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Abstract. Rheumatoid arthritis (RA), which normally mani-
fests as a multi‑joint inflammatory reaction, is a common 
immunological disease in clinical practice. However, the patho-
genesis of RA has not yet been fully elucidated. Rituximab 
(RTX) is an effective drug in the treatment of RA, however 
its therapeutic efficacy and mechanism of action require 
further investigation. Thus, the present study aimed to screen 
the candidate key regulatory genes and explain the potential 
mechanisms of RA. Gene chips of RA and normal joint tissues 
were analyzed and, gene chips of RTX before and after treat-
ment were investigated. In the present study, strong evidence 
supporting the pathogenesis of RA and mechanism of action 
of RTX were also revealed. Differentially expressed genes 
(DEGs) were analyzed using the limma package of RStudio 
software. A total of 1,150 DEGs were detected in RA compared 
with normal joint tissues. The upregulated genes were enriched 
in ‘interleukin‑12 production’, ‘I‑κB kinase/NF‑κB signaling’, 
‘regulation of cytokine production involved in immune 
response’ and ‘cytokine metabolic process’. Functional enrich-
ment analysis showed that RTX was primarily involved in the 
inhibition of ‘adaptive immune response’, ‘B cell activation 
involved in immune response’ and ‘immune effector process’. 
Subsequently, leukocyte immunoglobulin‑like receptor 
subfamily B member 1 (LILRB1), a hub gene with high 
connectivity degree, was selected, and traditional Chinese 
medicine libraries were molecularly screened according to 
the structure of the LILRB1 protein. The results indicated 
that kaempferol 3‑O‑β‑D‑glucosyl‑(1→2)‑β‑D‑glucoside 

exhibited the highest docking score. In the present study, the 
DEGs and their biological functions in RA and the pharma-
cological mechanism of RTX action were determined. Taken 
together, the results suggested that LILRB1 may be used as a 
molecular target for RA treatment, and kaempferol 3‑O‑β‑D
‑glucosyl‑(1→2)‑β‑D‑glucoside may inhibit the pathological 
process of RA.

Introduction

Rheumatoid arthritis (RA) is a chronic systemic disease 
accompanied by inflammatory synovitis that is mainly 
characterized by symmetrical distribution of invasive joint 
inflammation of the hand and foot  (1,2). In addition, RA 
exhibits increased interstitial inflammatory cell infiltration 
and bone tissue destruction, resulting in joint deformity and 
loss of function (3). Immune function is considered to be the 
main aspect associated with RA; RA is characterized by the 
induction of innate immune disorders, including immune 
complex‑mediated complement activation, osteoclast and 
chondrocyte activation and cytokine network dysregulation, 
which develop semi‑autonomous features that contribute to 
disease progression (4,5). However, the exact mechanism of 
RA development remains elusive and further investigation is 
required.

General, surgical and pharmaceutical therapies are widely 
applied in RA treatment  (6). The most commonly used 
pharmacological RA drugs include the administration of 
non‑steroidal anti‑inflammatory drugs, immunosuppressants, 
botanicals and biological agents  (7). Rituximab (RTX), a 
chimeric monoclonal antibody against the CD20 ligand of B 
lymphocytes, has been reported to exhibit therapeutic activity 
in the clinical treatment of RA (8); however, its therapeutic 
mechanism needs to be further investigated. Although several 
drugs alleviate pain in patients with RA, their efficacy is 
limited (9), therefore the development of novel and effective 
drugs for RA is required.

The present study aimed to further elucidate the pathogen-
esis of RA and identify potential drugs for RA treatment. The 
expression profiles of normal, RA control and RTX‑treated 
tissues were analyzed. A series of immune‑related genes, 
including leukocyte immunoglobulin‑like receptor subfamily 
B member 1 (LILRB1), were detected by screening the 
differentially expressed genes (DEGs). The results revealed 
that LILRB1 was associated with RA pathogenesis. LILRB1, 
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an inhibitory receptor broadly expressed in leukocytes, has 
been demonstrated to regulate immune responses by binding 
to MHC class I molecules on antigen‑presenting cells (10). 
Finally, Traditional Chinese Medicine (TCM) libraries were 
molecularly screened for this key functional gene in order to 
identify potential therapeutic drugs.

Materials and methods

Download of expression profile chip data and DEGs analysis. 
The screening of DEGs (11,12) in the synovial tissues of normal 
patients without RA and patients with RA (GSE55235) (13) 
was performed using the Gene Expression Omnibus (GEO) 
database (14) and differential gene analysis. In addition, DEG 
screening in RA and RTX‑treated patients (GSE24742) (15) 
was assessed using the GEO database and R, version 3.6.2. 
Data quality was determined by calculating residual sign, 
residuals, weight, relative log expression, normalized unscaled 
standard errors and RNA degradation. Finally, the differences 
in RNA expression profiles between groups were analyzed 
using the pheatmap and limma R packages  (16,17). |Log2 
fold‑change (FC)|≥1 and P<0.05 were set as the cutoff criteria 
for DEGs.

Gene Ontology (GO) and Kyoto Encyclopedia of Genes and 
Genomes (KEGG) analyses (18,19). The functions of DEGs 
were analyzed using the ClueGO plug‑in application in 
Cytoscape 3.6.1 (https://cytoscape.org). In addition, KEGG 
pathway enrichment analysis  (20) was carried out using 
ClueGO (21) and visualized using CluePedia (22). P<0.05 was 
set as the cutoff value.

Gene set enrichment analysis (GSEA). GSEA analysis was 
performed using the GSEA software (23). In brief, the method 
consisted of the following steps. First, the gene data, including 
expression profiles and class distinctions, were listed. Given 
a defined set of genes, the goal of GSEA was to determine 
whether the members of the gene set were found at the top 
or bottom of the list. Subsequently, an enrichment score was 
calculated in order to identify the degree of the over‑repre-
sented genes. Finally, a weighted enrichment statistics was 
carried out and the number of random permutations was set 
to 1,000 times.

Pathway analysis. DEGs were subjected to signal pathway 
enrichment analysis using the ConsensusPathDB database 
(http://cpdb.molgen.mpg.de) (24,25). The files containing the 
measured genetic data were uploaded to the database and 
subsequently pathway enrichment analysis was carried out 
using the gene set analysis function.

Protein‑protein interaction (PPI) analysis. The PPI network 
was analyzed using STRING software (https://string‑db.
org) (26). The organism selected was ‘Homo sapiens’. The 
interacting protein complexes that functionally influence the 
physiological processes of a disease and the PPI enrichment 
analysis reflected the interaction between DEGs.

TCM database and molecular docking simulation of LILRB1. 
A total of 32,364 compounds were obtained from the TCM 

database (http://tcm.cmu.edu.tw)  (27). The conformational 
energy of small molecules was minimized using the Maestro 
software (version 11.8, Schrödinger, LLC) by adding hydrogen 
atoms and removing counter ions and salts (28,29). The crystal 
structure of LILRB1 was downloaded from Protein Data 
Bank (structure no. 1UGN; http://www.rcsb.org) (30) and the 
protein structure was refined by removing crystalline water 
and ions. In addition, energy minimization was performed on 
the LILRB1 protein structure. TCM docking and the selec-
tion of candidate compounds was performed using the virtual 
screening workflow model of Schrodinger and Glide XP (extra 
precision), respectively (31‑33).

Results

Identification of DEGs in RA. The gene expression profiles 
of the synovial tissues of patients with RA from GSE55235 
were obtained from the GEO database. The microarray data 
from GSE55235 included synovial tissues from 10 healthy and 
10 RA joints. A total of 1,150 DEGs were extracted from the 
expression profile data set, including 508 downregulated and 
642 upregulated genes. |Log2FC|≥1 and P<0.05 were set as the 
cutoff criteria for DEGs. The distribution of DEGs is presented 
in a volcano plot (Fig. 1A). In addition, hierarchical cluster 
analysis was performed in order to obtain an overview of the 
expression profiles of normal and RA tissues (Fig. 1B). Finally, 
all heat maps demonstrated different adjustment directions 
and significant separation between normal and RA samples.

GO and KEGG analyses of DEGs in RA. GO and KEGG 
enrichment analyses of DEGs were performed using the 
ClueGO plug‑in in Cytoscape software, and subsequently 
the upregulated and downregulated genes were analyzed. 
The enriched upregulated genes were mainly associated with 
‘interleukin‑12 production’, ‘I‑κB kinase/NF‑κB signaling’, 
‘regulation of cytokine production involved in immune 
response’, ‘positive regulation of B cell differentiation’, ‘cyto-
kine metabolic process’ and ‘activation of immune response’ 
(Fig. 2A). The results of the pathway analysis showed that RA 
mainly affected the ‘Fcγ R‑mediated phagocytosis’, ‘natural 
killer cell‑mediated cytotoxicity’, ‘B cell receptor signaling 
pathway’, ‘NF‑κB signaling pathway’ and ‘leukocyte 
transendothelial migration’ (Fig. 2B). By contrast, the down-
regulated genes were mainly involved in ‘vasculogenesis’, 
‘regulation of DNA binding transcription factor activity’, 
‘cellular response to external stimulus’, ‘vascular process 
in circulatory system’, ‘blood circulation’ and ‘transcription 
factor binding’ (Fig. 3A). Finally, the pathway enrichment 
analysis indicated that the downregulated DEGs were mainly 
enriched in ‘tyrosine metabolism’, ‘FoxO signaling pathway’, 
‘regulation of lipolysis in adipocytes’ and ‘colorectal cancer’ 
(Fig. 3B).

Identification of DEGs based on RTX treatment data. A 
total of 54,675 genes were obtained from 12 control and 
12 RTX‑treated samples, and 941 DEGs (382 upregulated and 
559 downregulated) were identified. The volcano plot of DEGs 
is presented in Fig. 4A. The red, green and black dots indicate 
the upregulated, downregulated and non‑differentiated genes, 
respectively. Finally, the overview of the expression profiles 
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of DEGs before and after RTX treatment (Fig. 4B), and the 
distribution of genes between groups were revealed using a 
hierarchical cluster analysis.

GSEA and pathway enrichment analyses of DEGs after 
RTX treatment. GSEA was performed in order to further 
confirm the selected DEGs from the GO functional enrich-
ment analysis (Fig. 5A). GSEA revealed that RTX upregulated 
the expression of genes associated with the ‘positive regula-
tion of dendritic development’ and the ‘regulation of neuron 
migration’. By contrast, the ‘adaptive immune response’, 
‘anaphase‑promoting complex‑dependent catabolic process’, 
‘antigen processing and presentation’, ‘B cell activation 
involved in immune response’ and ‘immune effector process’ 
functions were suppressed. Additionally, pathway analysis was 
performed, using the online ConsensusPathDB database, in 
order to analyze the functional and signaling pathway enrich-
ment of the gene signatures (Fig. 5B).

The pathway enrichment analysis also revealed that 
the downregulated DEGs were enriched in the ‘PI3K‑Akt 
signaling pathway’, ‘type II  interferon signaling’, ‘Janus 
kinase/STAT signaling pathway’, ‘interleukin‑6 signaling 

pathway’, ‘T helper 17 cell differentiation’, and ‘interleukin‑4 
and interleukin‑13 signaling’. The aforementioned results 
supported the conclusion that RTX may treat RA via regu-
lating body immunity.

Identif ication of key candidate genes using STRING 
protein interaction network. A Venn diagram analysis of 
the upregulated and downregulated genes in RA and after 
RTX treatment groups, respectively, was performed  (34). 
The analysis identified 13 key genes that were subsequently 
analyzed using the STRING database (http://string‑db.org) 
for PPI network analysis (Fig. 6A). The results indicated 
that LILRB1 exhibited the highest interactivity confidence 
(Fig. 6B).

Screening of candidate compounds for RA treatment. The 
PPI network analysis indicated that LILRB1 was a key node 
gene associated with the mechanisms of RA pathogenesis. 
Therefore, the LILRB1 gene was selected for virtual drug 
screening. A set of molecular recognition strategies for TCM 
compounds identification was designed via structure‑based 
high‑throughput virtual screening. The filtering process is 

Figure 1. Analysis of differentially expressed genes between normal and rheumatoid arthritis joint synovial tissue samples. (A) Volcanic map of genes between 
normal and rheumatoid arthritis joint synovial tissue samples. Red and green dots indicate the upregulated and downregulated genes, respectively. The black 
dots correspond to gene expression with |log2FC|<1. The x‑axis represents false discovery rate and the y‑axis denotes the value of log2FC. (B) Cluster analysis 
results based on the expression profiles of differentially expressed genes. FC, fold-change.
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Figure 2. Enrichment analysis of upregulated genes. (A) GO enrichment analysis of upregulated genes. (B) KEGG enrichment analysis of upregulated genes. 
GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes.
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Figure 3. Enrichment analysis of downregulated genes. (A) GO enrichment analysis of downregulated genes. (B) KEGG enrichment analysis of downregulated 
genes. GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes.
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presented in Fig. 7A. Briefly, a total of 872 TCM compounds 
demonstrating the highest docking score with LILRB1 were 
screened using the high‑throughput method, and 43 of them 
were selected. Subsequently, 5 candidate TCM compounds 
were obtained via precise docking. Among them, kaemp-
ferol 3‑O‑β‑D‑glucosyl‑(1→2)‑β‑D‑glucoside exhibited 
the highest binding capacity. The interaction between 
LILRB1 and kaempferol 3‑O‑β‑D‑glucosyl‑(1→2)‑β‑D‑g
lucoside is shown in Fig. 7B. The key amino acid residues 
Cys144, Arg72, Pro90, Val15 and Glu136 of the kaempferol  

3‑O‑β‑D‑glucosyl‑(1→2)‑β‑D‑glucoside binding site inter-
acted with LILRB1 via hydrogen bonds (Fig.  7B). The 
3D conformation of the interaction and surface binding 
of kaempferol 3‑O‑β‑D‑glucosyl‑(1→2)‑β‑D‑glucoside 
and LILRB1 with other proteins were analyzed in order 
to identify additional protein interactions (Fig. 8A and B). 
The aforementioned results indicated that kaempferol  
3‑O‑β‑D‑glucosyl‑(1→2)‑β‑D‑glucoside may decrease the 
biological activity of LILRB1 by inhibiting its active center, 
thereby exhibiting therapeutic effects on RA.

Figure 4. Analysis of differentially expressed genes between synovial tissue samples from patients with rheumatoid arthritis before and after treatment with 
RTX. (A) Volcano plots of genes between synovial tissue samples from patients with rheumatoid arthritis before and after treatment with RTX. The red 
and green dots indicate the upregulated and downregulated genes, respectively. The black dots correspond to gene expression with |log2FC|<1. The y‑axis 
represents false discovery rate and the x‑axis denotes the value of FC. (B) Hierarchical cluster analysis of expression profiles of differentially expressed genes 
before and after treatment with rituximab. RTX, rituximab; Ctrl, control; FC, fold-change.
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Figure 5. Function and pathway analyses of differentially expressed genes between synovial tissue samples from patients with rheumatoid arthritis before and 
after treatment with RTX. (A) Gene set enrichment analysis of rituximab in rheumatoid arthritis treatment. (B) Kyoto Encyclopedia of Genes and Genomes 
pathway enrichment analysis of downregulated genes after treatment with rituximab. GO, Gene Ontology; GPCR, G protein‑coupled receptor; IL, interleukin; 
JAK, Janus kinase; PKA, protein kinase A; Th17, T helper 17 cell; TNF, tumor necrosis factor.
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Discussion

Immune dysregulation has been implicated in the pathogenesis 
of RA through the anti‑immunoglobulin G antibodies (35). 
Although several mechanisms regarding the role of immune 
regulation in RA pathology have been proposed  (36), the 
exact mechanism should be further investigated. Therefore, 
in the present study, the aim was to delineate the underlying 
molecular mechanisms and identify the key regulatory genes 
involved in the developmental process of RA.

As gene expression profiles may reflect disease status (37), 
in the present study the expression of DEGs was compared in 
normal, RA control and RTX‑treated tissues selected from the 
GO database. The DEGs functional analysis indicated that RA 
was associated with the induction of inflammation responses 
and immune activities. These observations were consistent 
with the clinical characteristics of the disease. However, 
following RTX treatment, inflammation and immune‑related 
signaling pathways were widely suppressed. These results were 
consistently with the previously reported inflammation‑ and 
immune‑related characteristics of RA pathogenesis (3). The 
upregulated and downregulated genes in RA and RTX‑treated 
groups, respectively, were subjected to Venn analysis and 

subsequently 13 selected genes were screened in order to 
identify the key regulatory genes. Topological analysis was 
conducted to screen the node genes and LILRB1, a receptor 
expressed on the membrane of immune cells  (10). The 
analysis demonstrated that LILRB1 exhibited a high degree 
of connectivity. The results of the present study indicated that 
LILRB1 may control inflammatory responses and cytotox-
icity by inducing a targeted immune response and limiting 
autoreactivity. In addition, it was hypothesized that upstream 
regulatory signaling pathways of the downregulated LILRB1 
gene could serve as a target of RTX. However its pharmaco-
logical mechanisms of action should be further investigated. 
Thus, the results indicated that LILRB1 was a potential target 
of RA treatment.

In order to clarify the target activity of LILRB1, poten-
tial drugs that target LILRB1 were screened using the TCM 
libraries. Kaempferol 3‑O‑β‑D‑glucosyl‑(1→2)‑β‑D‑glucoside 
showed the strongest targeting activity. Kaempferol, a natural 
flavonol, has been reported to act as an antioxidant by reducing 
oxidative stress during the treatment of several diseases (38). 
However, the precise molecular mechanisms of kaempferol 
need to be further studied. The results of the present study 
revealed that kaempferol could bind to the active pocket of 

Figure 6. Identification of key genes. (A) Wayne analysis of upregulated genes in RA and downregulated genes after RTX treatment. (B) Protein‑protein 
interaction network analysis of key genes. RA, rheumatoid arthritis; RTX, rituximab.
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LILRB1, suggesting inhibition of the immune response signal 
transduction via the receptor. Thus, the activity of kaempferol, 
a potential anti‑RA drug, may be mediated via targeting the 

immune‑related receptor. Additional studies investigating the 
clinical and molecular basis are required to further elucidate 
the effect of LILRB1 in regulating the pathogenesis of RA 

Figure 7. Binding mode of receptor‑ligand interaction. (A) Protocol flowchart of LILRB1 inhibitor discovery strategy. (B) 2D combination mode of 
LILRB1‑kaempferol 3‑O‑β‑D‑glucosyl‑(1→2)‑β‑D‑glucoside. LILRB1, leukocyte immunoglobulin‑like receptor subfamily B member 1; TCM, Traditional 
Chinese Medicine; HTV, high throughput virtual; SP, standard precision; XP, extra precision.
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and to demonstrate the therapeutic value of kaempferol in RA 
treatment.

In conclusion, this study may enhance the understanding 
of RA development processes, and suggested that kaempferol 
could be a potential novel and effective drug in RA treatment 
in clinical practice.
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