiveness
White lotion USP was utilized as the medium for the 
testing of preservative effectiveness.

Ingredients: Zinc sulfate 40 gm, sulfurated potash 40 
gm and purified water q.s. to 1000 mL.

Firstly, zinc sulphate and sulfurated potash were dis-
solved in 450 mL of water separately and filtered. Then, 
sulfurated potash solution was added to zinc sulfate with 
stirring. At last, the required amount of water was added 
and mixed thoroughly and sterilized. For preservative 
efficacy testing, the White lotion USP was prepared using 
the equimolar amount of compounds 1-4 as novel pre-
servatives by replacing sodium benzoate, methyl paraben 
and propyl paraben from the formula [54].

Challenge microorganism
Staphylococcus aureus MTCC​ 3160, P. aeruginosa MTCC​ 
1934, E. coli MTCC​ 45, C. albicans MTCC​ 183 and A. 
niger MTCC​ 282 were used as common contaminants in 
the study as prescribed in USP for preservative efficacy 
testing in the pharmaceutical preparations.

Preparation of ioculums
The slants of E. coli, P. aeruginosa and S. aureus were 
incubated at the 30–35 °C for 24 h. The slants of C. albi-
cans were incubated at 20–25  °C for 48  h whereas; the 
slants of A. niger were incubated at 20–25  °C for 5 days 
[55].

Test procedure
White lotions USP was added in final containers and 
were used in challenge test. The preparation was 
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inoculated with 0.5–1% volume of microbial inocu-
lum having a concentration of 1 × 105–1 × 106  CFU/
mL [56]. Inoculated samples were mixed thoroughly 
to ensure homogeneous microorganism distribution 
and incubated. The CFU/mL of the product was deter-
mined at an interval of 0 days, 7 days, 14 days, 21 days, 
and 28 days in agar plates. Log CFU/mL of white lotion 
USP was calculated as not less than 2.0 log reductions 
from initial count at 14  days of incubation and no 
increase in CFU from 14 days count at 28 days in case 
of bacteria and no increase from the initial calculated 
count at 14 and 28 days [57].

In silico molecular docking studies
The Schrodinger, Inc. (New York, USA) software Maestro 
11 was used for the computational calculations and dock-
ing studies. Laboratory for Enzyme Inhibition Studies, 
Department of Pharmaceutical Sciences, M.D. University, 
Rohtak, INDIA was used for the computational work. The 
receptor-grid files were generated by grid-receptor gen-
eration program Glide [58]. Grid-based ligand docking 
utilized the hierarchical sequence of filters to produce pos-
sible conformations of the ligand in the active-site region 
of the protein receptor. At this stage, crude score values 
and geometric filters were prepared out unlikely binding 
modes. The next filter phase involves a grid-based force 
field evaluation and refinement of docking experiments 
including torsional and rigid-body movements of the 
ligand [59]. The remained docking evaluations were sub-
jected to a Monte Carlo procedure to minimize the energy 
score. A conjugate gradient minimization protocol was 
used in all calculations [60].

The energy differences were calculated using the 
equation:

Protein preparation
The X-ray protein structure co-ordinates of pdb id 1moq 
were downloaded from Protein Data Bank from www.
rcbs.org [61] and were prepared with the help of the 
Schrödinger protein preparation wizard ‘Prepwiz’ [62, 
63]. PDB id 1moq (resolution 1.57 A°) was selected on 
the basis of the lowest resolution and availability. All the 
waters molecules except metals co-ordinated and pre-
sent between the ligand and protein were removed. The 
energy-restrained structure of the protein G-6-P syn-
thase was constructed with the help of OPLS-2005 force 
field.

�E = Ecomplex − Eligand − Eprotein

Ligand Preparation
The three-dimensional structural library was prepared 
using the Chemdraw software and proceeded for energy 
minimization using the LigPrep tool for the correction of 
coordinates, ionization, stereochemistry and tautomeric 
structure to gain the appropriate conformation through 
the addition or removal of hydrogen bonds. The partial 
charges were computed according to the OPLS-2005 
force field (32 stereo isomers, tautomers and ionization) 
at biological pH and used for molecular docking studies.
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