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Immune checkpoint inhibitors (ICIs) have revolutionized cancer immunotherapy by restoring the host
antitumor immune response. Since 2011, various ICIs have been approved for the treatment of cancers,
which has led to unprecedented prolongation of the survival time for some patients. Although ICIs have
been successfully applied in the treatment of different cancers, the low effectiveness rate has dramati-
cally restrained the clinical application of ICI treatment. N6-methyladenosine (m6A) modification is
the most common RNA methylation. Recent studies have pointed out that m6A epigenetic modification
could improve the efficacy of ICI blockade treatment. Here, we briefly summarize the relevant mecha-
nisms of tumour immunity, the clinical application of ICIs, the resistance to ICI treatment in cancers,
and the m6A epigenetic modification and how it regulates the response to ICI treatment. We attempted
to provide a potential strategy for cancer therapy by targeting m6A modification combined with ICI
blockade treatment.
� 2022 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
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1. Background

Cancer is one of the most lethal chronic diseases in the world,
with nearly 10 million deaths reported worldwide in 2020 [1]. Sur-
gical resection, radiotherapy and chemotherapy are three major
traditional cancer treatment methods. However, the accompanying
limitations, including severe trauma, low targeting ability, high
toxicity and strong drug resistance, markedly restrict their applica-
tion in cancer therapy [2]. In recent years, cancer immunothera-
pies, especially immune checkpoint blockade (ICB) therapy, have
achieved tremendous progress in the treatment of many malignant
tumours [3,4].

ICIs have been a first-line therapy since they were discovered,
which can alleviate the immunosuppressive tumour microenviron-
ment [5]. In general, ICIs can elicit a powerful immune response by
releasing the inhibitory braking of T cells, with the blockade of PD-
1/PD-L1 and CTLA-4 being typical examples [6]. To date, the Food
and Drug Administration (FDA) has authorized three kinds of ICIs,
including antibodies against CTL4 (ipilimumab), PD-1 (pem-
brolizumab, cemiplimab and nivolumab), and PD-L1 (ate-
zolizumab, durvalumab and avelumab). Most of these agents
were initially approved for melanoma but have also been applied
to other tumour types [7,8]. Although ICI therapy has been demon-
strated to be successful in several cancers, the low effectiveness
rate has significantly restrained the clinical application of ICI
blockade treatment. Taking the therapeutic efficacy of pem-
brolizumab (anti-PD-1) as an example, the response rate among
melanoma patients was only 33 %. Similarly, and in regard to lung
cancer patients, only approximately 20–30 % of patients achieved
the expected results with ICI blockade therapy [9].

Recent studies have indicated that epigenetic modification can
not only promote cancer progression but also influence drug sensi-
tivity [10]. Since epigenetic modifications are reversible by nature,
strategies aiming to alleviate abnormal epigenetic modifications
are probably effective combination treatments [11,12]. As a vital
branch of epigenetic modification, m6A modification is the most
commonly studied mRNA and ncRNA modification and can partic-
ipate in various basic pathophysiological and metabolic processes
of RNA, including splicing, nuclear export, translation, decay, fold-
ing and RNA-protein interactions [13–17]. Several studies have
shown that aberrant expression of m6A regulators, including
‘‘writers” (methyltransferases), ‘‘readers” (binding proteins), and
‘‘erasers” (demethylases), might contribute to carcinogenesis, pro-
gression, and drug resistance in various cancers [18]. In addition,
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m6A modification has been demonstrated to be a potential target
for cancer immunotherapy, which can function as a complement
to immune checkpoint inhibitor therapy, thereby significantly
improving the survival rate and enhancing the quality of life of
cancer patients [7,19,20].

In this review, we briefly summarize the relevant mechanisms
of tumour immunity, the principle and clinical applications of ICIs,
and the role of m6A modification in cancer ICI treatment.
2. Mechanisms underlying tumour immunity

The human immune system is composed of immune defence,
immunologic homeostasis and immune surveillance. First,
immune defence can eliminate or inhibit viral infection and protect
the host from virus-induced tumours. Second, immune homeosta-
sis serves to remove pathogens and helps prevent establishment of
the inflammatory environment facilitated by tumorigenesis. Third,
immune surveillance can recognize and eliminate tumour cells
according to their specific antigens or cell stress-induced mole-
cules, and through these molecules, the immune system can dis-
criminate cancer or precancerous cells from normal cells and
eliminate them before they cause damage [21]. Even though the
human body possesses a series of approaches for immune surveil-
lance and immune clearance, tumour cells can still develop some
strategies to weaken the immune system or evade the immune
response, which leads to tumour immune escape [22].

Several potential mechanisms may underlie tumour immune
escape.

(1) Low immunogenicity. Some tumours can escape recogni-
tion by the immune system because unlike normal cells, they do
not have protein peptides that can be presented by MHC mole-
cules. Other tumours might lose one or more MHC molecules or
the expression of costimulatory proteins that are required for the
activation and maturation of naive T cells.

(2) Lack of costimulatory molecules. The tumour antigens pre-
sented without the existence of costimulatory signals will lead to T
cells’ tolerance of these specific antigens.

(3) Antigen modulation. Initially, the immune system can rec-
ognize tumour antigens to attack tumour cells, whereas antibody-
induced antigen internalization or the variation of antigens in
tumours will lead to a decrease or even the disappearance of these
antigens. The genetic instability of tumour cells is currently
believed to contribute to the development of the antigen reduction



Fig. 1. Immune checkpoint signalling mechanisms.
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equilibrium phase, which refers to slow or stagnant tumour cell
proliferation caused by the immune system. Once the immune sys-
tem fails in the fight against tumour cells, it will no longer destroy
them, the result of which is robust proliferation of tumour cells.
Moreover, tumour cells can escape an attack from lymphocytes
by not expressing specific antigens and thus develop a selective
advantage.

(4) Formation of an immune-privileged site. Tumour cells can
secrete a variety of molecules, such as collagen, to form a physical
barrier, which can prevent lymphocytes and antigen-presenting
cells (APCs) from entering the tumour.

(5) Tumour-induced immunosuppression. Tumour cells can
produce multiple immunosuppressive molecules, such as TGF-b,
IL-10, IDO and PD-L1, to inhibit the immune response directly.
They can also recruit regulatory T cells that secrete immunosup-
pressive cytokines [22,23].

3. Tumour immune checkpoint inhibitors and their clinical
application

Next, we briefly outline the functional mechanisms of ICIs
(Fig. 1) and their clinical applications based on the immune check-
points they targeting.

PD-1 (CD279) is a type I transmembrane protein that is mainly
expressed in activated T cells. PD-1 expression can also be detected
in other cell types, including B cells and natural killer (NK) cells.
PD-1 has been reported to eliminate the transmission of antigen
recognition signals mediated by T-cell receptors [24]. Structurally,
PD-1 contains a cytoplasmic tail and an extracellular domain sim-
ilar to immunoglobulin (Ig). The cytoplasmic tail of PD-1 is com-
posed of two immune receptor tyrosine-based structural motifs,
the inhibitory motif (ITIM) and the switching motif (ITSM) [25].
Moreover, the inhibitory function of PD-1 is dependent on the
phosphorylated tyrosine in ITSM [26]. PD-L1 and PD-L2 are two
PD-1 ligands. PD-L1 is mainly expressed in tumour cells, and its
expression is influenced by interferon-c (IFN-c) in the microenvi-
ronment. Once PD-L1 on tumour cells encounters PD-1 on T cells,
their interaction will stop T cells from attacking tumour cells and
cause immune escape [27,28]. Therefore, PD-1 on T cells plays a
negative regulatory role in the immune system by acting as a brake
on the immune system to prevent excessive immune activation.
Tumour cells take advantage of this braking by overexpressing
PD-L1 to escape attack from immune cells. Similarly, PD-1/PD-L1
inhibitors can block this signalling pathway to eliminate tumour
cells by restoring the cytotoxicity of immune cells. To date, the
FDA has approved three anti-PD-1 antibodies: nivolumab (IgG4
mAb), pembrolizumab (IgG4 mAb) and cemiplimab (IgG4 mAb).
Pembrolizumab and cemiplimab have been demonstrated to work
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well in the clinical treatment of melanoma and non-small cell lung
cancer (NSCLC) patients [29]. In addition, nivolumab monotherapy
is the first FDA-approved first-line immunotherapy for gastric can-
cer, which is also effective in the treatment of NSCLC, classical
Hodgkin’s lymphoma (CHL) and melanoma patients [30]. Since
2019, pembrolizumab has been approved and used as the first-
line treatment for metastatic melanoma, some metastatic NSCLC
and metastatic bladder cancer, refractory CHL and metastatic ESCC
and as a second-line treatment for head and neck squamous cell
carcinoma (HNSCC) [31–35]. Moreover, cemiplimab has been
approved for the treatment of basal cell carcinoma, cutaneous
squamous cell carcinoma (CSCC) and NSCLC. The FDA has also
authorized three anti-PD-L1 antibodies, including atezolizumab
(IgG4 mAb), avelumab (IgG1 mAb) and durvalumab (IgG1 mAb)
[36]. Atezolizumab was the first FDA-authorized PD-L1 inhibitor
for the treatment of patients with advanced or metastatic urothe-
lial cancer in 2016 [37]. Atezolizumab has also been approved for
patients with metastatic NSCLC that developed during chemother-
apy or platinum-containing chemotherapy [38]. In 2017, avelumab
was approved for the treatment of metastatic urothelial carcinoma
and Merkel cell carcinoma (MCC) [39,40]. In addition, the FDA
approved the combination of avelumab and the tyrosine kinase
inhibitor axitinib for the first-line treatment of patients with
advanced RCC in 2019[41]. In 2017, durvalumab was approved
for the treatment of locally advanced or metastatic urothelial car-
cinoma for the first time [42]. Durvalumab, in combination with
etoposide and carboplatin or cisplatin, has been approved as a
first-line treatment for patients with advanced NSCLC [43].

CTLA-4 (CD152) is a type I transmembrane glycoprotein that is
mainly expressed in T cells. It shares a pair of receptors with
CD28—B7-1 (CD80) and B7-2 (CD86) —expressed on the surface
of dendritic cells (DCs). In general, CD28 expression can be
detected in both quiescent and activated T cells, while CTLA-4 is
expressed only in activated T cells. The costimulatory checkpoint
protein CD28 on T cells interacts with B7-1 and B7-2 on DCs to
amplify the antigen recognition signal and thus successfully acti-
vate T cells [44]. To prevent excessive activation and proliferation
of T cells, the inhibitory signals produced by the combination of
CTLA-4 and B7-1/B7-2 are used to offset the signal activation
through higher binding affinity [45–48]. As a vital immune balance
modulator, CTLA-4 mainly functions by inhibiting the activation of
effector T cells and promoting the proliferation of regulatory T cells
(Tregs) in the tumour microenvironment to produce an immuno-
suppressive effect on tumour progression [49,50]. CTLA-4 inhibi-
tors can target CTLA-4 to relieve Treg inhibition in the tumour
microenvironment and induce the activation and proliferation of
T cells through which they can attack tumour cells and achieve
the goal of disease treatment. Ipilimumab (IgG1 mAb) is a mono-
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clonal antibody against CTLA-4 and was the first ICI approved by
the FDA in 2011 for patients with advanced melanoma [51]. The
combination of ipilimumab with the PD-1 inhibitor nivolumab
has been approved for the treatment of patients with metastatic
colorectal cancer (CRC) with high microsatellite instability (H-
MSI) or mismatch repair (MMR) [52]. Regardless of PD-L1 expres-
sion, the combination of ipilimumab with nivolumab has also been
approved for patients with moderate- or low-risk renal cell carci-
noma (RCC) [53]. In addition, ipilimumab combined with nabu-
lizumab has also been used as a first-line treatment for NSCLC
and malignant pleural mesothelioma (MPM) with tumour PD-L1
expression � 1 % [54,55].

TIGIT (T-cell Ig and ITIM domain) is a member of the poliovirus
receptor (PVR)/Nectin family that is predominantly expressed in T
cells and NK cells [56,57]. TIGIT can bind to at least two Nectin
family members, CD155 and CD112, and its affinity for CD155 is
much higher than that for CD112 [58]. The interaction of TIGIT
with CD155/CD112 dramatically weakens the cytotoxicity of tar-
geting cells to achieve immunosuppression [59,60]. In addition,
TIGIT can inhibit costimulation of DCs and result in reduced anti-
gen presentation and immune activity of DCs. Therefore, the prin-
ciple of TIGIT inhibitors in immunotherapy is to enhance the effect
of T, NK and DC cells. By June 2020, 15 antibodies targeting the
TIGIT-PVR pathway were under development, and tiragolumab
has since entered the clinical trial phase. The combination of tira-
golumab and atezolizumab targeting the TIGIT-PVR pathway is a
promising first-line treatment for metastatic NSCLC patients with
high PD-L1 expression and no EGFR or ALK mutation [61].

LAG-3 (CD223) is an inhibitory receptor of the type 1 Ig family.
LAG-3 expression has been detected in a variety of immune cells,
including activated T cells, Tregs and B cells [62,63]. LAG-3 can
interact with various molecules and deliver inhibitory signals to
regulate immune cell homeostasis, T-cell activation and prolifera-
tion, cytokine production, cytolytic activity, and other cellular
functions [63]. In addition, persistent antigen stimulation, such
as in cancer and chronic viral infection, can reflect LAG-3 expres-
sion and lead to T-cell failure and subsequent impairment of T-
cell function [64]. Tumour cells are believed to use this strategy
to escape immune surveillance during tumorigenesis and cancer
progression. Opdualag is a fixed-dose combination of the LAG-3
blocking antibody relatlimab and the PD-1 blocking antibody nivo-
lumab [65]. On 18 March 2022, Opdualag was approved by the FDA
as a treatment option for adults and children older than 12 years
with unresectable or metastatic melanoma.

TIM-3 (HAVCR2) is a type I membrane protein that is expressed
in various immune cells, including Tregs, DCs, B cells, macro-
phages, NKs and mast cells [57]. It can mediate T-cell exhaustion
and play a vital role in inhibiting antitumor immunity [66]. Aber-
rant STAT5 and p38 signalling was detected in Tim-3+CD8+ T cells,
while blocking the Tim-3 pathway dramatically enhanced antitu-
mor immunity and increased IFN-c secretion in T cells [67]. A sim-
ilar efficacy of Tim-3 was obtained in preclinical studies compared
with that of PD-1 and LAG-3 inhibitors, and a synergistic effect of
the three drugs was detected [68,69]. As a high-affinity humanized
IgG4 (S228P) antibody targeting TIM-3, sabatolimab (MBG453) tar-
geting TIM-3 on immune and bone marrow cells obtained fast cer-
tification from the FDA in 2021. Undoubtedly, ICIs represent a
prominent class of drugs for human cancer therapy.
4. ICI resistance

Despite the advantages and robust development of ICIs in
immunotherapy, their efficacy is usually short-term, and patients’
responses are highly heterogeneous [70]. Even among melanoma
patients with the highest response rate to ICIs, 60 % � 70 % had
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no objective response to anti-PD-1 treatment [71]. Regarding lung
cancer, only approximately 20–30 % of patients achieved the
expected results when they received ICI blockade treatment [9].
ICI resistance is becoming a hot topic in tumour immunotherapy
and can be divided into two categories: 1) primary resistance,
which generally refers to patients who have no response at all from
the very beginning and experience rapid tumour progression, and
2) acquired drug resistance, which refers to patients who initially
respond to ICIs, but clinical and/or imaging progress ultimately
occurs after treatment for a period.

Our understanding of the characteristics and mechanisms of
primary and advanced ICI resistance is still limited. For primary
drug resistance, the effectiveness rate of ICI treatment varies mark-
edly among different cancers, frommore than 80 % of patients with
refractory Hodgkin’s lymphoma to little or no response in mis-
match repair-proficient colorectal cancer patients [72,73]. As the
effectiveness rate of many tumours is between 20 % and 40 %, pri-
mary resistance or no response to ICIs remains a key issue. A recent
study showed that only 12.5 % of the patients were estimated to
benefit if they met the eligibility criteria for ICI treatment in
2018 [74]. Therefore, to increase the proportion of patients benefit-
ing from ICI treatment, the factors that may lead to primary drug
resistance must be thoroughly understood. The defects in anti-
genicity and adjuvanticity that shape tumour immunogenicity
might be a probable explanation for the insensitivity of tumour
cells to ICIs [75]. To address the challenge of primary drug resis-
tance, extensive effort has been expended on combination treat-
ment strategies, usually using empirical orthogonal therapies to
expand the response population. In addition, potential biomarkers
of the initial ICI response have been extensively studied, such as
PD-L1 expression, the tumour mutational burden, tumour-
infiltrating lymphocytes (TILs) and related gene expression
characteristics.

In contrast to the primary drug resistance of ICIs, acquired drug
resistance has not been thoroughly studied. Dysregulation of anti-
gen presentation is suggested to be an effective mediator of
acquired drug resistance. For example, interruption of MHCI pre-
sentation in lung cancer patients could decrease sensitivity to ICI
treatment [84]. Moreover, in a patient with metastatic uterine
leiomyosarcoma who responded well to anti-PD-1 treatment, one
of the metastatic nodules was still insensitive to immunotherapy.
Genomic and proteomic analyses of this nodule showed that the
PTEN gene was mutated and that the expression of several neoanti-
gens was decreased [85]. Although no evidence indicates that these
features are related to drug resistance, the loss of neoantigen
expression might also contribute to escape from cytotoxic T-cell
attack.
5. Epigenetic modification of m6A

m6Amodification is a dynamic and reversible process regulated
by three types of enzymes: m6A methyltransferases, m6A
demethylases and m6A binding proteins(Fig. 2). Their combined
activities ensure the normal expression and translation of RNA
[76].

M6A methyltransferases are also known as m6A writers.
METTL3, METTL14, WTAP, RBM15, RBM15B, VIRMA and ZC3H13
are common methyltransferases [77,78]. METTL3, a protein with
a molecular weight of 70 kDa, is the core catalytic component of
the methyltransferase complex. The stable heterodimer formed
by METTL3 and METTL14 at a ratio of 1:1 can induce m6A deposi-
tion in nuclear RNA transcripts [79]. WTAP is the regulatory com-
ponent of the complex, which affects m6A deposition by binding to
the METTL3/14 complex [80]. RBM15/15B interacts with METTL3
in a WTAP-dependent manner, which can help recruit the methyl-



Fig. 2. The functional mechanism of m6A methylation and its machinery in RNA metabolism.
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transferase complex to the U-rich region of mRNA [81]. VIRMA,
also known as KIAA1429, is the largest scaffold component of the
m6A methyltransferase complex, which plays a regulatory role in
m6A methylation in the 30-UTR and stop codon areas of genes
[82,83]. ZC3H13 regulates nuclear m6A methylation by binding
to other cofactors, such as WTAP and RBM15 [84]. These writer
complexes are dramatically enriched in the RRACH (R = G or A;
H = U, A or C) sequences of the stop codon, the 30-UTR and long
introns [85].

M6A demethylases are also known as m6A erasers. Fat and
obesity-related protein (FTO) and AlkB homologue 5 (ALKBH5)
are two common demethylases that contribute to the dynamic
and reversible process of m6A modification [86,87]. FTO was the
first protein discovered to catalyse m6A demethylation, which
can affect the splicing and stability of mRNA by regulating m6A
modification [88]. ALKBH5 is the second demethylase identified
to reverse m6A modification, which can regulate mRNA output
and metabolism through m6A methylation [87]. The biological
effects of demethylases depend on the RNAs that they
demethylate.

M6A-binding proteins are also known as readers of m6A mod-
ification. The YTH domain families (YTHDF1/2/3 and YTHDC1/2),
heteronuclear ribonucleoproteins (HNRNPs; hnRNPC, hnRNPG
and hnRNPA2B1) and insulin-like growth factor 2 mRNA binding
proteins (IGF2BP1-3). These readers have been demonstrated to
be involved in the regulation of RNA splicing, nuclear output,
translation efficiency, RNA stability and RNA decay [89]. For exam-
ple, the interaction of YTHDF1 with eIF3 can facilitate translation.
YTHDF2 is the most widely studied m6A reader and can accelerate
RNA decay modified by m6A methylation [90]. YTHDF3 affects the
translation and decay of m6A-modified mRNAs through its syner-
gistic effects with YTHDF1 or YTHDF2 [91]. Ribonucleoprotein
HnRNPC/G is involved in RNA processing and maturation [92],
while the RNA binding protein hnRNPA2B1 can bind to m6A-
modified nuclear RNAs to participate in subsequent gene splicing
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[92,93]. Readers from the IGF2BP family can recognize and bind
to m6A modification sites, thereby increasing the stability and
translation of target RNAs [94].

6. The involvement of m6A methylation in the responses of
immune cells

6.1. T cells

T-cell development occurs in the thymus. Mature T cells can
migrate to the surrounding organs to regulate the adaptive
immune response and play an important role in the process of
tumour immunity [95]. Some studies have shown that METTL3
deletion in CD4+ T cells can destroy the homeostasis and differen-
tiation of T cells by downregulating activation of the IL-7/STAT5/
SOCS pathway [96]. Interestingly, METTL3 deletion can enhance
the stability of SOCS mRNA, thereby inhibiting the IL-2-STAT5 sig-
nalling pathway, which is crucial for the function of Tregs [97] T
follicular helper (Tfh) cells are a special type of CD4+ T cells essen-
tial for humoral immunity [98]. In CD4+ T cells, METTL3 can stim-
ulate the differentiation, proliferation and survival of Tfh cells by
stabilizing Tcf7 transcripts, while conditional deletion of METTL3
can substantially impair these biological processes [98]. In addi-
tion, knockout of ALKBH5 could decrease the lactic acid content
in the tumour microenvironment by downregulating the expres-
sion of the Mct4/Slc16a3 pathway, thus inhibiting the accumula-
tion of Tregs and myeloid suppressor cells. Importantly, the
absence of ALKBH5 can also enhance the efficacy of anti-PD-1 ther-
apy [99].

6.2. Dendritic cells

DCs are important APCs. Immature DCs have a strong migration
ability. After maturation, they can stimulate and activate T cells
and function as a bridge between the innate immune response



W. Liu, C. Liu, H. Wang et al. Computational and Structural Biotechnology Journal 20 (2022) 5150–5161
and adaptive immune response [100]. Studies recently found that
METTL3-mediated m6A modification could promote the activation
and maturation of DCs. Specific deletion of METTL3 led to the
impaired phenotype, functional maturation of DCs, decreased
expression of costimulatory molecules, including CD40, CD80 and
the cytokine IL-12, and a decreased response to T-cell stimulation.
The mechanism underlying METTL3-mediated T-cell activation is
that METTL3 can stimulate the translation efficiency of CD40,
CD80 and Toll/interleukin-1 receptor (TIR) domain adaptor protein
(TIRAP) [101]. YTHDF1 can enhance the translation of lysosomal
protease-encoded mRNA, which can degrade tumour antigens in
lysosomes. Deletion of YTHDF1 in DCs has been reported to inhibit
the translation of lysosomal protease, which enhances the cross
presentation of tumour antigens and promotes a more cytotoxic
lymphocyte (CTL) response against tumours in DCs. In addition,
the therapeutic effect of PD-L1 checkpoint blockade was enhanced
in YTHDF1(-/-) mice [102]. YTHDF1 is suggested to be a new poten-
tial therapeutic target in anticancer immunotherapy.
6.3. Macrophages

Macrophages are phagocytes of the innate immune system,
which mainly participate in the recognition, phagocytosis and
degradation of pathogens and tumour cells, as well as the genesis
and progression of tumours [103]. C1q + macrophages were found
to express a variety of ligands that are immunoregulated by
METTL14, and METTL14 regulates tumour-infiltrating CD8+ T cells
through these ligands. In addition, specific knockout of METTL14 in
macrophages drives the differentiation of CD8+ T cells towards dys-
function, thereby inhibiting the cytotoxicity of CD8+ T cells to
tumour cells [104]. METTL3 depletion in macrophages reconsti-
tuted the tumour microenvironment by enhancing the infiltration
of M1- and M2-like TAMs, as well as Tregs. M6A sequencing
showed that METTL3 deletion damaged the YTHDF1-mediated
translation of SPRED2, thus enhancing the activation of NFjB and
STAT3 through the ERK pathway and resulting in increased tumour
growth and metastasis. In addition, METTL3 consumption in
macrophages also reduces the efficacy of PD-1 blockade therapy
[105]. The above findings may provide new ideas for exploring
the molecular mechanisms by which macrophages participate in
cancer immunotherapy.
6.4. Natural killer cells

NK cells are innate lymphoid immune cells. As a core compo-
nent of the innate immune system, NK cells play an important role
in tumour monitoring [106]. Chen et al. found that METTL3 dele-
tion in NK cells changed the homeostasis of NK cells and inhibited
the function and infiltration of NK cells in the tumour microenvi-
ronment. The protein expression of m6A-modified SHP-2 is down-
regulated in METTL3-deficient NK cells. Decreased SHP-2
expression reduced the response of NK cells to IL-15, thus promot-
ing tumour progression and metastasis [106]. Subsequently, Ma
et al. found that YTHDF2 deletion in NK cells damages the antitu-
mor and antiviral activities of NK cells in vivo. In terms of mecha-
nism, YTHDF2 can sustain the homeostasis and terminal
maturation of NK cells, which is related to the regulation of NK cell
transport and Eomes, respectively. In addition, the formation of a
STAT5-YTHDF2 positive feedback loop can also promote the effec-
tor function of NK cells and IL-15-mediated NK cell survival and
proliferation [107]. These findings suggest that METTL3- and
YTHDF2-mediated m6A methylation plays a regulatory role in
antitumor immunity and NK cell homeostasis.
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7. Association between m6A methylation and tumour immune
checkpoint therapy

7.1. Nervous system tumours

Gliomas and glioblastomas (GBMs) are two common invasive
brain tumours [108]. In recent years, a substantial number of stud-
ies have demonstrated that m6A modification plays an important
role in their progression and anticancer effects [109]. The m6A
scoring system established by Cai et al. showed that GBMs with
high m6A scores had a better prognosis, while GBMs with low
m6A scores had a worse prognosis. Moreover, the m6A score was
significantly correlated with the expression of immune checkpoint
genes, indicating that m6A modification may affect the efficacy of
immunotherapy [110]. In contrast, some studies have demon-
strated that immune checkpoint therapy is more effective for
tumours with low m6A scores [111,112]. Zhao et al. confirmed that
m6A modification of the regulatory factor HSPA7 can promote
SPP1 expression and macrophage infiltration by regulating the
expression of Yap1 and LOX in glioblastoma stem cells (GSCs)
in vitro. This finding was also confirmed by a glioblastoma
organ-like (GBO) model in which HSPA7 knockout enhanced the
therapeutic effect of ICB treatment [113]. Yinyang 1 (YY1) is a zinc
finger transcription factor that interacts with CDK9 to regulate
transcriptional elongation in GSCs. Inhibition of METTL3 or
YTHDF2 can stabilize interferon-related genes and activate inter-
feron signals in other cell types. Targeting the YY1-CDK9 complex
reduced the expression levels of METTL3 and YTHDF2, thereby
inducing the interferon response, reducing regulatory T-cell infil-
tration, and enhancing the efficacy of immune checkpoint therapy
in GBM [108]. Pan et al. also reported that the m6A-modified reg-
ulator ELAVL1 is an efficacy predictor for PD-L1 therapy [114].
7.2. Respiratory system tumours

Recent studies have also revealed the vital role of m6A modifi-
cation in lung cancer [115]. CircIGF2BP3 is a circRNA derived from
the back-splicing of IGF2BP3 between exons 4 and 13. The
METTL3-mediated m6A modification of circIGF2BP3 and
YTHDC1-related circularization helped circIGF2BP3 escape from
the cytotoxicity of CD8+ T cells by stabilizing OTUB1 mRNA in a
PKP3-dependent manner to reduce PD-L1 ubiquitination. There-
fore, circIGF2BP3 is a potential therapeutic target to improve the
efficacy of PD-1 antibodies [115]. YTHDF1 and YTHDF2 are also
involved in PD-L1-mediated anticancer therapy in NSCLC. Overex-
pression of YTHDF1 and YTHDF2 was positively correlated with the
prognosis of NSCLC patients, while silencing them could upregu-
late tumour PD-L1 expression and lead to a worse prognosis
[116]. Patients with high-risk lung squamous cell carcinoma
showed a more promising response to PD-1 treatment, and the
expression of ALKBH5, METL3, HNRNPC and KIAA1429 was dra-
matically decreased compared with that in low-risk squamous cell
carcinoma [116]. Moreover, multiple bioinformatics analyses also
indicated the involvement of m6A regulatory factors in the progno-
sis and therapy of lung cancer by affecting immune checkpoints
[117,118].
7.3. Urinary system tumours

7.3.1. Renal carcinoma
A recent study evaluated the m6A modification pattern and

tumour immune landscape of 513 patients with clear cell renal cell
carcinoma (CCRCC) to predict their responses to anti-PD-1 treat-
ment. m6A scores were obtained using principal component anal-
ysis algorithms to accurately evaluate the m6A methylation
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pattern in patients with CCRCC [119]. Another bioinformatics-
based study showed that PD-L1 was overexpressed in the high-
m6A score group in CCRCC, indicating that patients with high
m6A scores may benefit from ICI treatment, which has been veri-
fied in 347 patients receiving ICI treatment [120]. LncRNAs have
been demonstrated to be extensively modified by m6A, and their
interaction might contribute to tumour progression, metastasis,
drug resistance and the immune response [18] m6A modification
can improve the stability of lncRNAs to promote their oncogenic
functions mainly through the ceRNA network [121,122]. Regarding
the mechanisms underlying the lncRNA-regulated m6A modifica-
tion, a study demonstrated that lncRNA GATA3-AS could enhance
the m6A reader protein KIAA1429-mediated m6A modification
and promote the development of HCC [123] A prognostic risk
model composed of seven m6A-related lncRNAs could be used to
analyse the expression of immune checkpoint genes and immune
cell infiltration in patients with different risks [124].
7.3.2. Bladder cancer
An m6A score model was constructed based on the transcrip-

tome data and the adjusted clinical information of 716 bladder
cancer samples from The Cancer Genome Atlas (TCGA) database.
Immune response markers, such as PD1 and CTLA4, were found
to be significantly correlated with the m6A score, indicating that
the m6A score has predictive value for evaluating the effect of
immunotherapy [125]. Ma et al. conducted a comprehensive
RNA-seq analysis using data from the TCGA database and estab-
lished nine m6A-related prognostic lncRNAs (m6A-RLPS) to verify
a close correlation between tumour-infiltrating immune cells and
the expression of immune checkpoint genes in bladder cancer
(BLCA) [126]. However, these analyses came from bioinformatics
tools only, and no further experiments were conducted to verify
them. Therefore, whether changes in m6A modification readers
can influence the effect of ICI treatment remains to be further stud-
ied in urinary system cancer.
7.4. Digestive system tumours

7.4.1. Gastric cancer
An analysis of 21 m6A regulators in 1938 gastric cancer (GC)

samples indicated that m6A modification was significantly associ-
ated with the tumour immune microenvironment and tumour
immunotherapy [127]. The high m6A score subtype showed defi-
cient immune cell infiltration and a low survival rate, while the
low m6A score subtype was associated with an increased neoanti-
gen load and an increased response to anti-PD-1/L1 immunother-
apy [127]. Mo et al. analysed 293 gastric adenocarcinoma
samples from the TCGA database in a retrospective study and built
an m6A risk scoring model, which was identified as an indepen-
dent prognostic indicator for predicting the overall survival of
patients with GC. A low risk score is associated with high expres-
sion of immune checkpoint genes, including PD-1, PD-L1 and
CTLA-4, indicating that this score model can be used to evaluate
the efficacy of immunotherapy for GC [128]. Another bioinformat-
ics study evaluated the m6A modification in 407 GC clinical sam-
ples and constructed an m6A-related lncRNA pair signature (m6A
LPS) to evaluate the status and prognosis of GC [129]. A close cor-
relation was found between m6A-LPS and tumour-infiltrating cells.
Higher expression of immune checkpoint genes and a stronger
response to immunotherapy were detected in the low-risk group
than in the high-risk group, suggesting that these m6A-related
lncRNAs could remodel the tumour microenvironment and affect
the anticancer ability of ICBs [129]. Although this hypothesis has
not been clinically verified, it provides new insight into the prog-
nosis of and therapeutic strategies for GC.
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7.4.2. Oesophageal cancer
A recent study evaluated the differential expression of m6A reg-

ulatory factors in oesophageal cancer (ESCC) and normal tissues.
Based on the expression of these regulatory factors, consensus
clustering was adopted to identify PD-L1 expression, immune
scores, immune cell infiltration and possible mechanisms in differ-
ent ESCC clusters. As a result, PD-L1 was overexpressed in ESCC
and was negatively correlated with the expression of YTHDF2,
METL14 and KIAA1429. Moreover, immune scores, CD8+ T cells,
resting mast cells and Tregs were significantly increased in Cluster
2, which suggested that m6A methylation regulators might medi-
ate PD-L1 expression and immune cell infiltration and strongly
affect the tumour immunological microenvironment of ESCC [130].

7.4.3. Colorectal cancer
According to the m6sig score extracted from the characteristic

m6A-related genes, colorectal cancer (CC) patients could be
divided into two subgroups with high and low m6sig scores.
Patients with lower m6sig scores were found to have longer sur-
vival times and enhanced immune infiltration. Further analysis
showed that accompanied by significantly mutated genes (SMGs),
such as PIK3CA and Smad4, a lower m6sig score was also associ-
ated with a higher tumour mutation load, PD-L1 expression and
a higher mutation rate [131]. In addition, patients with lower
m6sig scores showed better immune responses and sustained clin-
ical benefits in three independent immunotherapy cohorts [131].
m6A-related lncRNAs are also involved in immune infiltration
and PD-L1 expression in CC [132]. As a demethylase, FTO can reg-
ulate PD-L1 expression in an IFN-c-independent manner by regu-
lating the methylation of PD-L1 mRNA [133]. Moreover, in
mismatch repair-proficient (pMMR)/microsatellite instability-low
(MSI-L) (pMMR-MSI-L) CC, deletion of METTK3 and METTL14
increased the infiltration of CD8+ T cells and the secretion of IFN-
c, CXCL9 and CXCL10 and enhanced the anti-PD-1 response
[134]. Mechanistically, deletion of METTL3 and METTL14 could
reduce the m6A modification of STAT1 and IRF1, as well as
YTHDF2-mediated mRNA degradation, thereby increasing the
expression of STAT1 and IRF1 in the IFN-c-Stat1-Irf1 axis [134].
The above finding promotes a new understanding of RNA methyla-
tion in tumour immunotherapy.

7.4.4. Liver cancer
A recent study adopted five m6A-related genes, YTHDF1,

HNRNPC, RBM15, METTL3 and YTHDF2A, in hepatocellular carci-
noma (HCC) to conduct risk stratification based on their expres-
sion. The results showed that the expression levels of these
genes had good predictive efficiency in predicting OS and DFS
and was associated with the response to sorafenib treatment and
anti-PD-1 immunotherapy [135]. In addition, m6A-related lncRNAs
have also been reported to play an important role in the prognosis
and ICI treatment of HCC, taking circRHBDD1, a new circular RNA
highly expressed in HCC patients, as an example [136]. Studies
have indicated that circRHBDD1 stimulates the recruitment of
YTHDF1 to PIK3R1 mRNA and accelerates PIK3R1 translation in a
m6A-dependent manner to affect metabolism. More importantly,
targeting circRHBDD1 can improve the effect of anti-PD-1 therapy
in mouse models [137]. The m6A regulator ZC3H13 was also clo-
sely correlated with tumour immune cell infiltration and the
expression of immune cell biomarkers and immune checkpoint
genes [138].

7.4.5. Pancreatic cancer
An m6A score model constructed based on the RNA-seq data of

m6A regulatory factors in pancreatic ductal adenocarcinoma
(PDAC) showed that the m6A score was associated with poor over-
all survival and increased tumour recurrence in PDAC patients. A
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mechanistic study showed that PDAC with a high m6A score was
characterized by decreased immune infiltration and T-cell exhaus-
tion, while PDAC with a low m6A score was more sensitive to ICIs
[139]. Hence, the m6A score model provides guiding significance
for the prognosis of and therapeutic response to ICI treatment. In
addition, Yao et al. established a prognostic risk model using five
m6A methylation regulatory factors, ALKBH5, alkbh5, IGF2BP3,
IRPPRC and KIAA1429, and based on these factors, PDAC patients
were divided into a high-risk group and a low-risk group. The risk
score was positively correlated with the tumour mutational bur-
den (TMB). The high-risk group obtained a higher TMB value, while
the low-risk group was associated with better efficacy of anti-PD-
L1 immunotherapy [140]. However, the above conclusions are
derived from bioinformatics analysis only, and prospective clinical
studies are still needed.

7.5. Genital system tumours

7.5.1. Breast cancer
Twenty-four major m6A methylation regulatory factors were

analysed using the RNA sequencing data of 775 breast cancer
patients from TCGA. The consensus clustering algorithm was
adopted to divide the patients into two subgroups based on the
expression of the sem6A regulatory factors [141]. Compared with
that in the hypomethylated subgroup, the infiltration of CD8+ T
cells, helper T cells and activated NK cells was significantly
increased in the hypermethylated subgroup, whereas the expres-
sion of PD-L1, PD-L2, TIM3 and CAC motif chemokine receptor 4
(CCR4) was lower in the hypermethylated subgroup than in the
hypomethylated subgroup [141]. Consistently, a strong relation-
ship between the expression of m6A regulatory factors and
immune checkpoints has been reported in breast cancer [142].
These results suggest that the expression pattern of m6A regula-
tory factors might be a potential target and biomarker for
immunotherapy for breast cancer. A recent study found that
METTL3 directly interacted with PD-L1 to regulate the m6A modi-
fication of PD-L1, thereby affecting the stability of PD-L1 mRNA.
IGF2BP3 could bind to PD-L1 mRNA in a METTL3/m6A-dependent
manner, and IGF2BP3 knockdown could diminish the METTL3-
enhanced stability of PD-L1 [20]. In addition, inhibition of METTL3
or IGF2BP3 could enhance antitumor immunity by influencing PD-
L1-mediated T-cell activation, exhaustion and infiltration [20]. This
finding will further promote our understanding of m6A methyl-
transferase in the anti-PD-1/PD-L1 treatment of breast cancer.

7.5.2. Ovarian cancer
Based on an expression analysis of 21 m6A RNA methylation

regulators in the TCGA database, two different m6A patterns, m6A-
cluster.A and m6Acluster.B, were obtained using the consensus
clustering algorithm [143]. A total of 196 m6A modification-
related genes were differentially expressed in the two clusters,
and the underlying mechanism was also further studied. The prin-
cipal component analysis algorithm was used in view of individual
differences to calculate the m6A score of each sample to quantify
the m6A pattern. Low m6A scores were associated with immune
activation and an enhanced response to immune checkpoint inhi-
bitors, while high m6A scores were related to tumour progression
[143].

7.5.3. Prostate cancer
To identify an m6A regulatory pattern suitable for ICI treatment,

an m6Ascore model was constructed to quantify the m6A modifi-
cation based on the expression of m6A-related genes in individual
prostate cancer (PC) patients. The response rate to immunotherapy
in the low m6A score group with a poor prognosis was found to be
higher than that in the high m6A score group. Hence, PC patients in
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the low m6A score group are more likely to benefit from ICI treat-
ment [144].

7.6. Blood system cancer

7.6.1. Acute myelocytic leukaemia
A recent study investigated the association between factors reg-

ulating m6A modification and the antitumor immune response in
acute myelocytic leukaemia (AML). High expression of
immunomodulators, such as PD-L1, PD-L2, MRP1 and MRP2, was
found to be associated with low m6A scores [145]. Deletion of
FTO or its pharmacological inhibition could significantly reduce
the self-renewal of leukaemic stem cells (LSCs)/initiated cells and
reprogramme the immune response by inhibiting the expression
of immune checkpoint genes, especially LILRB4. Moreover, silenc-
ing FTO could increase the sensitivity of leukaemic cells to the
cytotoxicity of T cells and overcome the immune evasion induced
by hypomethylating agents [146]. Recently, Cao et al. developed
inhibitor-loaded glutathione (GSH)-bioimprinted nanocomposites
(GNPIPP12MA) to target the FTO/m6A pathway in coordination
with GSH depletion to enhance antileukaemogenesis [147].
GNPIPP12MA can increase the overall m6A modification in LSCs
and enhance the response to PD-L1 blockade by increasing cyto-
toxic CD8+ T-cell infiltration [147]. In addition, it can also selec-
tively target leukaemic mother cells and LSCs and induce
ferroptosis by destroying intracellular redox homeostasis. Consid-
ering the existence of similar GSH-mediated signalling pathways
in solid tumours, GNPIPP12MA may also have good potential in
the treatment of other cancers.

7.7. Other cancers

7.7.1. Melanoma
Melanoma is one of the deadliest and most difficult cancers to

treat, but breakthroughs in immunotherapy have markedly
improved outcomes [148]. Recent studies based on bioinformatics
analyses have demonstrated a close relationship between the
expression of factors regulating m6A modification and immune
checkpoints in melanoma [149]. As a demethylase, FTO has been
demonstrated to be a stimulus for the development of melanoma.
Deletion of FTO increased the m6A methylation of protumorigenic
cell-intrinsic genes in primary melanoma, including PD-1, CXCR4
and SOX10, resulting in increased RNA attenuation by the m6A
reader YTDHF2. FTO knockout can also increase the sensitivity of
melanoma cells to IFN-c, thus promoting the sensitivity of mela-
noma to anti-PD-1 therapy in mice [148]. Therefore, the combina-
tion of an FTO inhibitor and PD-1 blockade might reduce the
resistance of melanoma to immunotherapy and improve the treat-
ment response. In the anti-PD-1 treatment of melanoma, ALKBH5
deletion reduced the infiltration of Tregs and polymorphonuclear
MDSCs by affecting m6A modification of the Mct4/Slc16a3 axis,
thus enhancing sensitivity to anti-PD-1 treatment [99]. Hence,
ALKBH5 might be a potential therapeutic target for cancer treat-
ment alone or in combination with ICBs. Moreover, deletion of
methyltransferases, including METTL3 and METTL14, inhibited
m6A modification and enhanced the response of melanoma
patients to PD-1 treatment. In addition, the lack of METTL3 and
METTL14 in tumours leads to increased infiltration of cytotoxic
CD8+ T cells and an altered tumour microenvironment [134].

7.7.2. Oral squamous cell carcinoma
Recent studies have found that METTL3 downregulation

enhances the proliferation and metastasis of oral squamous cell
carcinoma (OSCC) by reducing the m6A modification of PRMT5
and PD-L1 [150]. A similar role of METTL3 was also found in breast



Table 1
The common m6A modification regulators and their functional mechanisms.

Targets Inhibitors Function References

FTO MO-I-500 Inhibit the activity of FTO in m6A demethylation [154]
Fluorescein [155]
Meclofenamic acid [156]
Rhein Competitively binds to the catalytic domain of FTO and inhibits it from binding to m6A-modified

RNAs
[157]

CHTB Destroy the function of FTO and inhibit m6A demethylation [158]
N-CDPCB [159]
R-2HG Confers anti-leukaemia and anti-glioma effects [160]
CS1/CS2 Inhibit the proliferation and self-renewal of cancer stem cells and enhance immune evasion [146]
DAC51 Inhibits the proliferation and self-renewal of cancer stem cells and enhances immune evasion [161]
Clausine E Dose-dependently inhibits the demethylase activity of FTO [163]
Saikosaponin Inhibits FTO to rescue m6A hypomethylation in MYC and RARA [162]
FB23/FB23-2 Inhibit the proliferation of human acute MLCs and promotes their differentiation/apoptosis [165]
MA/MA2 Inhibit the growth and self-renewal of GSCs [164]

ALKBH5 2-{[1-hydroxy-2-oxo-2-phenylethyl]
sulfanyl} acetic acid, 4-{[furan-2- yl]
methyl}
amino-1,2-diazinane-3,6- dione

Inhibits the proliferation of leukaemia cells including HL-60, CCRF-CEM and K562 [166]

ALK-04 Inhibits the infiltration of Tregs and MDSCs and enhances the effect of anti-PD-1 therapy [99]
Curcumin Inhibits ALKHB5 expression and induces the m6A modification of TRAF4 [167]
Ena15/Ena21 Inhibit m6A demethylation in ALKBH5 [168]

METTL3/ME
TTL14

STM2457 Inhibits the infiltration of Tregs and MDSCs and enhances the effects of anti-PD-1 therapy [169]
UZH1a Inhibits the catalytic activity of METTL3 [170]
Quercetin Inhibit the proliferation of METTL3/METTL14 [171]
Betaine [172]
SPI1 [173]

IGF2BP1 BTYNB Reduces the stability of c-Myc, E2F1 and eEF2 mRNA and inhibits the proliferation and
progression of ovarian cancer and melanoma

[174,175]
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cancer [20], indicating the potential value of anticancer
immunotherapy targeting METTL3.

7.7.3. Squamous cell carcinoma of the head and neck
Bioinformatics-based analysis demonstrated that lncRNAs

related to m6A RNA methylation played an important role in the
immune microenvironment of HNSCC [151,152]. Yi et al. further
revealed the correlation of m6A methylation regulators with PD-
L1 and immune infiltration [153]. These findings may provide a
theoretical basis for m6A-related immunotherapy in HNSCC
patients.

8. Therapeutic strategies targeting m6A regulators

The balance between m6A methylation and demethylation in
specific RNA transcripts plays an important role in the progression
of many tumours. Therefore, therapeutic strategies targeting these
regulators may provide a new approach to cancer immunotherapy.
In recent years, a variety of m6A inhibitors have been developed to
promote traditional and regenerative medicine. FTO inhibitors,
including MO-I-500, fluorescein, meclofenamic acid, rhein, CHTB,
N-CDPCB, R-2HG, CS1/CS2, DAC51, clausine E, saikosaponin,
18077/18097, FB23/FB23-2 and MA/MA2, are representative m6A
inhibitors and have shown significant antitumor effects both
in vivo and in vitro (Table 1) [146,154–165]. Previous studies have
mainly focused on FTO inhibitors; however, studies on inhibitors
targeting other m6A proteins are still limited, although they might
also be beneficial in m6A methylation-related cancers. With con-
tinuous breakthroughs in technology, a series of ALKBH5 inhibitors
have also been developed, and 2-{[1-hydroxy-2-oxo-2-phenyle
thyl]sulfanyl} acetic acid and 4-{[furan-2-yl]methyl}amino-1,2-dia
zine-3,6-dione has been found to inhibit the proliferation of leu-
kaemia cell lines [174] Alk-04, a specific ALKBH5 inhibitor, reduces
the infiltration of Tregs and MDSCs and inhibits tumour growth by
enhancing the efficacy of anti-PD-1 therapy [99]. Moreover, cur-
cumin and Ena15/Ena21 function by inhibiting the expression
and demethylation of ALKBH5, respectively [167,168]. Several
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m6A methyltransferase inhibitors, such as STM2457, UZH1a, quer-
cetin, betaine and SPI1, have also shown strong anticancer effects
[169–173]. BTYNB screened out from a compound library was
identified as a selective inhibitor of IGF2BP1 protein [174,175].
Considering the notable roles that m6A modification plays in
tumour immunity, more selective and effective drugs targeting
m6A-related factors must be developed and explored.
9. Conclusions

The growing successes in ICI therapy provide new hope to can-
cer patients. However, the low effectiveness rate has dramatically
restrained its application. In this review, we explored the potential
role of m6A methylation in ICI treatment. The m6A modification
can affect tumour immunity by regulating multiple activities in
various immune cells. The m6A regulatory factors are closely
related to tumour immunity and immunotherapy. The aberrant
expression of many m6A regulatory factors can affect anticancer
immune function. Notably, m6A modification not only influences
the expression pattern of immune checkpoint genes in a variety
of cancers but also regulates the sensitivity to and effectiveness
of ICI treatment in several preclinical animal models
[20,99,99,102,115,134,136,137,148,176]. Therefore, the effective
combination of m6A inhibitors and ICIs shows considerable thera-
peutic prospects. As studies on the relationship between m6A
modification and tumour immunity are still at the initial stage,
more intensive studies are needed to explore the underlying mech-
anism. In general, m6A modification is a rising star in the field of
epigenetics and has strong therapeutic prospects for a wide range
of cancers.
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