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Shared autonomy aims at combining robotic and human control in the execution of

remote, teleoperated tasks. This cooperative interaction cannot be brought about without

the robot first recognizing the current human intention in a fast and reliable way so

that a suitable assisting plan can be quickly instantiated and executed. Eye movements

have long been known to be highly predictive of the cognitive agenda unfolding during

manual tasks and constitute, hence, the earliest and most reliable behavioral cues

for intention estimation. In this study, we present an experiment aimed at analyzing

human behavior in simple teleoperated pick-and-place tasks in a simulated scenario

and at devising a suitable model for early estimation of the current proximal intention.

We show that scan paths are, as expected, heavily shaped by the current intention

and that two types of Gaussian Hidden Markov Models, one more scene-specific

and one more action-specific, achieve a very good prediction performance, while also

generalizing to new users and spatial arrangements. We finally discuss how behavioral

and model results suggest that eye movements reflect to some extent the invariance and

generality of higher-level planning across object configurations, which can be leveraged

by cooperative robotic systems.

Keywords: intention recognition, shared autonomy, eye tracking, teleoperation, eye-hand coordination, Hidden

Markov Models, human-robot interaction

1. INTRODUCTION

Shared autonomy has recently emerged as an ideal trade-off between full autonomy and complete
teleoperation in the execution of remote tasks. The benefits of this approach rely on assigning to
each party the aspects of the task for which they are better suited. The lower kinematic aspects of
action execution are usually left to the robot while higher-level cognitive skills, like task planning
and handling unexpected events, are typically concurrently exercised by the human, in a blend
that can entail different degrees of autonomy for the robotic part (Goodrich et al., 2013; Beer
et al., 2014; Schilling et al., 2016). Considering the often large asymmetry in terms of degrees
of freedom or kinematic capabilities between the user input controller (e.g., joysticks) and the
robotic effector, shared autonomy eases the operator cognitive load and speeds up execution
improving motion fluency and precision. Since the user is setting the goals and the ways to achieve
them, this collaborative effort relies on the robotic partner to first recognize the current human
intention (intent recognition) and only afterwards to decide how much to assist with the execution
(arbitration). Intention recognition should thus happen as early and as naturally as possible for the
user to be relieved of explicitly directing the robot and for the robot to timely initiate the assisting
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action. To this end, although several approaches have been
proposed that rely on intent recognition from the user control
input driving the robotic movement (Yu et al., 2005; Aarno and
Kragic, 2008; Hauser, 2013; Javdani et al., 2015; Tanwani and
Calinon, 2017; Yang et al., 2017), the most natural and timely
way to predict intention both in assistive technologies and remote
manipulation is certainly to use gaze cues, as reviewed in the
next section. In light of the need to cope with sensorimotor
delays (Miall and Reckess, 2002), gaze control itself in
task-based scenarios can be considered as inherently predictive of
a number of action-relevant aspects. Indeed, in moving our eyes
we make use of knowledge- and sensorimotor-based experience
(Belardinelli et al., 2016; Hayhoe, 2017; Henderson, 2017; Fiehler
et al., 2019) to quickly retrieve the information needed to plan
limb motion.

In this study, we focus on gaze-based intention prediction
in teleoperating a robotic gripper in a simulated scenario, to
investigate human eye-hand coordination under these conditions
and to devise an intention estimation model to be later
transferred to a real-world shared autonomy scenario. As a
first setup for object manipulation, we concentrate on basic
pick-and-place tasks as common in this kind of architectures
(Javdani et al., 2015; Li et al., 2017; Jain and Argall, 2018, 2019;
Shafti et al., 2019). Presented contributions are a behavioral
assessment of eye-hand coordination in such scenarios and the
design of two Gaussian Hidden Markov Model schemes trained
on collected data, showing good generalizability across users and
task configurations.

In the next sections, related work on gaze-based intention
recognition is first reviewed; the experimental methods used
in our setup and the devised models are further presented,
followed by results obtained from behavioral analysis and model
testing. We conclude by discussing emerged implications and
future perspectives.

2. RELATED WORK

That the task shapes the way we look at the world has long
been known, as shown by Yarbus (1967). In that study, it was
shown that depending on the question the viewer was trying
to answer different scanning patterns were produced on the
very same image. A number of studies have replicated and
confirmed Yarbus’ experiment and managed to invert the process
and estimate the task from eye data above chance level (e.g.,
Borji and Itti, 2014; Haji-Abolhassani and Clark, 2014; Kanan
et al., 2014). The most popular and effective techniques to
compute the probability of a given task given eye movements
and possibly their sequence entail Naive Bayes classifier, Hidden
MarkovModels, SVM, multivariate pattern analysis, and random
forests (see Boisvert and Bruce, 2016, for a more complete
review). The largely increased diffusion of wearable cameras and
eye-trackers in recent years has triggered research on daily
activities recognition as observed from an egocentric perspective
(Yi and Ballard, 2009; Fathi et al., 2012; Ogaki et al., 2012), hence
relying on eye, hand, head, and possibly body coordination (see
Nguyen et al., 2016, for a full review).

Yet the approaches above are concerned either with passive
information-seeking or with general activity recognition rather
than with simple action or proximal intention recognition.
Indeed, two basic types of intention have been postulated
(Bratman, 1987): a mental state concerning intention for the
future (distal intention), not necessarily situated in a specific
spatial and temporal context, and intentionality for an immediate
action (proximal intention). From a temporal perspective, a
proximal intention is very close to the executed action. Thus,
the boundary between proximal intention recognition and
action recognition is at times rather blurry. The later an
intention is recognized the more advanced the execution of the
corresponding action might be.

In a recent study considering object aligning tasks in Virtual
Reality (Keshava et al., 2020), it was shown how already simple
features, such as the proportion of Points-Of-Regard (POR)
on distinct Areas-of-Interest (AoIs) within the objects could
constitute a sufficient oculomotor signature to discriminate
between four different tasks, which could be classified well above
chance. In human-robot collaboration often the robot partner
is aware of the activity context and for effective cooperation, it
just needs to detect the current action intention of the human
partner to help them with it. Huang and Mutlu (2016) have
proposed a method for anticipatory control which allows a robot
to predict the intent of the human user and plan ahead of
the explicit command. In the task considered, a robotic arm
prepares a smoothie by picking the ingredients selected vocally
by a human user looking at an illustrated list. By means of eye
tracking the robot infers the user intention before they utter it
and anticipates picking the intended ingredient: an SVM was fed
a feature vector of gaze features for each ingredient, such as the
number of glances, duration of the first glance, total duration and
whether it was the most recently glanced item as predictors of
the currently intended ingredient. Although such an approach
seems simple and effective in this case the human user was
carrying out no parallel visuomotor control task that could yield
spurious fixations.

Within shared autonomy approaches, as a first attempt at
integrating gaze input from the user, Admoni and Srinivasa
(2016) put forward a proposal relying on Javdani’s framework
(Javdani et al., 2015), where the probability distribution over the
goals (hidden states) is updated by considering both user’s eye
movements and joystick commands as observations in a Partially
Observable Markov Decision Process (POMDP), using hindsight
optimization to solve it in real-time.

In a further study (Aronson et al., 2018), the authors present
an eye tracking experiment aimed at comparing user behavior
within-subjects in different teleoperationmodalities, namely with
more or less autonomy. In the scenario of an assistive robot
arm spearing food bits from a plate to feed an impaired user,
by looking at partly manually annotated gaze behavior, two
patterns of fixations emerged: monitoring glances, meant to
check the translational behavior of the arm approaching the
intended food morsel, and planning glances, which select the
target morsel before starting the arm actuation, as in natural
eye-hand coordination (Johansson et al., 2001; Hayhoe et al.,
2003). Haji Fathaliyan et al. (2018) proposed a method to
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FIGURE 1 | The experiment was carried out in a simulated scenario. The Gazebo simulator features physics and a virtual sensor, with its measurements rendered on

the screen. The user controls the Pick-and-Place-Task with a HTC Vive controller, tracked by the Vive Lighthouse system. At the same time, the Vive controller and a

Pupil Labs eye-tracking system are used to estimate the human sensorimotor state.

localize gaze on 3D objects by projecting the gaze vector on
point cloud representations of the objects manipulated by a
person preparing a powdered drink. Using Dynamic Time
Warping barycentric averaging, sequences of gazed objects
were obtained encapsulating the typical temporal patterns of
object interaction that could be used for action recognition.
Very recently, the same group used features extracted by this
method to recognize action primitives in different activities
(Wang et al., 2020). However, data were collected using
natural eye-hand coordination, with participants executing the
task themselves, which represents a different situation from
a teleoperation scenario both on a perceptual and action
control level. In the context of assistive robotics, a number of
other studies have also considered gaze information (at times
combined with multimodal interfaces, such as BCI and haptic
feedback) to operate robotic limbs and wheelchairs (Schettino
and Demiris, 2019; Zeng et al., 2020). Often in these cases,
the gaze is used to implicitly but actively point the system
to the object the impaired user wants the robot to interact
with (Li and Zhang, 2017; Wang et al., 2018; Shafti et al.,
2019).

Our study follows similar motivations as Aronson et al. (2018)
and Wang et al. (2020) and complements those results, while
not being aimed specifically at assistive applications, but rather
trying to leverage human dexterity and eye-hand coordination
to improve performance in teleoperated manipulation tasks. To
investigate human oculomotor behavior during teleoperation
in a more controlled scenario and with a more natural input

interface, we designed an experiment in simulation, where the
participant would control the remote robot arm by means of
their own arm movements via motion tracking. We reasoned
that this would produce more natural scanpaths and reaching
behavior, without the cognitive overload of a controller with few
DOFs, but still showing how the user copes on a sensorimotor
level with the task of controlling a remote arm. These behavioral
cues were further collected to train a proof-of-concept model
able to predict the current intention in pick-and-place tasks
in similar teleoperated scenarios, to be later deployed in a
real-world setup1. Since many teleoperation scenarios relay
visual input through a camera, we displayed the scene on a
screen and used eye tracking glasses to retrieve the (POR)
on the 2D display.

In our approach, we plan to work with multiple objects and
to recognize different sequential sub-tasks, hence we chose to
model scanpaths via Hidden Markov Models (HMM), which
present the benefit of considering the temporal dimension of the
gaze shifts and can better deal with spurious fixations and gaze
samples and varying eye tracking frequency (Belardinelli et al.,
2007; Coutrot et al., 2018; Boccignone, 2019). Our experimental
setting and the intention estimation model are detailed in the
next sections.

1To avoid confusion with terms sometimes used interchangeably, sometimes

meaning different things, we here refer to task as the overarching ongoing activity,

e.g., pick and place, while intention implies the commitment to perform the

current proximal action/sub-task, e.g., reaching to grasp.
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3. BEHAVIORAL EXPERIMENT METHODS
AND ANALYSIS

3.1. Participants
This study has been conducted after the outbreak of the
COVID-19 pandemic. Hence, a number of participants suitable
for this kind of study could not be recruited and to minimize
infection risks only associates of the Honda Research Institute
participating in this project were asked to take part in data
collection on a voluntary basis (N = 4, including the authors).
We complied with the measures of the Occupational Safety and
Health Standard emanated by the German Federal Ministry of
Labour and Social Affairs by keeping a safe distance and wearing
face masks. The study was approved by the Bioethics Committee
of Honda.

Participants had normal or corrected-to-normal vision, were
all right-handed, and gave informed consent to participate in
the study.

3.2. Experimental Setup and Procedure
The experiment was carried out in a simulated scenario created
with the Gazebo Simulator2 (see Figure 1). The scene was
captured with a virtual sensor and displayed on a widescreen
(1.21 × 0.68 m) with HD resolution in front of the participant,
who was standing at a distance of about 1.5 m. Participants
wore a binocular Pupil Core eye-tracker by Pupil Labs, working
at 100 Hz with a reported accuracy of 0.6◦. They also held in
the right hand the HTC Vive controller, tracked by the Vive
Lighthouse system for input control in the teleoperation task. All
physical devices and surfaces were sanitized after each use. After
instructions, participants were required to wear the eye tracking
glasses, to adjust the eye and scene cameras according to the
experimenter’s directions, and to perform a 5-point calibration.

The experimental stimuli consisted of three cylinders
presented in two configurations (in different blocks): either
aligned on the left side of a table (numbered as follows: 0 for
the top, 1 for the middle, 2 for the bottom of the table) or at the
vertices of a virtual triangle (0 for the top vertex, 1 for the bottom
right, 2 for the bottom left; see Figure 2). Colors were permuted
anew in each trial. Along with the cylinders, a disk would appear
on the right side of the table, at one of three positions (denoted
as: 0 top, 1 middle, 2 bottom). The disk specified the current pick-
and-place task: the color indicated which cylinder to pick up and
the position of the disk where the cylinder had to be placed down
on the table. The task would be executed by a robotic gripper
in the virtual scene, operated by the participant’s movements.
The position and orientation of the Vive controller grasped by
a user’s hand were tracked and mapped onto the gripper. Just the
robot hand was visible and could be controlled by the participant
as the own hand. No robotic arm kinematics was simulated in
the mapping of the movement. Participants were required to
reach with the controller in their hand toward the target and to
grab it by pressing the button on the controller under the index
finger. They had then to move the cylinder to the other side and
release it on the place position, in so ending the trial. Between

2http://gazebosim.org/

trials, a resting time of 5 s was given, followed by a fixation cross
and indications on how to move the controller back to the rest
position. As soon as the controller reached the starting position,
the next trial started.

The cylinders were 20 cm high and with a radius of 5 cm. In
the lined-up configuration, they were placed 30 cm apart, while
in the triangular configuration cylinder 1 and 2 were about 21 cm
apart and both were 22.6 cm apart from the cylinder in position
0. The robotic gripper was about 16 cm long from the wrist to the
midpoint between the fingers.

3.3. Design and Data Processing
We designed two different arrangements of the cylinders since
we hypothesized that the positions of the objects would require
different movement trajectories and oculomotor strategies. In
this way, we could investigate the impact of the spatial
arrangement of the items on the gaze behavior.

Each trial consisted of a reach-and-grasp phase and a
transport-to-place phase to the placing target position. The two
phases are separated by the gripper grasping the picking target.
In this sense, in the following, picking times are considered as
the time from the start of the trial to the grasp event detected via
button press. The transport phase spans the time from the grasp
event to the end of the trial, i.e., when the gripper button was
released and the cylinder in hand was within 10 cm of the placing
disk. The tasks are defined by the positions of the respective
targets, e.g., pick_0 for picking at the pick position 0 or place_1
for placing at the place position 1. In each trial the target pick
and place positions were randomly generated. This has led to
an uneven number of pick-place target combinations for each
participant. Lined-up and triangle arrangements were probed
in separate blocks. Specifically, the final dataset consisted of
sequences containing for the lined-up configuration 63 examples
of pick_0 and pick_1, 54 of pick_2, 60 of place_0, 55 of place_1
and 65 of place_2. For the triangular configuration the dataset
contained 35 examples of pick_0 and pick_1, 27 of pick_2, 26 of
place_0, 30 of place_1, and 41 of place_2.

Instead of working with relative eye coordinates, we used the
fiducial markers and the scene camera of the Pupil Labs device
to localize the eye-tracking-glasses in the scene w.r.t. the world
and screen, respectively. Fixations represent a very popular cue in
eye-movement data analysis and might seem an obvious choice
in this intention estimation application. The parameterization
of a fixation identification method, however, might be very
arbitrary. Usually, thresholds are chosen to determine when
exactly fixations start and when they end. Thus, the parameters
of a fixation identification algorithm can have a dramatic impact
on our higher-level analyses (Salvucci and Goldberg, 2000).
Further, the systemwill be required to work online eventually and
online fixation recognition is not always accurate while further
increasing the computational load. The temporal information
related to dwelling time in the AoIs (the objects of interest in
the scene) during fixations is still learned and considered by the
HMM all along.

For these reasons, we decided to work with gaze samples that
were mapped on the scene according to the following approach
(depicted in Figure 3). A heatmap with a discrete resolution
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FIGURE 2 | Example of scenes used in each trial. The objects to pick up were displayed lined up on the left side (or in a triangular arrangement) in three different

colors while the disc on the right could similarly appear at each of three positions on the right side. The color of the disk signified which cylinder was to pick up, the

position of the disk denoted the position for the placing down. The white disks are just shown here to label the picking and placing positions. (A) Lined-up

arrangement. (B) Triangular arrangement.

FIGURE 3 | The user’s field-of-view is approximated by a hemispherical heatmap. The density of a 2d normal distribution centered on the point-of-regard represents

the gaze and its uncertainty. The surface integral over the triangles of a certain object is the likelihood of this AoI.

represents the hemispherical field-of-view of the participant. In
this case a sampling of 1◦ is used and the heatmap comes with a
resolution of 180 by 90 px. The user’s eye gaze g is represented by
a two-dimensional normal distribution and the density is plotted
onto the heatmap with gaze uncertainty σ and location centered
on µ3. The choice of the size of σ might depend on the accuracy
and precision of the eye tracking measurements. Here, we set
σ = 2 ◦ which is in accordance with the size of the human fovea.
All potential scene objects are represented as trianglemeshes with
a bounding box made of at least 12 triangles. The pose of the
objects is delivered by a scene understanding module and given
the localization of the eye tracking glasses, the object poses can
be transformed into the head coordinate system. Mesh triangles,
that are visible to the user (i.e., normal of triangle directed toward
the user), are plotted onto the heatmap. The surface integral of
the density function over these triangles represents the likelihood

3The gaze was mapped in this way since in a later stage we plan to move the

simulation into a virtual reality headset with embedded eye tracking and the gaze

mapping on the scene can stay unaltered.

that this area is regarded by the user. The complete likelihood (of
each object to be regarded by the user) is the sum of all visible
triangles the object is made of. In order to not overemphasize
large objects, all likelihoods are normalized by their visible areas.
For each object an Area-of-Interest was defined, for a total of
seven AoIs: for the picking objects the areas {a0, a1, a2}, for the
placing positions the areas {b0, b1, b2}, plus an area R for the
robotic gripper.

As a result, this so-calledArea-of-Interest-analysis provides for
every gaze sample g a feature vector F entailing the likelihood
computed for each of these AoIs:

Ft = {P(AoI = a0|gt), P(AoI = a1|gt), ..., P(AoI = R|gt)} .
(1)

These were logged along with the current hand position and
robot gripper position and with the current grasping state
(defined as the binary state of the grasping button). Trial samples
were further labeled with a Boolean feature to state if the trial
was successful. Indeed, if the grasp failed for any reason multiple
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grasp attempts could be observed or none at all if the cylinder was
toppled down and fell off the table.

3.4. Behavioral Analysis
To get a better picture of the gaze behavior during the
presented task, we looked at some behavioral measures, seeking
confirmation of some of the patterns described in Aronson et al.
(2018). Due to the low number of participants thus far, we
could not perform an inferential statistics analysis within subjects
to test any hypothesis, hence for the most part we report a
descriptive analysis computed over the whole dataset depending
on the different tasks.

Two exemplary trajectories for different pick-and-place tasks
and object configurations are depicted in Figure 4. At any time,
the AoI collecting the highest likelihood is considered the one
currently looked at. Uponmotion onset the AoI corresponding to
the place target (whose color determines also the picking target)
is glanced. This is a planning glance, as defined in Aronson et al.
(2018). Right afterward the gaze moves to the picking target. It
must be noted that this glance at the place location is due to
the way the task is designed. Possibly, it would not be observed
if the picking target was communicated to the user in another
way, e.g., verbally, with the placing target displayed as a gray
disk, for instance. During the transport phase, the gaze targets
the placing target. During both the reach-to-grasp phase and the
transport-to-place phase the robot AoI (gray) is checked in a
monitoring pattern, to make sure the gripper is moving in the
intended direction.

For each trial, we consider two intentions/(sub)tasks, one
picking and one placing intention, separated by the keypress
triggering the grasping. To get a more complete overview of the
time the gaze spent in different AoIs across tasks, the relative
time distribution of gaze on each AoI was computed and is
presented in Figure 5. To make the picture easier to interpret,
we considered that for each intention there are actually just five
semantic entities that are relevant to describe the gaze behavior,
namely: the pick target (e.g., a0 for pick_0), the pick distractors
(e.g., a1, a2 for pick_0), the place target (e.g., any of the bi AoIs
depending on the current task), the place distractors (e.g., any
of the bi AoIs that are not the target) and the robot hand.
Analogously for the place intention, the place target would be the
specific AoI related to that task, while the pick target could be any
of the picking positions and the distractors are the pick and place
AoIs that are not the current pick nor place target of the trial.

As can be noted from Figure 5, for either task of pick or place,
the distributions of the gaze time share a common pattern on a
semantic level, i.e., the target of the task is longer dwelled on.
Thus, these tasks can be distinguished as each task corresponds
to a different semantic target (picking or placing objects). Yet
the distributions are also distinctive within each task, considering
that each action target is the AoIs related to the task target, i.e., the
corresponding ai position in the pick tasks and the corresponding
bi position in the place tasks. In the pick tasks the place target
is briefly looked at to learn the pick target, while in the place
tasks the pick target receives also some attention since, after
pressing the button for the grasp and in absence of any haptic
feedback, the gaze checks that the object is correctly grasped. This

evolution in time can indeed be appreciated better in Figure 6,
where trials across intentions were averaged on a normalized time
axis between the start of the trial and the grasp for the pick trials
and between the grasp event and the end of the trial for the place
trials. In these latter, independently of the place target, it can
be noted how for about the initial 30% of the placing task the
pick target is still looked at, to visually check whether the object
is lifted up with the gripper, hence confirming the grasp was
successful. Interestingly, in both configurations and tasks also the
robot effector receives a discrete amount of gaze time and in the
pick trials shares a lot of gaze distribution with the pick target. Of
course toward the end of the pick and place trials the gripper is
close to the pick/place targets and the gaze can have both within
the fovea or in the parafoveal space andmonitor them at the same
time. Still, in natural eye-hand coordination, the hand instead is
rarely looked at (Johansson et al., 2001) because proprioceptive
information and peripheral vision usually suffice to monitor it.
This suggests that in this teleoperation scenario the unusual
sensorimotor mapping from the arm and controller to the three-
fingered robotic gripper, especially considering the grasp pose,
and possibly some delay in the tracking makes the user uncertain
about the effector movements and current pose. Participants,
thus, produced multiple monitoring glances (Aronson et al.,
2018) during the movements to visually adjust the effector
trajectory and pose. However, in general, the distributions looked
rather distinctive across tasks, suggesting that it could be possible
to reliably discriminate among them, while they looked rather
similar across picking configurations, hinting to the possibility
to generalize from one to the other. The pick distractors are
looked at especially during picking, since the gaze checks the
neighboring cylinders in order to decide the best grasp and in
order not to collide with them. This is especially the case in
picking at position 1 in the lined-up case and overall in the
triangle configuration since the cylinders are all close to one
another. The place distractors do not receive any attention since
in each task only the target position was made visible with a disk
in this experiment (see Figure 2).

To gain further insight into the difficulty of the task, we looked
into the number of failed trials across picking tasks. Error rates
were computed for the three pick tasks in the two configurations.
The picking action in the lined-up configuration was successful in
the 71.4% of pick_0 cases, 88.9% for pick_1 trials, and 79.6% for
pick_2. In the triangular configuration, the grasp was successful
in 68.6, 88.6, and 85.2% of cases, for the same picking cases,
respectively. The users could accomplish the task in the vast
majority of the cases, but a significant number of failed grasps
occurred when picking at position 0 in both configurations.

This could be the case for different reasons. In the lined-
up configuration, the 0 position is the rearmost and the one
requiring to stretch the arm until the furthest edge of the table.
However, 3D depth on a 2D plane is badly estimated, especially
in a virtual scene where size cues are more difficult to gauge
and the own body could not be used as reference either. In
the triangle configuration, the 0 position is closer to the user,
yet the other two objects are placed in front of it, requiring
to pick the cylinder from above or—for a right-handed user—
trying to avoid the cylinder in position 1 going around it. The
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FIGURE 4 | Two exemplary trajectories of the hand during the pick-and-place tasks (left: pick in position 2 and place in position 0; right: pick in position 1 and place in

position 1). The movement samples are colored with the currently gazed AoI (see legend). The square markers denote the picking and placing positions: the former

are here denominated and colored as the respective AoIs, for the latter only the current placing target is presented in color (the other targets are in light gray since they

were not visible but their position is shown for reference).

FIGURE 5 | Relative distribution of the time the gaze spent on semantic AoIs across tasks for the lined-up (left) and the triangle arrangement (right). In the pick tasks

the respective picking AoIs (pi_target) are more looked at, in the place tasks the respective placing AoIs (pl_target). The other AOIs were summarized in the pick

distractors (pi_distract, i.e., the cylinders not to be picked up), place distractors (pl_distract, i.e., possible place-down locations other than the target), and the robot

hand (robot).

depth estimation difficulty could yet be ameliorated in a virtual
reality set-up.

A similar pattern emerges also looking at picking times. In this
case, we considered only successful trials since in a failed trial no
grasp or more than one grasp could occur. Looking at Figure 7, it
can be noted again that the rearmost position requires the longest
reaching time. The difference is significant between position 0
and position 2 [Bonferroni corrected Welch’s t-test, t(67.11) =

3.56, p = 0.002] and between position 1 and 2 [t(88.34) =

2.94, p = 0.012]. In the case of the triangular configuration,
also items in position 2 require a more careful movement, since
a right-handed person needs to mind avoiding the cylinder in
position 1 when approaching the cylinder in position 2 with the
open gripper [position 0–1: t(27.24) = 4.02, p = 0.001, position
1-2: t(40.54) = −4.15, p < 0.001].

4. COMPUTATIONAL MODELING AND
RESULTS

4.1. Modeling Intentions With Gaussian
HMMs
Our approach aims at predicting the proximal intention, i.e., the
current action and the involved object. Gaze not only comes with
a specific pattern during action execution but also provides early
cues that indicate parameters of a pick and place task, such as
which object to pick or where to place it down. These parameters
are defined by the proximal intention (Bratman, 1987; Pacherie,
2008). The temporal gaze pattern can be represented with a
Gaussian Hidden Markov Model (see Figure 8). The hidden
states X(t) describe the internal intention process and might
relate to looking at the target object or looking at the placing
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FIGURE 6 | Gaze distribution on a normalized time axis across semantic AoIs. Time = 0 signifies starting of the trial and time = 100 the closing of the gripper on the

object for the pick sequences. This last event represents the start of the normalized time axis for the place sequences, with 100 indicating the end of the trial. (A)

Lined-up arrangement. (B) Triangular arrangement.

FIGURE 7 | Picking times across picking position for the two object configurations. The rearmost position requires a longer reaching time in both configurations, also

due to difficult depth estimation. In the triangle configuration the forefront position on the left (pick_2), besides the rearmost position (pick_0), requires a longer picking

time.

position. However, this is just an assumption, while the hidden
Markov process drives an observable gaze sequence Y(t). The
gaze sequence is described by the sequence of AoI likelihoods
as derived from the multivariate Gaussian distribution (see
section 3). The distribution of these AoI likelihoods at a particular
time is governed by the emission probabilities of the hidden
Markov process given the state of the hidden variable at that
time. This approach is independent of the gaze sequence length,
i.e., observation sampling and execution velocity, as long as the
sequences are scaled linearly.

We defined six intentions to be recognized: three pick-up
intentions (for each of the three cylinders) and three place
intentions (for each of the three placing positions). Hence,
six HMMs have been configured with five internal states. The
observation vector of an HMM comprises eight components: the

AoI likelihoods of the three cylinders, the AoI likelihoods of the
three possible placing positions, the AoI likelihood of the robot,
and the trigger button state of the Vive controller. The transition
and emission parameters were learned by each HMM, which
was fed the respective training sequences (between 19 and 31
observations sequences for each model for a total of 160). These
sequences were all performed by two users. The training was done
offline with data only from the lined-up arrangement and only
successful pick-and-place tasks (no multiple grasp attempts, no
toppling or dropping of the cylinders).

Figure 9 sketches the online intention recognition approach.
At every time step t the observations from the last 1t s are used
to compute the log-probability of these observations under each
of the trained HMMs. The HMMwith the highest log-probability
exceeding a given threshold (κ = 0) is taken as prediction of the
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FIGURE 8 | Gaussian Hidden Markov Models for a Pick-and-Place-Task. Five hidden states X are shown which might represent the perceptual state of the user

looking at the object to be picked, at the robot, at the placing position target, or at the teleoperated robotic hand. Arrows between states represent transition

probabilities: for the sake of legibility here only transitions between adjacent states are shown but actually all states are fully connected. A model is defined for each

pick-object and place-at-location intention. Each model receives as input a sequence of vectors of AoI likelihoods, representing the probability of the object under the

gaze distribution at different time steps. The emissions probabilities defining the probability of each state to emit the observed features are learned from the data and

assumed Gaussian. Each model outputs a likelihood of the corresponding intention after observing the current sequence of features.

FIGURE 9 | The observations made in the last 1t s are used to compute the log-probability of these observations under each of the trained GHMMs. Here, an

example sequence of subtasks with the observations is shown. The feature vectors are color-coded, vertically plotted, and concatenated (generating the bluish bar).

The length 1t of the time window decides on the accuracy and the earliness of the intention predictions.

respective intention. If no model scores over the threshold, no
intention is confidently recognized. The offline training and the
online recognition are implemented in Python with the help of
the hmmlearn-library4.

The performance of this approach is tested on data from
four users (between 17 and 28 observation sequences for each
intention, respectively, for a total of 128 sequences). The testing

4https://hmmlearn.readthedocs.io

data comprised unseen sequences in the lined-up arrangement
from the two users used for training plus sequences from two
additional users. Moreover, testing was done also on sequences
from blocks with triangular arrangement (between 19 and 33
sequences for each intention, for a total of 156).

4.2. Intention Recognition Results
To evaluate the intention recognition performance, we looked
on the one hand at how accurate was the prediction whenever a
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FIGURE 10 | Likelihood of the predicted intention for a trial picking in position

2 and placing in position 0. The black dashed vertical line shows the time of

the grasp event. At any time the likelihood of the currently highest model score

is depicted in the color associated with the respective intention (see legend). If

the highest score is below the threshold κ = 0, no intention is accepted (gray

line).

prediction was indeed available (that is, the proportion of correct
predictions over the overall number of delivered predictions). On
the other hand, as stated in Ellis et al. (2013) and Wang et al.
(2020), there is a trade-off between accuracy and observational
latency. Indeed, the more evidence is accumulated before making
a prediction, the more accurate the prediction is going to be.
Yet, in the case of systems that should act on that prediction, the
earlier this comes the better. To this end, maximizing accuracy
can be at odds with minimizing latency. We looked also at this
kind of latency and call it predictability, because of the way it
is operationalized. Predictability refers to the fraction of action
execution time where an intention is confidently recognized
(regardless of whether right or wrong), defined as the ratio
between the number of action samples for which an intention
estimation is over the threshold κ and the overall number of
samples in the action. At the beginning of a new trial when
the gaze is still wandering between the placing target to check
its color and the pick target, perhaps also checking the pick
distractors, it is most likely that the models cannot deliver a
confident enough prediction. Similarly, in the transport phase,
after checking the successful grasp, the gaze quickly moves from
the pick target to the place target. In this case, the observed time
windowmight contain both samples related to the grasped object
and to the place destination, hence even the highest-scoring
model might deliver a very low likelihood score (under the
threshold). This can be appreciated in the example in Figure 10:
in the beginning of the trial no model reaches a confident enough
likelihood score, but as soon as evidence is accumulated in
favor of a picking action, the winning likelihood oversteps the
threshold. At first, the wrong picking intention is predicted while
later the correct model reaches the highest likelihood. A similar
course is displayed after the grasp event, with the likelihood going
down and then rising again in favor of a placing action.

Figure 11A shows the accuracy and predictability of the
intention recognition when using a time window of 0.9 s for the
lined-up arrangement. On average, the HMM with the best log-
probability being above the given threshold (κ = 0) indicates the
correct intention in 78% of cases (chance level = 16.7%).

Figure 12A highlights the relationship between the time
window 1t, accuracy, and predictability. With a longer time
window both the prediction accuracy and the predictability
decrease. A longer time window has the effect to include
more observation samples belonging to a previous action rather
than the current intention. This is sketched in Figure 9. As a
result, either the log-probability threshold is not exceeded or an
incorrect intention is recognized. There is a maximum accuracy
at a time window of 0.9 s with a predictability of 77%. That
is, after at least 23% of the action execution the right action is
predicted in 78% of cases. Given this earliness, we can speak of
intention recognition.

Figure 12B plots a similar relationship between time window
and performance for the triangle-shaped arrangement. The
optimal time window size here is 1.3 s with an accuracy of 75%
(chance level = 16.7%) and a predictability of 78%. The accuracy
curve seems to be flattened because the action execution times in
this setup come with a larger spread. Especially, picking up the
cylinders at positions 0 and 1 is more challenging and causes a
longer execution time compared to the other sub-tasks in this
triangle setup. This issue is apparent also in Figure 11B with
more distant whiskers and extended boxes for pick_0 and pick_1.

Furthermore, the plots in Figures 11, 12 confirm the
observations described in section 3.4. The gaze behavior seems
to be independent of the spatial arrangement of the objects
in the scene. This fact is very well-represented by the HMMs,
which have been trained only on lined-up arrangement data, but
perform almost as well on the triangle arrangement data.

Moreover, Figure 13 shows the confusion matrices for the
two tested spatial arrangements. It can be appreciated that
when the model delivers a wrong prediction it usually mistakes
neighboring picking or placing locations, but still correctly
identifies the task.

4.3. An Alternative Model: The Semantic
GHMM
Our hypothesis in designing the behavioral experiment and
the model presented above was that the object positions and
configuration would have an effect on the observed sensorimotor
behavior. Yet, both the results of the behavioral analysis (cfr.
Figures 5, 6) and the results of the modeling of separate action-
object intentions show how gaze patterns are pretty similar
across picking positions and configurations and how the models
even generalize well to a new configuration with different
picking positions. This suggests that rather the current motor
primitive (pick or place), represented at a symbolic, semantic
level, determines a prototypical sensorimotor pattern, which
gets further specified by the motor system depending on the
current situation (motor intentions as put forward by Pacherie,
2008). Yet, these further adjustments are at an intra-class level,
preserving the general inter-primitive discriminability. This is
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FIGURE 11 | Accuracy and predictability of online intention recognition for lined-up arrangement and triangle shape arrangement. (A) Lined-up arrangement, 1t = 0.9

s. (B) Triangular arrangement, 1t = 1.3 s.

FIGURE 12 | Relationship between time window (min = 0.1 s, max = 5 s) and

performance measures. Time window and performance are inversely

proportional to each other. A maximum accuracy for a reasonable predictability

is reached at time window 1t = 0.9 s for the lined-up arrangement and 1t =

1.3 s for the triangle arrangement, respectively. (A) Lined-up arrangement. (B)

Triangular arrangement.

probably specifically the case in the simplified context we have
worked with here, where no real grasping is executed but still,
the gripper needs to be placed correctly on the cylinder to allow
a firm grasp or to achieve a stable placing down. The model
proposed above has further the limitation of scalability: if more
pick and place targets were added to the scene, possibly even
dynamically appear or disappear, new models would need to
be instantiated and trained, while also the feature vector to the
models being correspondingly adapted every time. The same
would of course occur if a further action would be added to the
mix, with every possible combination of object and action being
explicitly modeled and trained.

For these reasons, we also devised an alternative, semantic
model to be tested against the first model. In this case, just two
models are instantiated and trained, one for the pick and one for
the place action. The same observations as used in the previous
approach have been translated into a flexible object- and action-
based arrangement of the feature vector fed to each GHMM

model. Thus, the models receive always the same number of
features, regardless of the number of objects in the scene.
Assuming that n objects and m placing options are present in
the scene and that the corresponding AoIs come labeled as either
“pickable” or “placeable” candidates, to get the likelihood that
object i (or at position i) is currently the pick target, the following
vector is fed the pick GHMM:

Ft = {P(AoI = ai|gt),
∑

j 6=i

P(AoI = aj|gt),

m∑

k=1

P(AoI

= bk|gt), P(AoI = Robot|gt), grasping_statet)} . (2)

and to get instead the likelihood that coaster i (or position
i) is currently the place target, the following vector is fed the
place GHMM:

Ft = {P(AoI = bi|gt),
∑

j 6=i

P(AoI = bj|gt),

n∑

k=1

P(AoI

= ak|gt), P(AoI = Robot|gt), grasping_statet)} . (3)

The two models were instantiated with four hidden states each
(representing looking at a pick or place target, wandering with
the gaze on any distractor for pick or for place or looking at the
robot hand) and trained and tested with the same data as the first
model. Any time a new sample is available from the AoI analysis,
the two models are submitted n and m differently arranged
feature vectors, respectively, and produce as many likelihood
scores, with the highest-ranking taken as the estimated intention.
This process is exemplified in Figure 14.

Results show that with the semantic models, the accuracy
increases reaching a mean value of 88.0% and of 89.7% for
the lined-up and triangular configuration, respectively (see
Figure 15). On the one hand, the lower number of states (4) used
in the semantic model might have contributed to the increase of
the recognition accuracy. Indeed, although the naïve model uses
one more state than the semantic model and this might fit the
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FIGURE 13 | Normalized confusion matrices for the two picking arrangements. Errors are mostly made mistaking neighboring locations but still classifying the task

correctly.

FIGURE 14 | Gaussian Hidden Markov Models for a Pick-and-Place-Task. Four hidden states x are shown which might represent the perceptual state of the user

looking at the object to be picked, at the robot, at the placing position target, or at the teleoperated robotic hand. Arrows between states represent transition

probabilities: for the sake of legibility here only transitions between adjacent states are shown but actually all states are fully connected. Two models are defined for the

pick and place intentions. Each model receives as input a vector of rearranged AoI likelihoods, with the first element representing the object to be tested for pick

(place), while the second sums up the AoI likelihood of the other pick (place) distractors. The third element sums the features of the other objects relevant for the other

action, while the robot and the grasping state features stay the same.

training data better, a higher number of states can unnecessarily
overcomplicate the model and produce overfitting. On the other
hand, the two semantic models have access to more training data
w.r.t the six naive models: in general they can abstract better
as to what defines a pick or a place action across the different
targets. Considering the normalized confusion matrices depicted
in Figure 16, in this case, no mistake is made between the two
actions: the semantic models seem to be able to better learn the

importance of the grasping state feature in discriminating the two
actions, as further shown in the next subsection.

4.4. Effect of Grasping State on
Performance
Assessing the model performance against a 16.7% chance level
could be misleading since the grasping state constitutes a
powerful binary cue to tell the two actions apart and hence a

Frontiers in Neurorobotics | www.frontiersin.org 12 April 2021 | Volume 15 | Article 647930

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Fuchs and Belardinelli Gaze-Based Intention Estimation in Pick-and-Place Tasks

FIGURE 15 | Accuracy and predictability of online intention recognition for lined-up arrangement and triangle shape arrangement in the semantic model. (A) Lined-up

arrangement, 1t = 0.9 s. (B) Triangular arrangement, 1t = 1.3 s.

FIGURE 16 | Normalized confusion matrices from the semantic GHMM for the two used spatial arrangements.

33.3% chance level would be a fairer assessment. For this reason,
both models were trained and tested again without the grasping
state feature. Results with and without this feature are reported in
Tables 1, 2. The accuracy substantially decreases for both models,
but still remains on an above-chance level. The predictability rises
almost at ceiling levels, probably because the models consider at
any time the current fixation as indicative enough of the current
intention, irrespective of its compatibility with the current grasp
state, and outputs the corresponding intention. While on an
overall level the naive and the semantic models achieve a similar
accuracy of above 50%, it can be seen in the confusion matrices in
Figure 17 that the naivemodel somehowmanages to differentiate
between the two different actions while the semantic model
basically classifies most intentions as place intentions. A possible
explanation could be that without the grasping cue or any other
common-sense prior knowledge about picking and placing, the
semantic models can only generally infer an intention to interact
with an object. In this case, the “place” model, which relies
on clearer, longer fixations on one target (see Figure 6), is the
most confident about its predictions, while the “pick” model sees
the gaze likelihood distributed among more objects. The naive
models, on the other hand, which were separately trained on the

single object/locations, manage to retrieve some of the regular
patterns of each single intention. Still, it is reasonable to expect
that with a larger dataset, both models could better learn the
scanpath differences evident in Figure 6 and better discriminate
between the two actions just by means of gaze features.

4.5. Comparison to Active Fixation-Based
Approaches
The specific nature of our setup makes it difficult to compare
our system to other approaches presented in the literature, since
often either natural eye-hand coordination (Haji Fathaliyan et al.,
2018; Wang et al., 2020) or no eye-hand coordination at all
(Huang and Mutlu, 2016) is used for intention recognition (see
section 2). In teleoperation, especially in the context of assistive
technologies, the user is often required to actively fixate the object
of interest for a certain amount of time in order to trigger an
associated action (Wang et al., 2018; Cio et al., 2019; Shafti et al.,
2019). We compare here our system to such approaches, to verify
the advantage of a probabilistic framework over a deterministic,
sensory-driven one. To this end, we computed the classification
performance when considering a fixation as a time window 1t
where the same AoI had consistently the highest likelihood and
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TABLE 1 | Accuracy for the naive and semantic GHMM models with and without the grasping state feature.

Naive model With GS (%) Without GS (%) Semantic model With GS (%) Without GS (%)

Lined-up 78.3 53.5 Lined-up 88.0 54.6

Triangular 75.3 51.5 Triangular 89.7 58.8

TABLE 2 | Predictability for the naive and semantic GHMM models with and without the grasping state feature.

Naive model With GS (%) Without GS (%) Semantic model With GS (%) Without GS (%)

Lined-up 77.1 98.5 Lined-up 70.5 98.5

Triangular 78.2 99.0 Triangular 71.9 99.2

FIGURE 17 | Normalized confusion matrices for the naive (left) and semantic (right) models for both configurations when training and testing the model without the

grasping state feature. The semantic model achieves a slightly higher overall accuracy but fundamentally recognizes highly accurately just the placing intentions.

took as prediction the corresponding intention (e.g., if a0 was
fixated for 1t s the prediction would be “pick at a0”). Note that
this method assumes that each object is associated with only one
action (either pick or place), thus it would not mistake the two
actions. We used 1t of different sizes to compare the fixation
performance to our model (1t = 0.9 for the lined-up, 1t = 1.3
for the triangular configuration), to the approach by Shafti et al.
(2019) (1t = 1.5 s), and to the approach by Wang et al. (2018)
(1t = 2 s). It must be stressed that in our case the users were
not actively fixating the objects to make their intentions legible:
when fixating naturally, it is rarely the case that fixations this
long occur, hence we further tested a shorter window 1t = 0.5.
Accuracy and predictability results are reported in Table 3. Even
if this system reaches an accuracy at times comparable with that
of ourmodel without grasping state feature, still the predictability
is considerably lower. That is, only when a fixation on an object is
ongoing for sufficient time a prediction is available, while most of
the time no intention is predicted. Indeed, considering a shorter
1t = 0.5 produces the best accuracy and predictability scores. In
contrast, our model emits a more reliable prediction earlier in
time and maintains it even when the gaze is not on the target
object since transitions are accounted for.

5. DISCUSSION AND CONCLUSIONS

We presented a study aimed at investigating eye-hand
coordination and gaze-based intention recognition during

teleoperated pick-and-place tasks. The ultimate goal is to transfer
such intention recognition into a shared autonomy architecture.
To this end, in this first study on the one hand data was collected
and analyzed in order to have a baseline characterization of user
behavior in a fully teleoperated modality. On the other hand,
collected data was used to train a model flexible enough to work
with different users and in possibly different settings.

In teleoperation contexts natural eye-hand coordination is
somehow disrupted since action is mediated by an input
controller and executed by a robotic system. This arrangement
upends the internal forward and inverse model predictions and
places a further monitoring load on the visual system. Hence, as
first studies besides this have shown (Aronson andAdmoni, 2018;
Aronson et al., 2018), investigating eye-hand coordination during
teleoperation can shed light on the user’s specific sensorimotor
behavior and needs in such setting, prompting better design
and models for intention recognition in such systems. Still, in
contrast to those studies aimed at assistive applications, we strove
for a more natural control input based on motion tracking.
In this way, we aim to elicit and exploit patterns of eye-hand
coordination similar to those used in real grasping and acting.
The analysis of eye and hand behavior has revealed that, although
participants in most cases managed to successfully operate the
gripper in the pick-and-place task, still some positions required
more grasp attempts and longer reaching times. This is in part
due to the impaired depth estimation on the screen, however, the
difficulty in aligning the gripper with the cylinder in the furthest
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TABLE 3 | Accuracy and predictability of the AoI features considering different fixation times for comparison with the fixation times of 1.5 s used by Shafti et al. (2019) and

of 2 s used by Wang et al. (2018).

Configuration

(fixation time)

Lined-up (1t = 0.5) Triangle (1t = 0.5) Lined-up (1t = 1.5) Triangle (1t = 1.5) Lined-up (1t = 2.0) Triangle (1t = 2.0) Lined-up (1t = 0.9) Triangle (1t = 1.3)

Accuracy 66.0% 62.4% 52.1% 54.3% 42.6% 48.8% 61.0% 56.3%

Predictability 47.0% 53.8% 24.1% 35.0% 16.1% 28.4% 37.0% 37.9%

Since in general shorter fixation times occurred in the trials, also a shorter 0.5 s interval was tested. A further comparison is done using a fixation time equal to the window times used

in our model (1t = {0.9, 1.3s}).

position or in avoiding bumping into cylinder 1 to grasp in
position 2 in the triangular arrangement required extra care and
slowed down the movement. Moreover, while the gaze behavior
showed some similarities with natural eye-hand coordination,
e.g., locating and guiding the hand to the target of the next
proximal intention (Land et al., 1999), we found that both in
the reaching and in the transport phase the robot gripper was
looked at for quite some time, differently from what happens
when grasping with the own hand (Johansson et al., 2001). This
represents an indicator that the participant preferred to visually
monitor the gripper movement in the absence of the usual
proprioceptive coordination and tactile feedback. Furthermore,
the object held in hand was looked at also after the grasping was
triggered, again something that does not happen in natural eye-
hand coordination, since tactile feedback confirms the expected
contact event and successful grasping (Johansson and Flanagan,
2009). In this teleoperation scenario instead, the grasp had to
be confirmed visually, hence the gaze lingered on the picked
object and only after seeing the object moving along with the
hand, moved on to the next distal intention (i.e., the placing
position). Still, this kind of measures offers an insight into
the user experience of the teleoperation task: as long as the
uncertainty about the task execution is high, the gaze is less
anticipative and lingers there where further information needs
to be acquired to carry out the task. Although some of these
issues could be mitigated with longer training, allowing the user
to master the new visuomotor mapping and task (Sailer et al.,
2005), an intention recognition model embedded in a shared
autonomy architecture that could adjust the robot movement
and grasping pose to reliably produce the intended grasp would
shorten these training times. This would allow a more natural
eye-hand coordination and relieve the gaze system of monitoring
every sub-task unfolding and transition with extra care. That
is, an effective shared autonomy system would be validated by
shorter execution times, fewer failed grasp attempts, and more
anticipative gaze behavior with less time spent monitoring the
grasped object and the robot gripper. This would confirm that the
user trusts the robotic partner to correctly infer and assist with
the current intention but that their sense of agency is preserved
since they anticipate the next subtask in their plan (see on this the
discussion in Haji Fathaliyan et al., 2018).

Apart from these considerations, as shown for a different task
(Keshava et al., 2020), we also found that the gaze behavior still
was reliably different across tasks and could be hence learned
and predicted effectively. To this end, a Hidden Markov Model
was first devised for each of the intentions to be recognized. The

normalized likelihoods of the gaze (represented as a Gaussian
distribution) to be on each of the objects in the scene along with
the grasping state were considered as emissions of the HMM.
The system was trained on pick-and-place tasks from two users
and then tested on similar unseen sequences from the two users
plus two other users. Considering a time window of 0.9 s where
emissions are accumulated and then scored by the six GHMMs,
the system achieves a well above chance accuracy across all tasks,
returning a prediction as early as after seeing 22% of the current
action, on average. Here, the concept of predictability, indicating
the portion of the task for which an estimate is available, relates
to that of observational latency. As pointed out in Wang et al.
(2020), even a very accurate prediction is of very low utility if
it is not delivered in time for the system to plan and execute
a supporting operation before the user has carried out the
action themselves. The generalizability of the system was further
tested on a different geometrical configuration of the pick task,
delivering comparable accuracy and predictability. Even more
accurate results were obtained by a second intention recognition
scheme, which modeled the two basic actions (pick and place)
and scored the likelihood of each picking or placing target by
appropriately arranging the features representing the likelihood
of the gaze on the different AoIs. Also, in this case, generalization
was higher with new users and configurations, while practically
no confusion between the two classes was observed. This kind
of model offers also the possibility of scaling up the system to
new picking objects and support surfaces, not previously seen
during training: the dimension of the feature vector fed to the
GHMMs stays in fact constant and the arrangement of the
features determines which object is evaluated as pick/place target.
The amount of gaze distribution captured by other objects of the
same category (which should still be comparatively low compared
to the real target) and by all those of the other category is indeed
considered as two collective features, independent of the number
of present objects or support surfaces.

A test without the binary grasping state feature, yet, showed a
less consistent performance of the semantic model with respect
to the naive model: the semantic model perfectly recognized the
place intentions but mostly misclassified the pick intentions as
place intentions. This might be due to the fact that the semantic
model relies more strongly on the grasping state to determine
the action and uses the gaze data to infer the object of interest,
while the six naive GHMMs better learned the specificity of the
scanpaths in the different conditions.

In any case, considering the similar semantic distributions
of gaze time within equivalent sub-tasks and across spatial
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configurations, these results suggest that there is a certain
invariance in the gaze patterns. These are mainly shaped by the
general sub-task at a higher level. At least in simple manipulation
tasks and object configurations, sequences of gaze glances at
objects are more heavily determined and constrained by the
current subtask structure (pick vs. place), once the target is
specified, rather than by the contingent spatial setup. That is,
also the oculomotor plan subserving and directing the motor
plan seems to reflect the syntactic structure of action (Pastra and
Aloimonos, 2012).

These are promising results for the further development of
our intention recognition system and its embedding in a real-
world shared autonomy scenario. Current and future work is
going to expand both the training and testing sets with multiple
participants as well as considering more and different objects
and tasks. A richer dataset with data from naive participants
would indeed provide a better characterization not only of
the users’ sensorimotor behavior in itself, but it would indeed
allow testing for learning effects within each participant and
individual differences between participants. This would also
help to investigate the co-adaptation process between human
and robotic systems (Gallina et al., 2015). On the one hand,
indeed, visuomotor adaptation to the new environment produces
effective motor learning enabling the user to better handle the
initially unfamiliar sensorimotor mapping. This effect could
override some of the features learned by the intention recognition
framework and should hence be accounted for. On the other
hand, it should be investigated how different users cope on a
sensorimotor level with the same task. This could both help
to understand the generalization limits across users of a pre-
trained model and to identify possibilities for user customization.

Experimenting with amore complex scenario in terms of number
and configuration of objects and support surfaces would very
likely affect the high accuracy observed in this study, yet would
also offer insight into meaningful ways to effectively assist the
user and on ways to tackle the trade-off between accuracy
and observational latency also downstream, at the behavior
control level.
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