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Abstract

Background: Although aortic stenosis (AS) is the most common valvular heart

disease in the western world, many affected patients remain undiagnosed.

Auscultation is a readily available screening tool for AS. However, it requires a

high level of professional expertise.

Hypothesis: An AI algorithm can detect AS using audio files with the same accuracy

as experienced cardiologists.

Methods: A deep neural network (DNN) was trained by preprocessed audio files of

100 patients with AS and 100 controls. The DNN's performance was evaluated with

a test data set of 40 patients. The primary outcome measures were sensitivity,

specificity, and F1‐score. Results of the DNN were compared with the performance

of cardiologists, residents, and medical students.

Results: Eighteen percent of patients without AS and 22% of patients with AS

showed an additional moderate or severe mitral regurgitation. The DNN showed a

sensitivity of 0.90 (0.81–0.99), a specificity of 1, and an F1‐score of 0.95 (0.89–1.0)

for the detection of AS. In comparison, we calculated an F1‐score of 0.94 (0.86–1.0)

for cardiologists, 0.88 (0.78–0.98) for residents, and 0.88 (0.78–0.98) for students.

Conclusions: The present study shows that deep learning‐guided auscultation

predicts significant AS with similar accuracy as cardiologists. The results of this pilot

study suggest that AI‐assisted auscultation may help general practitioners without

special cardiology training in daily practice.
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1 | BACKGROUND

After mitral regurgitation, aortic valve stenosis (AS) is the second most

common valvular disease.1 Its prevalence in the general population is

0.4%, with a sharp age‐dependent increase in the older population.

A prevalence of 3.4% in the age cohort >65 years can be observed.2 It

leads more often to hospitalization than other heart valve diseases and

accounts for 45% of patients operated for valvular disease.3

It is well known that symptomatic AS has high mortality when no

valve replacement therapy is performed.4 However, recent data

suggest that even asymptomatic severe AS is associated with a

mortality of up to 58% within 8 years.5 Besides, it has been shown

that aortic valve replacement in patients with severe asymptomatic

AS significantly improves outcome.6 Unfortunately, a high number of

patients with significant AS remains undetected. The OxVALVE

Population Cohort Study shows that unrecognized, significant AS was

present in 1.6% of patients ≥65 years.7

Thus, a reliable, readily available, and cheap screening tool is

necessary. Since the invention of the stethoscope by Laennec in

1816, cardiac auscultation has been one of the pillars of cardiovas-

cular examination.8 However, this method's significant drawbacks are

that heart murmurs are variable, and auscultation skills are highly

performer‐dependent.9

Deep learning is a branch of machine learning using artificial

neural networks that models human brains' architecture. Heart sound

classification can be principally done using a convolutional neural

network (CNN), a subform of deep neural networks (DNNs).10 We

hypothesized that we could train a DNN to identify heart murmurs

suspicious for significant AS with an accuracy comparable to

experienced cardiologists.

2 | METHODS

The study consists of two parts. In the first part, we trained a

neural network to classify auscultation findings of patients who

have significant AS or not. In the second part, we compared the

performance of the trained DNN with the auscultatory skills of 10

experienced cardiologists, 10 residents, and 10 medical students

by using a test data set that consisted of a completely disjointed

set of patients.

For training, we used auscultation audio files from 100 patients with

significant AS and 100 patients without AS. The ground truth was defined

by echocardiography. Significant AS was defined as Vmax of >3.5m/s

measured by continuous‐wave Doppler. Although the definition of high‐

grade AS has not yet been reached, we chose this cut‐off value, as these

patients require close monitoring. Patients admitted for suspicious

coronary artery disease or other cardiac diseases were taken as a control

group.

We used an electronic stethoscope (Eko) connected to a smartphone

interface via Bluetooth for auscultation. Auscultation was performed at

the aortic auscultation point (second intercostal space, right sternal

border) and the mitral auscultation point (fifth intercostal space,

midclavicular line). Thus, from each patient, we included two auscultation

files. At each auscultation point, audio files with an interval of 15 s and a

sampling rate of 40 kHz were recorded.

The audio files were recorded as part of the clinical routine in

a tertiary teaching hospital with a large valve unit specialized in

transcatheter aortic valve implantation (TAVI). Only data from

patients of this database were included who got echo-

cardiography within 7 days before or after auscultation. Since

the study was retrospective, an explicit ethics vote was not

necessary according to the regulations of the responsible ethics

committee.

We preprocessed the data in our study before using them to

train the network. In the first step, the 15 s sound files were

divided into three equal parts of 5 s. This was done to overcome

the risk that small portions of an auscultation file falsified by

respiration11 contribute disproportionately to the training of the

whole network. Consequently, six sound files per patient (three

files for each of the 2 auscultation points) contribute to the

network's training. In the second step, we performed Mel

Frequency Cepstral Coefficients transformation of the audio files

(MFCC‐transformation). This transformation maps the perception

of human hearing and has been proposed for audio data analysis

of heart and lung auscultation.12–14 Subsequently, we trained the

DNN with 1200 processed audio files (6 files per patient, 100

patients with AS, 100 patients without AS).

We developed a CNN for classification (Figure 1), which takes as

input MFCCs. The sequential model has three two‐dimensional‐

convolutional layers and one max pooling layer. As an activation function,

we used “ReLU”. Before each convolutional layer, we applied batch

normalization. To combat overfitting, we used a dropout layer between

the convolutional layers that sets a random portion of the weights equal

to a probability of 0.2 to 0. Thereby the network has to learn different

aspects of the data each time.15

Hyperparameter tuning was done iteratively for learning rate,

batch size, number of epochs, number of kernels, and grid size of

the convolutional layers. Model comparison was made using K‐fold

cross‐validation.

After training the network, it was applied to the test set that the

model had not seen before. The test set consists of 20 patients with

AS and 20 without AS. Accuracy, sensitivity, specificity, receiver

operating characteristic curves (ROC), and F1 score were calculated.

F1 score was calculated using the following formula: F1 score = 2 ×

(recall × precision)/(recall + precision). Then the same test set was

classified by 10 experienced cardiologists, 10 residents, and 10 final

year medical students. The performance parameters were averaged

in cardiologists, residents, and students.

Audio file processing, training the DNN, and making predic-

tions were made with the general‐purpose programming language

Python. Preprocessing audio files was done by the audio analysis

library Librosa. We generated Mel Frequency Cepstral Coeffi-

cients (MFCC) with a hopelength of 10 and 13 coefficients.16

A CNN was implemented using the Keras framework with a

TensorFlow (Google) backend.17
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Continuous baseline characteristics are given as mean ± SD.

Continuous variables were compared using t‐test, and categorical

variables were compared using chi‐quadrat test. Accuracy,

sensitivity, specificity, and F1‐value for cardiologists, residents,

and students are given as mean with a 95% confidence interval.

The confidence intervals for the specific parameters of the DNN

were calculated with the formula = z × sqrt((parameter × (1 −

parameter))/n), where z is the corresponding parameter and n is

the size of the test sample, 40 in the present case. Inter‐rater

reliability was assessed by calculating Fleiss' kappa.18

3 | RESULTS

Data from 120 patients with and 120 patients without AS were taken

for the present study. From each group, audio files from 100 patients

were allocated to the training group and 20 to the test group,

respectively.

Of the 120 patients with AS, in 99 patients femoral TAVI, in 5

transapical aortic valve implantation, in 13 patients open‐heart

surgery, and in 1 patient only valvuloplasty were performed. Two

patients were treated conservatively.

F IGURE 1 Data processing and analysis
were principally done in two steps. In the first
step, MFCC feature extraction was done. In
the second step, the preprocessed data were
fed to the convolutional part of the DNN.
After the convolutional layers, the output is
flattened to a one‐dimensional tensor. Data
are then fed to a fully connected layer using
the ReLU (rectified linear unit) activation
function. To overcome overfitting, which
means that the network is too much adapted
to the training data set, the regulizer and
dropout techniques were applied. In the
softmax function, the input values are
transformed to a probability distribution that
gives the probability of AS or no AS in the
present case. AS, aortic valve stenosis; MFCC,
Mel frequency cepstral coefficients.
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Patients with AS were older than control patients in the training

and test patients. A significant proportion of patients had mitral or

tricuspid valve disease. Atrioventricular valve defects were more

frequent in patients with AS. However, this difference was not

significant. For details on patient characteristics, see Table 1.

3.1 | DNN's diagnostic accuracy

Hyperparameter tuning was done using K‐fold cross‐validation. The

training data were split into fourfolds, and while iterating through the

folds, each iteration uses onefold as the validation set. Using this

approach, the optimized DNN consists of three convolutional layers

with 32 kernels with a grid size of 3 × 3 (convolutional layer 1 + 2) and

2 × 2 (convolutional layer 3). The best results could be achieved with

40 epochs, a batch size of 4, and a learning rate of 0.001. After

flattening the tensor, a fully connected layer with 150 nodes

followed. The final fully connected softmax layer produces a

distribution over the two output classes. A schematic of the neural

network is shown in Figure 1.

We analyzed whether the algorithm showed different results

depending on the auscultation point. As expected, worse prediction

accuracy is shown when the neural network was trained only with

audio files from one auscultation point. This is most likely due to the

smaller number of audio files. However, the cause might also be that

both auscultation points provide complementary information. Actu-

ally, the performance of a model trained only with data from

the mitral point was the same as when only trained with data

from the aortic point. This result contradicts common clinical

experience. However, DNNs are able to identify patterns that are not

recognizable to humans. The ROC‐AUC of the DNN trained only with

audio files from the aortic auscultation point was 0.93, only trained

with audio files from the mitral auscultation point was 0.83 and for

merged data was 0.99. The DNN did not detect two patients with AS.

No patient without AS was misclassified. The positive predictive

value for the DNN using both auscultation points was 1.0, for

students 0.83 (0.81–0.86), for residents 0.86 (0.82–0.89), and for

cardiologists 0.93 (0.91–0.94). The negative predictive value for the

DNN using both auscultation points was 0.91 (0.82–1.0), for students

0.94 (0.93–0.95), for residents 0.94 (0.93–0.95), and for cardiologists

0.96 (0.94–0.97).

3.2 | Diagnostic accuracy of the CNN versus
cardiologists, residents, and students

Ten students, 10 residents in an advanced stage of training, and 10

consultant cardiologists participated in the study. Participants were

blinded for the results of the DNN. They were asked to classify

patients whether to have AS using two audio files for each patient.

For inter‐rater reliability, Fleiss' kappa was 0.69 in students, 0.64 in

residents, and 0.84 in cardiologists. This shows that the agreement

in the group of cardiologists is much higher than in the group of

residents and students. The F1‐score is a parameter to compare the

performance of different models or rater groups when seeking a

balance between precision and recall. In Figure 2 ROC curves

for deep learning model, students, residents, and cardiologists

are shown. The DNN showed a higher F1‐score than the mean

score of cardiologists, residents, and students. Values for accuracy,

sensitivity, specificity, and F1‐score are given in Table 2.

TABLE 1 Patient characteristics
Training set Test set

No AS (n = 100) AS (n = 100) No AS (n = 20) AS (n = 20)

Male (%) 60 52 55 50

Age (years) 75.5 ± 10.2 80.5 ± 6.6* 74.7 ± 7.7 80.4 ± 5.6*

BMI (kg/m2) 27.5 ± 4.2 27.3 ± 4.2 26.9 ± 4.1 28.4 ± 5.4

Sinus rhythm (%) 86 94 80 95

LV‐ejection fraction (%) 55.0 ± 9.2 55.1 ± 8.0 54.8 ± 8.7 52.6 ± 10.3

Aortic valve regurgitationa (%) 7 16 10 10

Mitral valve regurgitationa (%) 19 21 15 25

Tricuspid valve

regurgitationa (%)

13 18 5 20

Aortic valve Vmax (m/s) 1.4 ± 0.3 4.2 ± 0.5** 1.3 ± 0.3 4.3 ± 0.5**

Pmean (mmHg) ND 46.2 ± 15.0 ND 47.0 ± 10.1

AVA/BSA (cm2/m2) ND 0.8 ± 0.2 ND 0.8 ± 0.2

Note: Data are given as mean ± SD.
aModerate or severe heart valve disease.

*p < .05 no AS versus AS.
**p < .01 no AS versus AS.
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4 | DISCUSSION

The present study shows that deep learning‐guided auscultation

predicts significant AS with similar accuracy as board‐certified

cardiologists. These results suggest that artificial intelligence‐

assisted auscultation may help general practitioners without special

cardiology training.

Auscultation is one of the pillars of clinical investigation. It is

readily available, and no sophisticated technical requirements are

necessary. On the other hand, a high level of expertise is

essential, and the skills, once acquired, need to be used

continuously. These circumstances may explain errors in

auscultation between 20% and 80% in residents, primary care

physicians, and cardiologists.19,20

For this reason, computer‐assisted auscultation was already

proposed for clinical use at the beginning of this century. The

developed algorithms decompose the cyclical heart sound, and hand‐

engineered processing is applied for classification. In young patients

with hypertrophic cardiomyopathy and children with congenital heart

disease, sufficient sensitivity and specificity could be achieved with

these techniques.21 However, these studies were done in young

patients with no conditions complicating the auscultation results like

adiposity and lung emphysema.

Deep neural networks (DNNs) take a completely different

direction. A DNN is a machine learning algorithm that models brain

architecture. They consist of perceptrons with adjustable weights and

activation thresholds. In supervised learning, labeled data, often

called ground truth, are propagated through a network of percep-

trons that allows the DNN to adjust weights. In this step, the DNN

learns how to assign known data to predefined categories. After this

training phase, the performance of the final model is evaluated on a

test data set. In this step, the trained DNN makes predictions in the

form of probabilities for so far unknown data.

In first applications, the focus was directed on standard

diagnostic techniques used by doctors daily but cannot be provided

on an expert level in any case.22 Deep learning systems were

developed for ECG interpretation,23 skin cancer identification,24 and

papilledema detection.25

In this context, it has been recognized that AI may also be a

valuable tool to support doctors in identifying valvular heart disease.

In a recently published study by Chorba et al., physicians assigned

5878 auscultation findings to the labels “heart murmur”, “no heart

murmur”, or “inadequate signal”. The DNN was trained with these

data using an end‐to‐end (E2E) network design. In a second step, the

DNN was then validated on a test data set of 1774 recordings

annotated by separate expert clinicians.26

In contrast, the ground truth was not defined by physician

assignment but by echocardiography in the present study. By using

this gold standard, the well‐known erroneous annotation of

auscultation findings by physicians was avoided. This is a crucial

point as machine learning is based on detecting subtle patterns in

data. Only when using high‐quality training data, noise that masks

these patterns can be sufficiently reduced. Furthermore, the data in

our study were pre‐processed before they were used to train the

DNN. In this pre‐processing, attributes of the audio data were

isolated that have been shown to be essential for pattern recognition

in audio files.27,28 With this hybrid approach, our DNN showed

similar accuracy as board‐certified cardiologists. The precisely

defined ground truth in conjunction with the preprocessing of the

audio data compensates for a comparatively low patient number.

A potential limitation of our study is that we only included a few

patients with moderate aortic stenosis. This is due to the fact that the

study was conducted with data from patients admitted to a tertiary

teaching hospital for specialized valve therapy. Moreover, patients

with only moderate valve disease are challenging to identify because

F IGURE 2 ROC curve (orange line) achieved by the model in
comparison to students (A), residents (B), and cardiologists (C).
Individual rater performance is indicated by the black crosses, and
averaged cardiologist performance is indicated by the red dot.
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they are often completely asymptomatic and therefore not under

medical surveillance. Similarly, the DNN was trained predominantly

with normal‐flow, high‐gradient AS. Probably the present algorithm

will have worse performance in low‐flow, low‐gradient AS because

the flow properties over the valve and thereby the sound

characteristics are entirely different. This fact naturally lowers the

sensitivity, but this condition affects only a small portion of the

patients.

In the present study, a machine learning algorithm was trained to

detect patients with aortic stenosis. Patients with other valvular

diseases like hypertrophic obstructive cardiomyopathy were not

included, and few patients with pure mitral regurgitation participated.

Thus, the presented algorithm is far from perfect, and this study can

only be the first step in introducing artificial intelligence for valvular

heart disease into everyday clinical practice. On the other side, it also

shows that artificial intelligence can, in principle, be helpful in the

auscultation of heart sounds.

4.1 | Clinical perspectives

The present study gives proof of concept that AI‐assisted ausculta-

tion can provide results on a high expert level concerning the

detection of aortic stenosis. Integrating this technology in an

electronic stethoscope could be the next step to upgrade this system

for everyday clinical use. A stethoscope that indicates a warning in

the event of certain valve defects would be conceivable in the

foreseeable future. Introducing such a device in countries that cannot

provide comprehensive medical care has already been proposed

years ago.29
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