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Background: Coronary artery disease (CAD) is the leading cause of mortality worldwide. Recent advances 
in deep learning technology promise better diagnosis of CAD and improve assessment of CAD plaque 
buildup. The purpose of this study is to assess the performance of a deep learning algorithm in detecting 
and classifying coronary atherosclerotic plaques in coronary computed tomographic angiography (CCTA) 
images.
Methods: Between January 2019 and September 2020, CCTA images of 669 consecutive patients with 
suspected CAD from Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese 
Medicine were included in this study. There were 106 patients included in the retrospective plaque detection 
analysis, which was evaluated by a deep learning algorithm and four independent physicians with varying 
clinical experience. Additionally, 563 patients were included in the analysis for plaque classification using 
the deep learning algorithm, and their results were compared with those of expert radiologists. Plaques were 
categorized as absent, calcified, non-calcified, or mixed.
Results: The deep learning algorithm exhibited higher sensitivity, specificity, positive predictive value 
(PPV), negative predictive value (NPV), and accuracy {92% [95% confidence interval (CI): 89.5–94.1%], 
87% (95% CI: 84.2–88.5%), 79% (95% CI: 76.1–82.4%), 95% (95% CI: 93.4–96.3%), and 89% (95% CI: 
86.9–90.0%)} compared to physicians with ≤5 years of clinical experience in CAD diagnosis for the detection 
of coronary plaques. The algorithm’s overall sensitivity, specificity, PPV, NPV, accuracy, and Cohen’s kappa 

3850

https://crossmark.crossref.org/dialog/?doi=10.21037/qims-23-1513


Liang et al. Coronary atherosclerotic plaques on CCTA using deep learning algorithm3838

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2024;14(6):3837-3850 | https://dx.doi.org/10.21037/qims-23-1513

Introduction

Coronary artery disease (CAD) is the leading cause of 
mortality worldwide (1,2). Accurate diagnosis of CAD 
presence and severity is pivotal in determining appropriate 
clinical management for symptomatic patients (3). 
Traditionally, digital subtraction angiography has served as 
the gold standard for diagnosing CAD (4). Other coronary 
plaque imaging methods, such as intravascular ultrasound 
and optical coherence tomography, have also been employed 
to identify culprit coronary atherosclerosis (5,6). However, 
these invasive imaging techniques may entail complications 
such as arrhythmia, myocardial infarction, or strokes (7,8). 

In  contras t ,  coronary  computed  tomographic 
angiography (CCTA) is a non-invasive technique capable 
of accurately detecting obstructive CAD and evaluating 
atherosclerotic plaque burden in the coronary artery  
(7,9-13). Despite its reliability as a diagnostic tool, utilizing 
CCTA for coronary artery assessment remains time-
consuming and requires extensive expertise (14,15).

Recent advancements in deep learning technology 
have shown promising results in enhancing the efficiency 
of CAD plaque assessment (14,16-24). For the optical 
coherence tomography images, Liu et al. proposed a 
framework which automatically segmented lumen and 
calcified plaque, by leveraging deep learning techniques (25). 
For CCTA images, a significant contribution to this field 
is the development of a deep learning-based technology 
that leverages an enhanced three-dimensional (3D) U-Net 
architecture. This advanced version of the 3D U-Net 
incorporates a bottle-neck design for fully automated 
segmentation, alongside a connected growth prediction 
model (CGPM) for the repair of segmentation fractures 

(3,26). Crucial to its design, this architecture is augmented 
with attention mechanisms and residual modules, which 
are not explicitly mentioned but integral to its operation. 
The attention mechanisms enable focused analysis of salient 
image features critical for the accurate identification of 
obstructive CAD, while the residual modules facilitate the 
training of deeper networks by alleviating the vanishing 
gradient problem, thus enhancing the model’s ability 
to learn complex patterns in the data. This nuanced 
architecture has demonstrated the capability to accurately 
and effectively identify obstructive CAD (21), showcasing 
the potential of deep learning in revolutionizing CAD 
plaque assessment. However, the widespread application 
of this technology necessitates rigorous validation of 
its diagnostic efficiency. Moreover, it is imperative to 
benchmark the accuracy and reliability of this deep learning 
approach against the diagnostic performance of physicians 
at various levels of expertise.

This study has a dual purpose: firstly, to determine 
the capability of deep learning technology in detecting 
coronary plaques by comparing it with physicians at varying 
diagnostic levels; secondly, to assess its ability to distinguish 
between different types of plaques. We present this article 
in accordance with the STARD reporting checklist (available 
at https://qims.amegroups.com/article/view/10.21037/
qims-23-1513/rc).

Methods

The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013). The study was 
approved by the Institutional Review Board of Nanjing 
Drum Tower Hospital Clinical College of Nanjing 

for plaque classification were 94% (95% CI: 92.3–94.7%), 90% (95% CI: 88.8–90.3%), 70% (95% CI: 68.3–
72.1%), 98% (95% CI: 97.8–98.5%), 90% (95% CI: 89.8–91.1%) and 0.74 (95% CI: 0.70–0.78), indicating 
strong performance.
Conclusions: The deep learning algorithm has demonstrated reliable and accurate detection and 
classification of coronary atherosclerotic plaques in CCTA images. It holds the potential to enhance the 
diagnostic capabilities of junior radiologists and junior intervention cardiologists in the CAD diagnosis, as 
well as to streamline the triage of patients with acute coronary symptoms.
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University of Chinese Medicine (No. 2022-547-01), 
and individual consent for this retrospective analysis was 
waived. Between January 2019 and September 2020, CCTA 
images of 773 consecutive patients with suspected CAD 
from Nanjing Drum Tower Hospital Clinical College of 
Nanjing University of Chinese Medicine were collected. 
First, of 773 patients, 38 patients with poor quality CCTA 
images were excluded. Second, 59 patients with a history 
of coronary stenting or coronary artery bypass grafting 
were excluded. Thirdly, 7 patients with severe cardiac or 
coronary anatomical variants were excluded. Finally, CCTA 
images from a total of 669 patients were included in this 
study (Figure 1). These patients were divided into two 
groups to evaluate the performance of the deep learning 
algorithm: Group 1, consisting of 106 patients, for plaque 
detection, and Group 2, comprising 563 patients, for plaque 
type characterization. 

In Group 1, the algorithm’s results were compared 
with assessments made by physicians with varying levels 
of expertise: a cardiovascular research radiologist (K.Y., 
<2 years of clinical experience), a junior cardiovascular 
radiologist (W.C., 3 years of clinical experience), an 
intervention cardiologist (R.G., 5 years of clinical 
experience), and a senior cardiovascular radiologist (H.Y., 
5 years of clinical experience). Diagnostic outcomes from 
two expert cardiovascular radiologists (H.L. and D.M., 
>10 years of clinical experience) were considered the gold 
standard for comparison. Any disparities were resolved 
through a consensus process among them. Moreover, these 

two expert radiologists interpreted CCTA images from the 
remaining 563 patients (Group 2), categorizing plaques 
as absent, calcified, non-calcified, or mixed calcified per 
segment, following Society of Cardiovascular Computed 
Tomography (SCCT) guidelines (27,28) (see Figure 2). The 
algorithm’s outputs were then compared to these expert 
interpretations. All physicians were blind to the patients’ 
clinical information.

Imaging acquisition and analysis

All CCTA scans were conducted using a 256-slice 
computed tomography (CT) scanner (Brilliance iCT, 
Phi l ips  Healthcare ,  Cleveland,  OH, USA) us ing 
electrocardiography (ECG)-gated prospective-triggered 
technology. The following acquisition parameters were 
applied: a tube voltage of 100 kVp, detector collimation 
of 128×0.625 mm, a rotation time of 0.27 seconds and 
automatic tube current modulation enabled (DoseRight 
with index setting of 16, Philips Healthcare). A total of 
65 mL of iopromide with an iodine concentration of  
370 mg/mL (Ultravist, Bayer, Guangzhou, China) was 
intravenously administered at 4–5 mL/s, followed by 50 mL 
of normal saline at same injection speed. The bolus tracking 
technique was employed, with a delay of 7 seconds after 
reaching a trigger threshold of 130 Hounsfield unit (HU) in 
the proximal descending aorta.

As per SCCT guidelines (27,28), atherosclerotic plaque 
analysis in the coronary artery segments was performed 

773 patients’ CCTA images between 
January 2019 and September 2020

735 patients’ CCTA images between 
January 2019 and September 2020

38 patients with poor quality CCTA 
images

59 patients with a history of coronary 
stenting or a history of coronary artery 
bypass grafting

7 patients with severe cardiac or 
coronary anatomical variants

676 patients’ CCTA images between 
January 2019 and September 2020

669 patients’ CCTA images between January 
2019 and September 2020 were included

Figure 1 A flow diagram of study population. CCTA, coronary computed tomographic angiography.
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using a dedicated workstation (IntelliSpace Portal, Philips 
Healthcare). The evaluation covered 18 coronary artery 
segments: proximal right coronary artery (pRCA, 1), middle 
right coronary artery (mRCA, 2), distal right coronary 
artery (dRCA, 3), right posterior descending artery (R-PDA, 

4), left main (LM, 5), proximal left anterior descending 
(pLAD, 6), middle left anterior descending (mLAD, 7), 
distal left anterior descending (dLAD, 8), diagonal 1 (D1, 9), 
diagonal 2 (D2, 10), proximal circumflex (pCx, 11), obtuse 
marginal 1 (OM1, 12), mid and distal left circumflex (LCx, 
13), obtuse marginal 2 (OM2, 14), posterior descending 
artery from LCx (L-PDA, 15), right posterior lateral branch 
(R-PLB, 16), ramus intermedius (RI, 17), and posterior 
lateral branch from LCx (L-PLB, 18) (Figure 3).

The interpretation of CCTA images involved the 
following steps: 

(I)	 Image loading and review: loading the CCTA 
image series onto the workstation for reviewing the 
original axial images to assess quality and identify 
anatomical landmarks.

(II)	 Heart segmentation stage: manual correction or re-
segmentation, if required.

(III)	 Coronary extraction: verification, correction, or 
manual definition of coronary artery segmentation, 
vessel centerlines, and their labels. A straightened 
multi-planar reconstruction (MPR) image of the 
selected artery was provided.

(IV)	 Coronary analysis: including plaque detection, 
diameter and area measurements of stenosis, and 
selection of reference locations. Volume-rendered 
images, curved MPR images, straightened MPR 
images, and cross-section images of vessels were 
provided for analysis.

(V)	 Plaque analysis: calculation and display of plaque 
content as the percent (%) of calcified plaque, 
mixed plaque, and non-calcified plaque based on 

A B C D

Figure 2 Classification of coronary atherosclerotic plaques using CTA by two experienced cardiovascular radiologists on consensus as 
internal reference for deep learning. (A) Absence of plaques in the left anterior descending artery; (B) calcified plaques (arrow); (C) non-
calcified plaque (arrow); and (D) mixed plaque (calcified and non-calcified, open arrow). CTA, computed tomographic angiography.

Figure 3 Schematic diagram of the 18 coronary artery segments. 
1, proximal right coronary artery (pRCA); 2, middle right coronary 
artery (mRCA); 3, distal right coronary artery (dRCA); 4, right 
posterior descending artery (R-PDA); 5, left main (LM); 6, 
proximal left anterior descending (pLAD); 7, middle left anterior 
descending (mLAD); 8, distal left anterior descending (dLAD); 
9, diagonal 1 (D1); 10, diagonal 2 (D2); 11, proximal circumflex 
(pCx); 12, obtuse marginal 1 (OM1); 13, mid and distal left 
circumflex (LCx); 14, obtuse marginal 2 (OM2); 15, posterior 
descending artery from LCx (L-PDA); 16, right posterior lateral 
branch (R-PLB); 17, ramus intermedius (RI); 18, posterior lateral 
branch from LCx (L-PLB).
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pre-defined HU thresholds. The interpretation 
time was recorded from image loading to plaque 
detection or plaque analysis.

Deep learning algorithm 

A deep learning-based system (Coronary Doc, ShuKun 
Technology, Beijing, China) was employed for coronary 
artery segmentation and plaque detection. This system 
primarily utilized 3D U-Net1 architecture with a bottle-
neck design for fully automated segmentation and a 
CGPM for segmentation fracture repair (26,29). After 
transferring the original axial images to the system, various 
image reconstructions, such as multiple planar reformat, 
straightened rendering, curve planar reformat, maximum 
intensity projection, and volume rendering images, were 
created based on the segmentation. 

Further enhancing the 3D U-Net1 architecture, 
a dedicated 3D U-Net model (U-Net2) was trained 
specifically for recognizing plaques within the coronary 
arteries. Data cubes sized 60×60 (within the cross-sectional 
plane) ×128 (along the centerline) were extracted from 
the straightened arteries and input into the model. This 
model consisted of a five-layer encoding structure, a five-
layer decoding structure, and a max-pooling output layer. It 
underwent 100 epochs of training using stochastic gradient 
descent as the optimizer, starting with a learning rate of 
0.01 and halving it every 20 epochs. The output layer of 
U-Net2 generated two probability curves, each 128 pixels 
in length, corresponding to calcified and non-calcified (soft) 
plaques (16,18,21,22,26,30,31) (Figure 4). In this context, 
a calcified plaque referred to a plaque with a CT value of 
≥130 HU, commonly used to quantify calcification burden 
in clinical trials and identify calcified plaques in CCTA 
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Figure 4 Schematic diagram of the deep learning-based plaque detection algorithm workflow. (A) Stack of transverse images; (B) 
segmentations of aorta and coronary arteries (red area); (C) volume rending image of aorta and coronary arteries; (D) straightened rendering 
image of the left anterior descending artery; (E) architect of three-dimensional U-Net2 model; and (F) two probability curves corresponding 
to calcified and noncalcified plaques, respectively.
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images. Conversely, a non-calcified plaque was defined by 
a CT value of <130 HU, while a mixed plaque denoted 
the overlap between calcified and non-calcified plaque 
positions. Plaque locations were determined by areas in the 
probability curve exceeding the cut-off value.

This deep learning-based system was integrated 
into the picture archiving and communication system 
(PACS), automatically analyzing coronary axial computed 
tomographic angiography (CTA) images transferred 
to PACS. It provided preliminary results, including 
comprehensive 3D reconstructions for curved plane 

reconstruction (CPR), lumen, and multi-cross sections, 
along with location identification, qualitative and 
quantitative plaque analyses. The interpretation time using 
this system involved opening the initial report, reviewing 
reconstructed images, and confirming the final report.

Statistical analysis

Statistical analysis was conducted to evaluate the deep 
learning model’s performance using R (version 4.1.1, R 
Foundation for Statistical Computing, Vienna). Sensitivity, 
specificity, positive predictive value (PPV), negative 
predictive values (NPV), accuracy, and Cohen’s kappa were 
calculated. Cohen’s kappa>0.61 was considered to have 
strong consistency. Categorical variables were presented 
as counts or percentages, while continuous variables 
were described as means with standard deviations (SD). 
McNemar’s test was utilized for continuous, two-sided, 
paired variables, with a two-tailed P value <0.05 considered 
significant.

Results

The 669 patients were divided into two groups to evaluate 
the performance of the deep learning algorithm: Group 1, 
consisting of 106 patients, for plaque detection, and Group 
2, comprising 563 patients, for plaque type characterization. 
Patient demographics are summarized in Table 1. 

Coronary plaque detection efficiency of deep learning 
compared to physicians 

The average sensitivity, specificity, PPV, NPV, and 
accuracy of the deep learning system were 92% [95% 
confidence interval (CI): 89.5–94.1%], 87% (95% CI: 
84.2–88.5%), 79% (95% CI: 76.1–82.4%), 95% (95% 
CI: 93.4–96.3%), and 89% (95% CI: 86.9–90.0%), 
respectively.  Comparative data for cardiovascular 
radiologists with varying experience levels were as 
follows: those with 5 years of clinical experience achieved 
an average sensitivity of 82% (95% CI: 78.3–84.7%), 
specificity of 86% (95% CI: 84.0–88.3%), PPV of 77% 
(95% CI: 73.6–80.4%), NPV of 89% (95% CI: 87.2–
89.3%), and accuracy of 85% (95% CI: 82.8–86.4%); 
those with 3 years of clinical experience had an average 
sensitivity of 80%(95% CI: 76.4–83.2%), specificity of 
82% (95% CI: 79.7–84.6%), PPV of 72% (68.1–75.2%), 
NPV of 88% (95% CI: 85.6–89.9%), and accuracy of 81% 

Table 1 Demographics of patients with suspected and known CAD

Demographics
Group 1 Group 2

All Values† All Values†

No. of patients 106 563

Female 39 (36.8) 225 (40.0)

Age, years 63±10 61±12

Indication

Chest pain 19 (17.9) 139 (24.7)

Chest tightness 31 (29.2) 163 (29.0)

CAD 28 (26.4) 155 (27.5)

Lower extremity edema 6 (5.7) 18 (3.2)

Shortness of breath 10 (9.4) 14 (2.5)

Others 12 (11.3) 74 (13.1)

History of CAD 70 52 (74.3) 400 330 (82.5)

BMI, kg/m2 72 374

<23 (normal) 25 (34.7) 85 (22.7)

23.00–27.49 (overweight) 21 (29.2) 122 (32.6)

≥27.5 (obesity) 26 (36.1) 167 (44.7)

Ever smoke  
(former and current)

53 14 (26.4) 271 94 (34.7)

Diabetes 93 33 (35.5) 292 106 (36.3)

Hypertension 96 67 (69.8) 364 271 (74.5)

Hyperlipidemia 83 23 (27.7) 270 90 (33.3)

Cardiovascular events 72 56 (77.8) 249 190 (76.3)

†, data are presented as mean ± SD or n (%). The indication “CAD” 
represents the suspicious diagnosis made by the doctor during 
the outpatient visit, based on the patient’s symptoms, laboratory 
tests, and other relevant factors. A history of CAD refers to a patient 
who has previously been diagnosed with CAD. Group 1: for plaque 
detection; Group 2: for plaque type characterization. CAD, coronary 

artery disease; SD, standard deviation; BMI, body mass index.
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Table 2 Efficiency of plaques in the coronary artery segments on CCTA identified by deep learning in comparison with physicians with different levels of 
proficiency

Segments Total

Ref. standard  
(2 radiologists with 

more than 10 years of 
clinical experience)

Deep learning

 Clinical experience

Radiologist with  
5 years

Radiologist with  
3 years

Radiologist with  
≤2 years

Intervention 
cardiologist with  

5 years

Positive Negative TP TN FP FN TP TN FP FN TP TN FP FN TP TN FP FN TP TN FP FN

pRCA 106 56 50 54 47 3 2 49 46 4 7 49 43 7 7 50 42 8 6 44 44 6 12

mRCA 106 45 61 40 46 15 5 35 53 8 10 35 48 13 10 42 54 7 3 37 51 10 8

dRCA 97 19 78 16 59 19 3 13 61 17 6 15 62 16 4 16 74 4 3 16 77 1 3

R-PDA 95 32 63 29 62 1 3 27 61 2 5 24 56 7 8 22 50 13 10 25 59 4 7

LM 106 41 65 40 49 16 1 28 56 9 13 31 55 10 10 20 43 22 21 32 59 6 9

pLAD 106 67 39 62 38 1 5 64 35 4 3 58 34 5 9 63 37 2 4 58 28 11 9

mLAD 106 55 51 52 36 15 3 47 38 13 8 46 44 7 9 51 44 7 4 49 47 4 6

dLAD 106 12 94 10 81 13 2 7 80 14 5 7 59 35 5 2 82 12 10 5 84 10 7

D1 106 35 71 32 58 13 3 23 60 11 12 27 62 9 8 14 42 29 21 27 55 16 8

D2 93 32 61 29 55 6 3 23 47 14 9 22 47 14 10 15 41 20 17 21 50 11 11

pCx 106 56 50 53 48 2 3 56 48 2 0 50 42 8 6 39 35 15 17 48 39 11 8

OM1 101 27 74 26 72 2 1 25 64 10 2 23 60 14 4 15 54 20 12 21 67 7 6

LCx 106 27 79 25 59 20 2 11 68 11 16 17 66 13 10 20 66 13 7 19 73 6 8

OM2 78 12 66 12 63 3 0 10 60 6 2 7 59 7 5 6 56 10 6 5 56 10 7

L-PDA 11 5 6 4 4 2 1 4 3 3 1 3 3 3 2 2 4 2 3 1 3 3 4

R-PLB 81 26 55 23 55 0 3 23 50 5 3 22 51 4 4 19 44 11 7 18 45 10 8

RI 45 11 34 9 32 2 2 10 29 5 1 10 28 6 1 6 24 10 5 5 24 10 6

L-PLB 25 12 13 9 10 3 3 11 13 0 1 10 12 1 2 10 11 2 2 7 9 4 5

Sensitivity, % 92 (89.5–94.1) 82 (78.3–84.7) 80 (76.4–83.2) 72 (68.4–75.9) 78 (73.1–80.2)

Specificity, % 87 (84.2–88.5) 86 (84.0–88.3) 82 (79.7–84.6) 79 (76.9–81.9) 86 (83.8–88.2)

PPV, % 79 (76.1–82.4) 77 (73.6–80.4) 72 (68.1–75.2) 67 (62.7–70.2) 76 (72.0–79.2)

NPV, % 95 (93.4–96.3) 89 (89.3–87.2) 88 (85.6–89.9) 84 (81.0–85.8) 87 (84.5–88.8)

Accuracy, % 89 (86.9–90.0) 85 (82.8–86.4) 81 (79.5 –83.3) 77 (74.8–78.9) 83 (80.8–84.6)

Data in parentheses are 95% confidence interval. CCTA, coronary computed tomographic angiography; TP, true positive; TN, true negative; FP, 
false positive; FN, false negative; PPV, positive predictive value; NPV, negative predictive value; pRCA, proximal right coronary artery; mRCA, 
middle right coronary artery; dRCA, distal right coronary artery; R-PDA, right posterior descending artery; LM, left main; pLAD, proximal left anterior 
descending; mLAD, middle left anterior descending; dLAD, distal left anterior descending; D1, diagonal 1; D2, diagonal 2; pCx, proximal circumflex; 
OM1, obtuse marginal 1; LCx, mid and distal left circumflex; OM2, obtuse marginal 2; L-PDA, posterior descending artery from LCx; R-PLB, right 

posterior lateral branch; RI, ramus intermedius; L-PLB, posterior lateral branch from LCx.

(95% CI: 79.5–83.3%); while the research cardiovascular 
radiologist with less than 2 years of clinical experience 
achieved an average sensitivity of 72% (95% CI: 68.4–
75.9%), specificity of 79% (95% CI: 76.9%-81.9%), PPV 
of 67% (95% CI: 62.7–70.2%), NPV of 84% (95% CI: 
81.0–85.8%), and accuracy of 77% (95% CI: 74.8–78.9%). 

The intervention cardiologist with five years of clinical 
experience reached an average sensitivity of 78% (95% CI: 
73.1–80.2%), specificity of 86% (95% CI: 83.8–88.2%), 
PPV of 76% (95% CI: 72.0–79.2%), NPV of 87% (95% 
CI: 84.5–88.8%), and accuracy of 83% (95% CI: 80.8–
84.6%). For detailed results, refer to Table 2.
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Deep learning time efficiency on plaque classification

When radiologists  classif ied plaques per patient, 
interpretation time ranged from 280 to 995 s, with a mean 
of 658±150 s. In contrast, using the deep learning model, 
interpretation time ranged from 125 to 689 s, with a mean 
of 298±60 s. Significantly shorter interpretation time was 
observed with deep learning compared to radiologists 
(McNemar’s test, P<0.001) (Figure 5).

Deep learning performance on plaque classification

Among 563 patients, there were 1,233 calcified plaques, 416 
non-calcified plaques, and 130 mixed plaques. The overall 
sensitivity, specificity, PPV, NPV, and accuracy were 94% 
(95% CI: 92.3–94.7%), 90% (95% CI: 88.8–90.3%), 70% 
(95% CI: 68.3–72.1%), 98% (95% CI: 97.8–98.5%), and 
90% (95% CI: 89.8–91.1%), respectively, demonstrating 
substantial agreement (κ=0.74, 95% CI: 0.70–0.78) between 
the deep learning model and two expert cardiovascular 
radiologists in coronary atherosclerosis classification (Table 3).

For calcified plaques, sensitivity, specificity, PPV, NPV, 
and accuracy were 93% (95% CI: 91.9–94.7%), 96% 
(95% CI: 95.6–96.5%), 81% (95% CI: 78.6–82.8%), 99% 
(95% CI: 98.5–99.0%) and 96% (95% CI: 95.2–96.1%), 
respectively (Table 4). Lowest PPV, particularly in the dLAD 
and R-PLB areas, was the primary factor contributing to 
the overall lower PPV in characterizing calcified plaques 
with deep learning. In characterizing non-calcified plaques, 
mean sensitivity, specificity, PPV, NPV, and accuracy were 
84% (95% CI: 79.7–87.0%), 95% (95% CI: 94.7–95.7%), 
48% (95% CI: 44.6–52.1%), 99% (95% CI: 98.8–99.3%) 

and 95% (95% CI: 94.1–95.1%), respectively (Table 4). 
Similarly, the lowest PPV in the dLAD and R-PDA areas 
contributed to the lower average PPV in characterizing 
non-calcified plaques. Concerning mixed plaques, mean 
sensitivity, specificity, PPV, NPV, and accuracy were 72% 
(95% CI: 62.8–78.9%), 99% (95% CI: 99.4–99.7%), 79% 
(95% CI: 70.1–85.6%), 99% (95% CI: 99.2–99.6%), 81% 
(95% CI: 79.7–81.4%), respectively (Table 4).

Discussion

In our study, the employed deep learning-based system 
(Coronary Doc, ShuKun Technology, Beijing, China) offers 
multiple advantages over conventional algorithms. It utilizes 
a 3D U-Net1 architecture, providing a more comprehensive 
spatial context for accurate plaque detection compared to 
existing 2D models (21,29). Additionally, it significantly 
reduces subjectivity and time consumption associated with 
manual or semi-automatic plaque detection methods, thus 
enhancing efficiency and reproducibility. It has been tested 
on an NVIDIA GeForce GTX 1080 Ti graphics card with 
which it demonstrates the ability to complete the diagnosis 
process for CAD within 120 seconds. This timeframe 
includes the full range of computations, from initial image 
processing to the final output. Using more advanced 
graphics cards can further reduce this computation time, 
indicating that the model’s efficiency improves with better 
hardware. This scalability suggests the approach is not only 
effective with current technology but will also benefit from 
future advancements in graphics processing unit (GPU) 
capabilities. Furthermore, the integration of a CGPM for 
segmentation fracture repair notably improved plaque 
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Table 4 Identification of coronary calcified plaques, coronary non-calcified plaques and coronary mixed plaques on CCTA using deep learning in 
comparison with expert radiologists

Segments Total
Coronary calcified plaques Coronary non-calcified plaques Coronary mixed plaques

TP TN FP FN TP TN FP FN TP TN FP FN

pRCA 563 105 435 15 8 57 438 59 9 17 542 1 3

mRCA 563 122 414 20 7 40 442 72 9 6 550 5 2

dRCA 526 74 421 30 1 32 462 29 3 2 521 1 2

R-PDA 485 32 436 17 0 6 459 20 0 2 482 1 0

LM 563 101 440 15 7 17 537 7 2 4 557 0 2

pLAD 563 141 383 23 16 53 463 27 20 26 517 4 16

mLAD 563 162 365 22 14 49 453 48 13 11 547 2 3

dLAD 563 17 523 22 1 4 547 11 1 – – – –

D1 554 62 471 18 3 13 527 14 0 1 552 1 0

D2 399 34 356 8 1 10 385 4 0 – – – –

pCx 563 104 435 15 9 14 519 27 3 6 553 2 2

OM1 493 37 435 21 0 7 472 14 0 0 492 1 0

LCx 563 95 441 22 5 19 522 20 2 4 557 2 0

OM2 303 19 273 11 0 4 294 5 0 – – – –

L-PDA 78 5 70 2 1 3 73 2 0 4 72 1 1

R-PLB 462 14 436 8 4 10 445 2 5 6 455 0 1

RI 258 24 231 2 1 4 248 6 0 – – – –

L-PLB 101 4 91 3 3 6 89 5 1 4 88 4 5

Sensitivity (95% CI), % 93 (91.9–94.7) 84 (79.7–87.0) 72 (62.8–78.9)

Specificity (95% CI), % 96 (95.6–96.5) 95 (94.7–95.7) 99 (99.4–99.7)

PPV (95% CI), % 81 (78.6–82.8) 48 (44.6–52.1) 79 (70.1–85.6)

NPV (95% CI), % 99 (98.5–99.0) 99 (98.8–99.3) 99 (99.2–99.6)

Accuracy (95% CI), % 96 (95.2–96.1) 95 (94.1–95.1) 81 (79.7–81.4)

CCTA, coronary computed tomographic angiography; TP, true positive; TN, true negative; FP, false positive; FN, false negative; CI, 
confidence interval; pRCA, proximal right coronary artery; mRCA, middle right coronary artery; dRCA, distal right coronary artery; R-PDA, 
right posterior descending artery; LM, left main; pLAD, proximal left anterior descending; mLAD, middle left anterior descending; dLAD, 
distal left anterior descending; D1, diagonal 1;D2, diagonal 2; pCx, proximal circumflex; OM1, obtuse marginal 1; LCx, mid and distal 
left circumflex; OM2, obtuse marginal 2; L-PDA, posterior descending artery from LCx; R-PLB, right posterior lateral branch; RI, ramus 
intermedius; L-PLB, posterior lateral branch from LCx; PPV, positive predictive value; NPV, negative predictive value.

detection and segmentation (21,22). The dedicated 3D 
U-Net model (U-Net2) specifically trained for coronary 
arteries offers enhanced precision in plaque detection, 
providing a more detailed view of plaque morphology, 
composition, and distribution.

For deep learning-based coronary plaque detection 
models, the most basic function is to identify plaques as 
well as stenosis in the vessel lumen. Only when this basic 

function achieves a high degree of stability, the accurate 
classification of plaques may be further realized. In the 
first part of this study, the deep learning-based model 
demonstrated the significantly enhanced efficiency in 
coronary artery plaque detection when compared to 
radiologists or an intervention cardiologist with up to  
5 years of clinical experience. In the second part of this 
study, the model exhibited high consistency in classifying 
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coronary atherosclerotic plaques compared to expert 
radiologists while achieving this in a notably shorter 
interpretation time. Furthermore, our analysis revealed 
not only good sensitivity and accuracy but also excellent 
NPV in diagnosing coronary atherosclerotic plaques. This 
is particularly valuable in excluding culprit atherosclerotic 
plaques.

The implications of our study are significant. Firstly, 
in daily practice, prompt diagnosis and appropriate 
treatment of coronary atherosclerosis are crucial to prevent 
myocardial infarction and sudden death. In densely 
populated countries like China, efficiently identifying 
individuals at risk of CAD and providing effective treatment 
to those with the disease are imperative. CCTA, more 
accurately detecting CAD (32), holds clinical significance 
in identifying high-risk CAD patients using efficient deep 
learning techniques. Moreover, for CAD patients, quickly 
determining the location and hemodynamic status of culprit 
blood vessels may allow cardiovascular physicians sufficient 
time for precise treatment. Secondly, variations in CAD 
therapy among hospitals or physicians may lead to different 
outcomes for CAD patients. Therefore, accurate and 
precise CAD identification is crucial. The deep learning 
technology in our study holds the potential to minimize 
disparities and enhance the precision of CAD treatment 
among different medical institutions. Thirdly, leveraging 
the capabilities of deep learning to distinguish plaque 
types and its excellent negative prediction ability may help 
avoid unnecessary standardized treatments for some CAD 
patients. Additionally, the extensive use of deep learning 
could become an indispensable tool for training physicians 
in CAD diagnosis and treatment. The efficacy of our study's 
deep learning for diagnostics suggests that it can provide 
relatively reliable results and potentially help physicians of 
different expertise levels shorten the time required for CAD 
diagnosis training.

There are limitations in this study. Firstly, as a 
retrospective study, there might be data insufficiencies, 
leading to the exclusion of some clinically significant 
indicators from the analysis. Secondly, we did not evaluate 
whether deep learning can effectively assess the degree 
of coronary artery stenosis or analyze plaque burden 
and stability, both crucial CAD predictors. Additionally, 
the single-hospital dataset suggests a need for a larger, 
multi-center study to validate and expand our findings. 
Moreover, while our model has shown promising results, we 
acknowledge using a dataset with a high plaque prevalence 
might influence the model’s performance, potentially 

creating bias towards identifying plaques. Validation of 
our algorithm on datasets with varied plaque prevalence 
will ensure its robustness and generalizability for broader 
clinical use. Finally, the study also highlighted a lower PPV 
in the identification of coronary artery plaques, primarily 
attributed to the lower PPV in identifying calcified plaques 
in the dLAD and R-PLB, and non-calcified plaques in the 
dLAD and R-PDA. To improve the detection of lipid-rich 
and calcified plaques in these smaller branches, further 
training of this automated system with a larger number of 
plaques is warranted. Such plaque characterization may 
assist in identifying vulnerable plaques (33) and categorizing 
associated risks (34,35).

Conclusions

In conclusion, the deep learning algorithm demonstrates 
high efficacy in detecting coronary plaques, comparable 
to expert radiologists and superior to junior radiologists 
or interventional cardiologists. Moreover, the automated 
classification of coronary plaques using deep learning is 
time-saving and reliable, potentially aiding in triaging 
patients with acute coronary symptoms. This study lays 
the foundation for further development and utilization of 
deep learning in cardiac diagnostics and treatment, offering 
promising avenues for improving patient care.
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