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Abstract

Background

Burn-induced inflammation leads to impaired immune responses resulting in increased mor-

bidity and mortality. T-cells are central in the immune response and circulating CD4 and

CD8 T-cells have been used to evaluate immune status; however, the role of these T-cell

subsets in the burn wound is unknown.

Methods

Male C57BL/6 mice were subjected to a major 3rd degree scald burn or sham treatment.

Twenty-four hours later, full thickness skin samples from sham mice and the burn wounds

were collected and single cells were isolated and analyzed for αβ TCR, γδ TCR, CD3, CD4,

CD8 and CD69 expressions by flow cytometry.

Results

The burn wound contained significantly greater numbers of T-cells than skin from sham

mice, due to a profound infiltration of αβ T-cells. These infiltrating αβ T-cells were primarily

suppressor T-cells with a CD8+ or CD8-CD4- phenotype. The 15-fold increase in CD8+ αβ
T-cells caused a decrease in the CD4:CD8 ratio from 0.7 in sham skin to 0.3 in the burn

wound. In contrast, the majority of the γδ T-cells in sham skin were CD4-CD8-, which

decreased 9-fold in the burn wound. CD69 expression was suppressed on burn wound αβ
T-cells, but increased on γδ T-cells in the burn wound.

Conclusions

The infiltrating burn wound αβ T-cells likely act to quell inflammation. In contrast wound γδ
T-cells were activated with elevated CD4 and CD69 expression. Thus, these two distinct T-

cell subsets likely differentially regulate the burn wound inflammatory response.
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Introduction

Major burn causes immune dysfunction that may contribute to wound healing complications

and poor outcomes [1–3]. Various immune cells (i.e., neutrophils, macrophages and T-cells)

play unique roles in orchestrating the immune and inflammatory responses and thereby regu-

late wound healing. Characterization of T-cell subsets and their activation status may provide

further insight into the basis of these immunological changes and burn wound healing.

Various studies suggest that T-cells exert an important role in skin healing [4, 5]. T-cells

are the most predominate lymphocyte subset in human skin wounds, and they migrate into

wounds and peak during the late proliferative and early remodeling phases [6, 7]. Our previous

findings have shown the role of T-cells in healing of the burn wound. These studies have dem-

onstrated that γδ T-cells are essential in the wound healing response [8], associated with the

development of a Th-2 and Th-17 response [9] and are activated and responsible for the infil-

tration of an αβ T-cell population [10].

Previous studies suggest that CD4+ and CD8+ T-cell subsets and CD4:CD8 ratio play a cen-

tral role in the induction of efficient immune responses against different diseases such as

human immunodeficiency virus (HIV), tuberculosis, and cancer [11–14]. Previous studies

have examined the CD4:CD8 ratio and the characterization of these cells in the circulation [15,

16], as well as in the lymph nodes and scar tissues [4, 17]. With regard to the burn wound, little

is known about CD4 and CD8 T cell subsets.

Materials and methods

Animals

C57BL/6 male mice (12–14 week old; Jackson Laboratories, Bar Harbor, ME, USA) were used

in the experiments described herein. The animals were allowed to acclimatize for at least one

week prior to experimentation and they were kept in ventilated cages under specific pathogen-

free conditions. Mice were randomly assigned into either sham or burn group. All animal pro-

tocols were approved by the Institutional Animal Care and Use Committee (IACUC) of the

University of Texas Health Science Center at San Antonio, and all procedures were performed

in accordance with the National Institutes of Health guidelines for the care and handling of

laboratory animals.

Burn injury procedure

Mice received a scald burn as described previously [18]. Prior to the procedure the mice were

anesthetized with ketamine/xylazine (i.p.). The dorsal surface was shaved and the anesthetized

animal was placed in a custom insulated mold exposing 12.5% of their total body surface area

(TBSA). The mold was immersed in 70˚C water for 10 sec, producing a full-thickness burn

[18]. The burn procedure was repeated on the both sides resulting in a 25% TBSA burn. The

mice were then resuscitated with 1 ml of Ringer’s lactate solution (i.p). Sham treatment con-

sisted of anesthesia and resuscitation only.

Skin tissue collection and single cell isolation

Twenty-four hours after burn or sham procedure, skin samples were collected and wet weight

was measured. Normal non-injured skin was collected from sham, and injured skin from the

burn site was collected from burn mice. Skin samples from the burn site included injured skin

and the wound margin. The burn-injured skin was excised, down to the level of the musculo-

fascia, including the submucosal layer by sharp dissection. The skin tissue was used to isolate

single cells for flow cytometry.

Burn wound t-cells
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Full thickness skin tissues were collected and processed to isolate single cells as previously

described elsewhere [10]. Briefly, skin tissues were collected and minced into small pieces of

approximately 2–3 mm in size and put into dispase II (0.05%, Roche) medium for overnight

digestion at 4˚C. The next day, skin samples were further minced into smaller pieces and then

digested using trypsin-GNK (0.3%, Glucose/dextrose, NaCl and KCl buffer, Sigma) for 30 min

at 37˚C in a shaker waterbath. Heat inactivated Fetal Bovine Serum (FBS, GIBCO) was added

to stop the reaction. The dissociated cells were sieved through a 100 μm mesh. The cell suspen-

sion was centrifuged and the cell pellet was resuspended in RPMI containing 10% heat-inacti-

vated FBS (GIBCO), 50 μM of 2-Mercaptoethanol (Sigma-Aldrich), 2 mM of L-glutamine

(GIBCO), 1 mM of sodium pyruvate (GIBCO), 100 μM Non-essential amino acids (GIBCO),

50 U/ml penicillin and 50 μg/ml streptomycin (GIBCO) supplemented with 10 U/ml murine

recombinant IL-2 (BD Biosciences). Cells were counted and cultured in a 12-well plate at a

density of 1x106/ml overnight. The cells were collected after passing through a 70 μm mesh

and used for flow cytometry the following day.

T-cell phenotyping by flow cytometry

The isolated skin cells were washed in staining buffer (PBS with 0.2% BSA and 0.09% NaN3)

and treated with Fc-blocking antibody (anti-CD16/CD32, BD Biosciences) for 15 min. The

cells were then stained with the following directly conjugated antibodies: anti- CD3 (PE or

APC-Cy7) in combination with anti-β TCR (PerCPCy5.5), anti-δ TCR (FITC), anti-CD4

(PECy7), anti-CD8 (APC-Cy7) and anti-CD69 (PE-Cy7). After 30 min of incubation on ice,

the cells were washed and resuspended in staining buffer. Appropriate isotype controls were

used for all staining. All data were acquired using a LSRII (BD Biosciences) and analyzed using

FlowJo (Tree Star) software. A minimum of 50,000 events was collected and live cells were

gated according to forward- and side-scatter properties. Absolute cell count was determined as

% positive cells obtained as follows:

flow cytometry % x total number of cells per gm of wet weight
=
100

CD4+ and CD8+ subsets were gated on total T-cells from sham and burn mice and cell

count for these subsets was determined as % positive cells (CD4+ or CD8+ single positive

cells). The CD4+ and CD8+ cell counts (as determined above) were used to determine the

CD4:CD8 ratio of gated T-cells from sham and burn mice.

Statistical analysis

Data are expressed as mean ± SEM. Comparisons were analyzed using ANOVA and student’s

t-test was used for comparisons between two groups. A p-value of< 0.05 was considered to be

statistically significant for all analyses.

Results

Increased numbers of T-cells are present in the burn wound

Burn injury induced a marked influx of CD3+ T-cells into the wound site (Fig 1). A greater

than 20-fold increase in the number of T-cells in the injured skin was observed as compared

with uninjured skin from sham mice. Under normal conditions (sham skin) only 6.8% of the

skin cells were CD3+, whereas 24% of the skin cells were CD3+ in the burn wound. Further

analysis of the CD3+ cells revealed that the influxing T-cells were positive for αβ TCR (Fig 2).

Burn wound t-cells
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In contrast, in sham skin γδ T-cells were the predominant T-cell population and their numbers

were slightly, but significantly, reduced in the burn wound. (Fig 3).

After injury CD4 and CD8 expression differs between αβ and γδ T-cells

Further characterization of the αβ T-cells in the skin revealed that while they were a limited

population in the sham skin, the αβ T-cells present were mainly CD8+ (71%; Fig 4A). After

burn, there was a huge infiltration of αβ T-cells into the wound site (Fig 4). Forty-eight percent

of the burn wound αβ T-cells were CD8+ T-cells, whereas approximately 30% of αβ T-cells

belonged to CD8-CD4- population (Fig 4A). When compared to sham mice the actual num-

bers of CD4-CD8-, CD4+CD8- and CD4-CD8+ αβ T-cells were significantly increased in the

burn wound (Fig 4B).

The T-cells found in sham skin were mainly composed of γδ T-cells and they were

decreased significantly in the burn wound (Fig 3). Further characterization of these cells

revealed that the vast majority of them in sham skin (76%) were CD4-CD8- with 22% being of

the CD4+CD8- subset (Fig 5A). In the burn wound the CD4+CD8- population increased to

59% of the γδ T-cells present, whereas the double negative population decreased to 36%. In

Fig 1. Total T-cells. After 24 h of sham or burn procedure, skin cells were studied for total T-cells using flow cytometry. [A] Gating strategy and

representative dot plots of CD3+ T-cells from sham (upper panel) and burn mice (lower panel). [B] The number of total T-cells/g wet weight of the skin

tissue from sham and burn mice. Data are mean ± SEM for 5–9 mice/group; *p < 0.05 vs. sham.

https://doi.org/10.1371/journal.pone.0179015.g001

Burn wound t-cells

PLOS ONE | https://doi.org/10.1371/journal.pone.0179015 June 2, 2017 4 / 12

https://doi.org/10.1371/journal.pone.0179015.g001
https://doi.org/10.1371/journal.pone.0179015


comparison to γδ T-cells from sham mice only the actual numbers of CD4-CD8- decreased in

the burn wound (Fig 5B).

Burn alters the CD4:CD8 ratio at the wound site

The CD4:CD8 ratio of CD3+ T-cells is shown in Table 1. A significant elevation in the num-

bers of helper (CD4+) and (CD8+) T-cells was found at the wound site as compared with skin

from sham mice. A marked decrease in the CD4:CD8 ratio was observed in the burn wound as

compared with uninjured skin from sham mice (0.26 vs. 0.71 for burn and sham, respectively).

This change in the CD4:CD8 ratio was predominately due to a greater influx CD8+ cells as

compared with CD4+ T-cells. While the numbers of both T-cell populations increased in the

burn wound, CD8+ cells increased ~15-fold whereas CD4+ cells increased ~50-fold as com-

pared with sham skin levels.

CD69 expression on αβ and γδ T-cells is differentially affected by burn

Analysis of αβ T-cells for their activation status (CD69 expression) revealed that overall CD69

expression was low and significantly reduced in the burn wound (Fig 6). Similarly, only a

Fig 2. Total αβ T-cells. After 24 h of sham or burn procedure, skin cells were studied for αβ T-cells using flow cytometry. [A] Representative dot plots of β
TCR+ αβ T-cells from sham (upper panel) and burn mice (lower panel). The αβ T-cells are gated from the total T-cell population. [B] The number of αβ T-

cells/g wet weight of the skin tissue from sham and burn mice. Data are mean ± SEM for 5–9 mice/group; *p < 0.05 vs. sham.

https://doi.org/10.1371/journal.pone.0179015.g002

Burn wound t-cells
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small percentage of γδ T-cells expressed CD69; however, in contrast to αβ T-cells, the percent

of γδ T-cells expressing CD69 doubled at the wound site as compared with sham skin (Fig 6).

In terms of cell numbers (normalized per gram of wet weight of tissue), the number of αβ T-

cells in sham skin that were positive for CD69 expression was comparable to that of γδ T-cells

(8.6 x 103 vs. 6.2 x 103 cells/g wet tissue). However, after burn, the absolute number of CD69+

T-cells decreased overall. With regard to the T-cell subsets, the number of CD69+ αβ T-cells

was increased significantly at the burn wound when compared to wound CD69+ γδ T-cells

(4.9 x 103 vs. 1.0 x 103 cells / g wet tissue).

Discussion

The association between inflammation, involving the complex interaction of various immune

cells, and successful wound healing has been well documented [4, 5, 19, 20]. Our laboratory

has demonstrated an important role for T-cells in the burn wound inflammatory milieu,

recruitment of immune cells to the injury site and healing [8–10, 21]. Based on this central

role of T-cells in the burn wound, the current study was performed to further characterize the

wound T-cell populations.

Fig 3. Total γδ T-cells. After 24 h of sham or burn procedure, skin cells were studied for γδ T-cells using flow cytometry. [A] Representative dot plots of δ
TCR+ γδ T-cells from sham (upper panel) and burn mice (lower panel). The γδ T-cells are gated from the total T-cell population. [B] The number of γδ T-

cells/g wet weight of the skin tissue from sham and burn mice. Data are mean ± SEM for 5–9 mice/group; *p < 0.05 vs. sham.

https://doi.org/10.1371/journal.pone.0179015.g003

Burn wound t-cells
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Consistent with our previous findings, we observed a marked elevation in the wound T-cell

populations [10]. This is consistent with the findings of Purcell et al.[22] whom demonstrated

an expansion of the CD4+ T-cell population in the draining lymph nodes of the burn site. We

found that the CD4:CD8 T-cell ratio was decreased in the burn wound. This decreased T-cell

ratio was due to a marked elevation in CD8+ T-cells as compared with CD4+ cells after burn

resulting in a depressed CD4:CD8 T-cell ratio. A low CD4:CD8 ratio has been observed in

non-healing venous leg ulcers and increased numbers of CD8+ “down-regulatory” suppressor

Fig 4. CD4 and CD8 populations of αβ T-cells. After 24 h of sham or burn procedure, skin cells were studied to characterize CD4 and CD8 populations

of αβ T-cells using flow cytometry. [A] Gating strategy demonstrating CD4-CD8- (Q1), CD4+CD8- (Q2), CD4-CD8+ (Q3) and CD4+CD8+ (Q4) αβ T-cells

from sham and burn mice. [B] Graphical representation of CD4 and CD8 populations of αβ T-cells. Data are mean ± SEM for 5–9 mice/group; *p < 0.05 vs.

respective sham.

https://doi.org/10.1371/journal.pone.0179015.g004

Burn wound t-cells
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T-cells may have contributed to such complications [23, 24]. Studies suggest that CD4+ T-cells

promote wound healing, whereas and CD8+ T-cells are inhibitory to the process [25, 26].

One of the more striking observations we made was the profound expansion of the “double

negative” CD4-CD8- αβ T-cell population in the burn wound as compared with normal skin.

Early studies from Herndon’s group [27] showed a similar double negative population in the

spleens of burn mice. These cells were suppressive as they inhibited lymphocyte proliferation

and supported a Th2 type phenotype. Double-negative T cells normally exist as a small (1%–

5%) population of lymphocytes in the blood and lymphoid tissues and have been shown to be

Fig 5. CD4 and CD8 populations of γδ T-cells. After 24 h of sham or burn procedure, skin cells were studied to characterize CD4 and CD8 populations

of γδ T-cells using flow cytometry. [A] Gating strategy demonstrating CD4-CD8- (Q1), CD4+CD8- (Q2), CD4-CD8+ (Q3) and CD4+CD8+ (Q4) γδ T-cells

from sham and burn mice. [B] Graphical representation of CD4 and CD8 populations of γδ T-cells. Data are mean ± SEM for 5–9 mice/group; *p < 0.05 vs.

respective sham.

https://doi.org/10.1371/journal.pone.0179015.g005

Burn wound t-cells
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important in immune regulation, host defense and inflammation [28]. Crispin et al. [29]

described an IL-17 producing double-negative T-cell in lupus patients. Interesting Sasaki et al.

[18] showed a marked elevation in IL-17 in the burn wound early after injury. It can be specu-

lated that this wound IL-17 spike was a result of the infiltrating double-negative T-cells.

On the other hand, we found that the γδ T-cells from the normal uninjured skin were pre-

dominantly of a CD4-CD8- double negative phenotype that was decreased significantly in the

burn wound. Double negative CD4-CD8- T-cells have been shown to control important

immunological functions in various human diseases and are known to be inflammatory and

regulatory in nature [30, 31]. A high frequency of CD4-CD8- αβ T-cells observed in M. tuber-
culosis-infected patients was associated with disease severity. The group also demonstrated

that CD4-CD8- population of αβ and γδ T-cells expressed selective cytokines based on the dis-

ease severity. Low disease severity was associated with a pro-inflammatory cytokine profile,

Table 1. Cell numbers of CD4 and CD8 subsets.

Total T-cells (x103) per gram wet weight of skin tissue

CD4+CD8- CD4-CD8+ CD4:CD8 Ratio

Sham 4.8 ± 3.9 62.7 ± 6.4 0.71± 0.01

Burn 259.2 ± 110.3* 989.6 ± 361.8*† 0.26± 0.07*

Isolated single cells from sham and burn mice were studied for CD4 and CD8 populations of total T-cells using flow cytometry. Data are mean ± SEM for 4

mice/group;

* p < 0.05 vs. respective sham,
† p<0.05 vs. CD4+CD8- group.

https://doi.org/10.1371/journal.pone.0179015.t001

Fig 6. CD69 expression on αβ and γδ T-cells. After 24 h of sham or burn procedure, skin cells were studied for the activation marker, CD69, by αβ and

γδ T-cells using flow cytometry. [A-B] Graphical representation of CD69 percentages by αβ and γδ T-cells, respectively. Data are mean ± SEM for 5–9

mice/group; *p < 0.05 vs. respective sham.

https://doi.org/10.1371/journal.pone.0179015.g006

Burn wound t-cells
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whereas severe tuberculosis was associated with enhanced IL-10 production. Based on this

data, we may speculate that high frequency of CD4-CD8- αβ T-cells present at the wound site

may regulate the severity and the outcome of the burn injury and associated wound healing.

We speculate that double negative CD4-CD8- αβ T-cells accumulate in the burn wound in

order to regulate the other immune cells such as CD8+ αβ T-cells or CD4-CD8- γδ T-cells.

Also, CD4-CD8- αβ T-cells have been shown to be involved in antiviral and antibacterial

defense [32]. Thus, these CD4-CD8- αβ T-cells may also be involved in limiting wound site

infections.

Burn wound αβ T-cells had significantly reduced CD69 expression, suggesting a down reg-

ulation of these cells. In contrast, burn wound γδ T-cells were activated as evidenced by

increased CD4 and CD69 expression. There is a growing body of literature supporting this

data of activated γδ T-cells after inflammation, injury and/or infection [5, 33, 34].

Our study herein is limited by the lack of a functional characterization of the T-cell subsets,

such as cytokine production or myeloid cell activation. Nonetheless, previous work from our

laboratory has shown that functionally wound γδ T-cells regulate T-cell and myeloid suppres-

sor cell infiltration, myeloid cells responses (cytokines and iNOS expression) and are impor-

tant in the regulation of wound growth factor levels [8, 10, 21, 35]. The wound infiltrating αβ
T-cells support a Th-2 and Th-17 response that is evident at later times post-injury (i.e., 3–7

days) [10, 35] How the burn-induced changes in the T-cell subsets shown in the current study

impact burn wound cell functions and wound healing remains to be determined.

Conclusions

The results presented herein demonstrate the development of a suppressed T-cell response

(i.e., decreased CD4:CD8 ratio) in the burn wound and possible involvement double-negative

T-cells in burn wound pathogenesis. The mechanism by which these changes in wound T-

cells occurs is likely multifactorial and related in part to burn-induced changes in growth fac-

tors, cytokines, and hematopoietic responses [8, 18, 36]. These double-negative T-cells are

likely candidates in quelling the early inflammatory response to injury via suppressing lym-

phocyte proliferation, suppression of myeloid cell activation via Th-2 cytokines and/or

recruitment of myeloid suppressor cells. In this regard, we speculate that these T-cells may be

important in regulating the transition from the inflammatory to tissue remodeling stages of

wound healing. Thus, this unique wound T-cell population may be an important therapeutic

target for improving wound healing and recovery in burn patients.
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