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Abstract Small G-proteins of the ADP-ribosylation-factor-like (Arl) subfamily have been shown to

be crucial to ciliogenesis and cilia maintenance. Active Arl3 is involved in targeting and releasing

lipidated cargo proteins from their carriers PDE6d and UNC119a/b to the cilium. However, the

guanine nucleotide exchange factor (GEF) which activates Arl3 is unknown. Here we show that the

ciliary G-protein Arl13B mutated in Joubert syndrome is the GEF for Arl3, and its function is

conserved in evolution. The GEF activity of Arl13B is mediated by the G-domain plus an additional

C-terminal helix. The switch regions of Arl13B are involved in the interaction with Arl3.

Overexpression of Arl13B in mammalian cell lines leads to an increased Arl3�GTP level, whereas

Arl13B Joubert-Syndrome patient mutations impair GEF activity and thus Arl3 activation. We

anticipate that through Arl13B’s exclusive ciliary localization, Arl3 activation is spatially restricted

and thereby an Arl3�GTP compartment generated where ciliary cargo is specifically released.

DOI:10.7554/eLife.11859.001

Introduction
Primary cilia are highly conserved organelles essential for developmental signalling pathways and

cellular homeostasis. The small G-proteins of the Arl family Arl3, Arl6 and Arl13B have been shown

to be important in the trafficking of ciliary proteins and structural integrity of the cilium (Li et al.,

2012). Mutations in Arl proteins or their regulators can lead to cilia dysfunction causing ciliopathies

such as Joubert syndrome (JS), Bardet–Biedl syndrome (BBS), or retinitis pigmentosa (RP)

(Cantagrel et al., 2008; Chiang et al., 2004; Schwahn et al., 1998). Different ciliopathies are char-

acterized by overlapping phenotypes such as renal cysts, polydactyly, brain malfunction, situs inver-

sus, and vision impairment (Waters and Beales, 2011). Mutations in Arl6 –the first member of the

Arl family found mutated in a human ciliopathy – cause BBS, whereas mutations in Arl13B lead to JS.

JS in particular is characterized by a brain malformation with a characteristic molar tooth sign com-

bined with polydactyly and kidney cysts. Although no mutations in Arl3 have been identified so far in

ciliopathies Arl3(-/-) mice exhibit a ciliopathy related phenotype and die by 3 weeks of age

(Schrick et al., 2006). One of the X-linked RP genes is RP2, which functions as a GTPase activating

protein (GAP) specific for Arl3 (Veltel et al., 2008).

As most small G-proteins Arl3 cycles between inactive GDP-bound and active GTP-bound forms

and in the latter it binds specifically to effectors (Cherfils and Zeghouf, 2013). Effectors of Arl3 are

the carrier proteins PDE6d, which binds farnesylated and geranylgeranylated cargo, and Unc119a/b,

which binds myristoylated cargo. Binding of activated Arl3 to the cargo-carrier complex induces con-

formational changes leading to the release of the cargo (Ismail et al., 2012, 2011; Wright et al.,

2011). A close structural homologue of Arl3 is Arl2, which binds to the same set of effectors
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(Van Valkenburgh et al., 2001). However, while Arl2 and Arl3 can release cargo such as Ras or

RheB, only Arl3 is able to release ciliary cargo such as INPP5E, NPHP3, and GNAT-1 (Ismail et al.,

2012; Thomas et al., 2014; Wright et al., 2011). The highly conserved Arl3 � only present in cili-

ated organisms – localizes throughout the cell and is enriched in the primary cilium (Avidor-

Reiss et al., 2004; Blacque et al., 2005; Zhou et al., 2006). While RP2 functions as an Arl3 GAP

and is thus important for the import of lipidated cargo by recycling Arl3 and its effectors

(Schwarz et al., 2012; Wright et al., 2011; Zhang et al., 2015), the

guanine nucleotide exchange factor (GEF) that activates Arl3 remains unknown. We had anticipated

that in order for Arl3 to mediate cargo release inside cilia, an Arl3-specific GEF should be localized

there as well.

Results
To identify regulatory proteins of Arl3 we employed a yeast-2-hybrid (Y2H) screen using the fast

cycling mutant Arl34ND129N as bait. The homologous mutation which in Ras was shown to decrease

nucleotide and to increase GEF affinity while maintaining its ability to bind to effectors was used by

us to identify the GEF for the plant specific ROP proteins (Berken et al., 2005; Cool et al., 1999).

Screening a mouse retinal cDNA Y2H library identified several clones growing on selective media.

Sequence analysis revealed Arl13B (residues 1–270) in addition to known Arl3 effectors such as

PDE6d and Unc119a. Intriguingly, in a parallel screen with mouse Arl13B20-278 as bait Arl3 was found

as rescuing clone. The interaction between Arl3 and Arl13B was further verified by directed 1:1 Y2H

analysis (Figure 1A). Arl13B is an unusual Arl protein containing a C-terminal coiled-coil and proline

rich region in addition to its G-domain (Figure 1C). The data show that the interaction is mediated

by Arl13B’s G-domain and part of the coiled-coil region. To investigate the specificity of the Arl13B-

Arl3 interaction we tested the related constructs of Arl2 and Arl6 neither of which enabled growth

on selective medium (Figure 1B).

To verify this interaction in vitro, we tested purified proteins in a glutathione-S-

transferase (GST) pull-down assay. Due to better stability and purity of Arl13B from Chlamydomonas

reinhardtii (Cr) the following experiments were performed with the homologous Cr-proteins purified

from Escherichia coli. We thus prepared CrArl13B18-–278 (CrArl13B from now) analogous to mouse

Arl13B18-–278 used in the Y2H screen and tested its interaction with GST-CrArl3 loaded with either

eLife digest Most types of cells in humans and other animals have slender, hair-like structures

known as cilia that project out of the cell surface. These structures sense and respond to signals

from the external environment and are crucial for organisms to develop normally. Defects in cilia can

lead to many serious conditions such as Joubert syndrome, which affects the development of the

brain and other organs in humans.

The Arl family of “G-proteins” play important roles in the formation and operation of cilia. They

contain a section called a G-protein domain whose activity can be switched on by interactions with

other proteins called guanine nucleotide exchange factors (or GEFs for short). A member of the Arl

family called Arl3 is found in higher amounts in cilia than in other parts of the cell. It is involved in

the transport of proteins to the cilia from other parts of the cell, but it is not known which GEFs are

able to activate it.

Here, Gotthardt, Lokaj et al. used several biochemical techniques to show that another member

of the Arl family called Arl13B actually acts as a GEF to activate Arl3 in cilia. Arl13B is only found in

cilia and the GEF activity relies on its G-protein domain and another element at one end called a C-

terminal helix. Previous studies have shown that mutations in the gene that encodes Arl13B can

cause Joubert syndrome in humans. Gotthardt, Lokaj et al. found that mutant forms of Arl13B had

significantly lower GEF activity than normal Arl13B proteins.

Together, Gotthardt, Lokaj et al.’s findings provide an explanation for why Arl3 is only activated

in cilia even though it is found throughout the cell. Further work is needed to understand how the

activity of Arl13B is regulated.

DOI:10.7554/eLife.11859.002
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GDP or GppNHp (a non-hydrolyzable GTP analogue) (Figure 2A). CrArl13B�GppNHp but not

CrArl13B�GDP bound to GST-–CrArl3, and binding was slightly stronger to GST-CrArl3�GDP than to

GST-CrArl3�GppNHp. These data show that the interaction between Arl3 and Arl13B is conserved

between mouse and Chlamydomonas.

Since the rather weak interaction in the pull-down experiments and the nucleotide-independent

binding suggested that Arl3 is not an effector for Arl13B, we turned our attention to a possible GEF

function. As a ciliary protein Arl13B is a good, albeit, as a G-protein, a very unusual candidate GEF

for Arl3. The dissociation of a fluorescent GDP-analogue (mantGDP) from CrArl3 in the presence of

excess of unlabelled GTP was monitored after adding CrArl13B�GTP. The nucleotide dissociation

was strikingly accelerated in the presence of CrArl13B�GTP and was dependent on the CrArl13B

concentration (Figure 2B and Table 1). Consistent with features of a typical GEF (Bos et al., 2007)

Arl13B did not discriminate whether mantGppNHp or mantGDP was bound to Arl3 and exchanged

both nucleotides with the same velocity (Table 2). As a control CrArl6 did not stimulate the nucleo-

tide release of CrArl3 nor did CrArl3 catalyze that of CrArl113B (Figure 2B, C).

We next asked whether the nucleotide-bound state of CrArl13B affects its GEF activity as sug-

gested by the GST pull-down experiments. CrArl13B preloaded with GDP, GTP, or GppNHp was

used to analyze the exchange activity. At 5 mM GEF, the exchange was about ninefold slower for

GDP- than for GTP- and GppNHp-bound CrArl13B (Figure 2E). The observed rate constants of

mantGDP-dissociation showed a hyperbolic dependence on CrArl13B concentration, with a maxi-

mum release rate of 0.86 � 10-2 sec. The KM for the reaction is 1.1 mM for CrArl13B�GTP and 155

mM for CrArl13B�GDP (Figure 2F) showing that CrArl13B�GTP has a higher affinity than

CrArl13B�GDP. Since the in vitro determined maximal nucleotide release stimulation of 70-fold

appears relatively slow but not unusual, it is quite conceivable that additional factors such as the

presence of membranes or lipids enhance the GEF activity as shown for the Ras-GEF SOS

(Gureasko et al., 2008) and other GEFs (Cabrera et al., 2014; Pasqualato et al., 2002). Since Arl3

has a high affinity to membranes (Kapoor et al., 2015) and Arl13B is palmitoylated (Cevik et al.,

2010) the reaction between them is thus most likely orchestrated on the ciliary membrane.

Figure 1. The interaction between ADP-ribosylation-factor-like (Arl) 13B (Arl13B) and Arl3 was identified in a yeast-2-hybrid (Y2H) screen. (A) Y2H

interactions between Arl3DN D129N -pBD and Arl13B 1-–270-pAD and between Arl13B 20- – 278-pBD and Arl3-pAD. Transformed and mated cells

were grown on –Leu –Trp medium. Interaction was verified on high stringency plates (-– Leu –Trp –His –Ade) and with a b-galactosidase filter assay. (B)

Interaction of Arl13B 1-–270-pAD with Arl3DN D129N-pBD, Arl2DN D128N-pBD and Arl6DN D133N-pBD was analyzed on low and high stringency

plates. PDE6d-pAD was used as positive control for Arl3 and Arl2. (C) Domain architecture of Arl13B, numbering derived from murine Arl13B (Mm: Mus

musculus).

DOI: 10.7554/eLife.11859.003
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Next, we employed x-ray crystallography to elucidate the structural basis for the interaction. We

thus co-crystallized CrArl13B�GppNHp and CrArl3�GDP in the presence of alkaline phosphatase in

order to allow formation of nucleotide free CrArl3. Since CrArl13B requires bound nucleotide for sta-

bility (and most likely for activity) complex formation could not be performed with nucleotide free

Figure 2. CrArl13B is the guanine nucleotide exchange factor for CrArl3. (A) Glutathione-S-transferase (GST) pull-down assay with purified

Chlamydomonas reinhardtii Arl proteins as indicated and described in detail in Material and methods. (B) Guanine nucleotide exchange factor (GEF)

activity of the indicated concentrations of CrArl13B18-–278 for 500 nM CrArl3�mantGDP. Arrow designates addition of CrArl13B and excess of unlabeled

nucleotide. (C) CrArl13B�GppNHp but not CrArl6�GppNHp stimulates the nucleotide release of CrArl3�mantGppNHp. (D) CrArl3�GTP does not

accelerate the nucleotide dissociation of CrArl13B�mantGppNHp. (E) GEF activity of 5 mM CrArl13B18-278 loaded with GDP (red), GTP (blue), or

GppNHp ((a non-hydrolyzable GTP analogue; yellow). (F) Hyperbolic dependence of the observed rate constants for mantGDP release from 500 nM

CrArl3 on CrArl3B�GTP or CrArl13B�GDP concentration. Fluorescence changes in time at each concentration of CrArl13B were fitted to single

exponentials, and the resulting rate constants (kobs) plotted against GEF concentration. Kobs values are summarized in Table 1.

DOI: 10.7554/eLife.11859.004
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Arl3 GEF-substrate. The obtained crystals diffracted to 2.5Å and the structure was solved by molecu-

lar replacement showing one complex in the asymmetric unit (Table 3). Although crystallization was

done in the presence of alkaline phosphatase GppNHp was clearly visible in both active sites, sug-

gesting that the structure represents the post-nucleotide-exchange state. The nucleotide depen-

dency of CrAr13B’s GEF activity suggested that switch I and II contribute to the interface. The

structure shows indeed that a major part of the interaction is mediated by switch I and II of CrArl13B

which contact CrArl3 via a4Arl3, b6Arl3, and a5Arl3 located opposite to the nucleotide binding site

(Figure 3A, 3E). Further interactions are between the long a-helix a6Arl13B which makes a 90˚ turn at

residue G189, and a3/ a4Arl3. The last 58 residues, predicted to be a-helical, are not visible in the

electron density presumably because they are flexible.

To examine the interface we mutated residues within switch I, II, and a6 of CrArl13B (Figure 3B–

D). Switch I mutant CrArl13BF53A showed a markedly decreased GEF activity whereas the D46A,

F51A, N75A, and Y83A mutants had only a minor effect (Figure 4A). The charge-reversal mutations

K210E/R216E in a6Arl13B as well as D103R and D146R in CrArl3 show no activity, as expected,

whereas a control mutation H154W outside the interface has no effect (Figure 4B). Since CrArl13B’s

analogous Joubert mutation R77Q and to a lesser extent R194C have been shown to impair the con-

formational stability of switch II (Miertzschke et al., 2014), we next tested the analogous mutants

CrArl13BR77Q and CrArl13BR194C for their GEF activities. CrArl13BR77Q displayed a reduced activity

in contrast to a very mild effect of CrArl13BR194C (Figure 4C).

GEF proteins normally act by directly interfering with the nucleotide binding site thereby decreas-

ing nucleotide affinity (Cherfils and Zeghouf, 2013). In the crystal structure the nucleotide binding

site of CrArl3 is not directly contacted by CrArl13B. We were not able to trap the interacting resi-

dues presumably due to the presence of nucleotide and/or the flexibility of the interacting residues

of Arl13B. Considering the length of the C-terminus required for catalysis (see below) it is however

suggestive that the mobile C-terminus of Arl13B is involved in the GEF reaction by contacting the

relevant surface of Arl3. To examine the importance of this region for catalysis we prepared deletion

Table 1. Kobs values from data shown in Figure 2B and E.

Concentration dependency (Figure 2B) Kobs (s
-1) ± S.E.

CrArl3 wt intrinsic 1.2 � 10-4 � 1 � 10-5

+ 0.25 mM CrArl13BGTP 1.3 � 10-3� 2 � 10-5

+ 0.5 mM CrArl13BGTP 2.7 � 10-3� 3 � 10-5

+ 5 mM CrArl13BGTP 0.85 � 10-2� 1 � 10-4

Nucleotide dependency (Figure 2E) Kobs (s
-1) ± S.E.

CrArl3 wt intrinsic 1.3 � 10-4 � 4 � 10-6

+ 5 mM CrArl13BGDP 9.0 � 10-4 � 2 � 10-5

+ 5 mM CrArl13BGTP 0.6 � 10-2 � 8 � 10-5

+ 5 mM CrArl13BGNP 0.78 � 10-2 � 1 � 10-4

Kobs values � standard error (S.E.) were determined by fitting the data to single exponential functions.

DOI: 10.7554/eLife.11859.005

Table 2. kobs values for the nucleotide dissociation of CrArl3�mGDP and CrArl3�mGppNHp in the

presence of CrArl13B�GTP.

CrArl3�mGDP vs mGppNHp Kobs (s
-1) ± S.E.

CrArl3�mGDP intrinsic 1.3 � 10-4 � 2 � 10-6

CrArl3�mGDP + 5 mM CrArl13B�GTP 0.84 � 10-2 � 7 � 10-5

CrArl3�mGppNHp intrinsic 1.3 � 10-4 � 2 � 10-6

CrArl3�mGppNHp + 5 mM CrArl13B�GTP 1.0 � 10-2 � 1 � 10-4

kobs rates determined from GEF assays with 0.5 mM CrArl3 loaded with either mantGDP or mantGppNHp in the

presence of 5 mM CrArl13B18-–278�GTP and 800 mM unlabeled nucleotide.

DOI: 10.7554/eLife.11859.006
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constructs with differing length of the a6-helix (see red asterisks in Figure 3A). Whereas the C-termi-

nal deletion constructs 4233(18–232) and 4243(18–242) had no effect, a longer deletion to residue

220(18–219) showed a reduced stimulation (Figure 4D). Finally, the GEF activity of 4213(18–212)

and 4203(18–202) was completely abolished. In support of their importance residues 212–228 are

highly conserved among species and we would speculate that these residues contact Arl3 close to

the nucleotide binding site.

We next decided to demonstrate the GEF activity of Arl13B in mammalian cells. Therefore we

used a stably transfected murine inner medullary collecting duct 3 (IMCD3) cell line and transiently

transfected HEK293 cells overexpressing human Arl13B-GFP. To quantify Arl3 activation, Arl3�GTP

was affinity-precipitated with the effector GST-PDE6d (Linari et al., 1999) and analysed by immuno-

blot. The level of endogenous Arl3�GTP was strikingly increased in cells overexpressing Arl13B com-

pared to control cells (Figure 5A). Furthermore, the level of GTP-bound Arl3-Flag depended on the

Arl13B concentration (Figure 5B). Consistent with the Y2H data the Arl2�GTP level was not affected

by overexpressed Arl13B indicating selectivity for Arl3 (Figure 5G). Interface mutations in Arl13B

which disrupted the in vitro exchange activity were also tested in HEK293 cells. Consistently, cells

transfected with Arl13BK216E/R219E, Arl13BY55A or Arl13BY85A did not markedly increase the Arl3�GTP

level (Figure 5C,D). Intriguingly, the Arl3�GTP level in cells overexpressing the Joubert mutant var-

iants Arl13BR79Q and Arl13BR200C was lower than those expressing Arl13Bwt. Consistent with the bio-

chemical data the R79Q mutation impaired Arl3 activation was more pronounced than R200C

(Figure 5E,F). Finally, we were able to purify human Arl13B (18–278) from insect cells in reasonable

Table 3. Data collection and refinement statistics (molecular replacement).

CrArl13B-CrArl3 (5DI3)

Data collection

Space group P212121

Cell dimensions

a, b, c (Å) 57.10, 68.80, 120.00

a, b, g (˚) 90.00, 90.00, 90.00

Resolution (Å) 29.84 – 2.50 (2.60-2.50)

Rmerge 0.07 (0.68)

I / sI 17.56 (3.26)

Completeness (%) 99.9 (99.9)

Redundancy 6.4 (6.8)

Refinement

Resolution (Å) 2.50

No. reflections 16944 (1840)

Rwork/Rfree 0.199/0.236

No. atoms 2995

Protein 2900

Ligand/ion 2 Mg2+, 2 GMPPNP

Water 29

B-factors 66

Protein 66.40

Ligand/ion 54.30

Water 55.00

R.m.s. deviations

Bond lengths (Å) 0.005

Bond angles (˚) 1.02

*Values in parentheses are for highest-resolution shell.

DOI: 10.7554/eLife.11859.007
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amounts to test its GEF activity. Confirming the conservation of structure and function the human

Arl13B also exhibits strong GEF activity for Arl3 (Figure 6A). The stimulation of the nucleotide

release was more efficient compared to CrArl13B, with a 900fold acceleration at 5 mM. In agreement

Figure 3. The CrArl13B-– CrArl3 complex. (A) The CrArl13B-–CrArl3 complex structure with Arl13B (green), Arl3

(light blue), Switch I (blue), Switch II (red), GppNHp (a non-hydrolyzable (GTP) analogue; yellow). Residues

analogous to Joubert syndrome mutations (R77 and R194) are depicted in cyan. Red asterisks delineate the

deletion sites (V202, E212, K219) of CrArl13 used in the guanine nucleotide exchange factor (GEF) assay below

(Figure 4). Other deletion sites are not resolved in the electron density. Dashed line indicates the 58 C-terminal

residues not visible in the structure (B–D) Details of the interaction interface. (C) Hydrophobic residues located in

Switch I and Switch II of CrArl13B are involved in the interaction with CrArl3. (D) K210 and R213 in a6Arl13B are

forming salt bridges with D143Arl3 and E103Arl3(orange). Coloring as in (A). (E)Schematic representation of residues

located in the interface. Hydrogen bonds between residues are depicted as black dashed line, salt bridges as red

dashed line.

DOI: 10.7554/eLife.11859.008
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with the different biological function (Zhou et al., 2006), the nucleotide dissociation of Arl2 was not

accelerated by Arl13B (Figure 6B).

Figure 4. Mutations in the CrArl13B-CrArl3 interface and Joubert mutations impair

guanine nucleotide exchange factor (GEF) activity. (A) GEF activity of CrArl13B18-– 278
�GppNHp (a non-

hydrolyzable GTP analogue) switch I and II mutants. To CrArl3 mantGppNHp (500 nM) 5 mM of CrArl13B�GppNHp

constructs and 800 mM unlabeled GppNHp were added. (B) GEF assay with CrArl13B18-278
�GppNHpand

CrArl3�mantGppNHp carrying charge reversal mutations located in the interface. (C) GEF activity of the analogous

Joubert syndrome mutants (CrArl13BR77Q, CrArl13BR194C). Same concentrations as in (A). (D) GEF assay with

CrArl13B deletion constructs. Boundaries of deletion fragments: 4203: 18–202; 4213: 18–213; 4220: 18–219;

4229: 18–228; 4233: 18–232. 18–278 are the constructs used for all other GEF assays. Kobs values are summarized

in Table 4.

DOI: 10.7554/eLife.11859.009
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Discussion
Arl13B has been implicated in a number of ciliary functions (Cevik et al., 2010; Humbert et al.,

2012; Larkins et al., 2011; Li et al., 2010), and its deletion is causing multiple phenotypes such as

the lethal hennin mouse mutant or the scorpion zebrafish mutant (Caspary et al., 2007; Sun et al.,

2004). Here we describe a molecular function for Arl13B acting as GEF for Arl3 whereby the nucleo-

tide state of Arl13B determines its catalytic activity in this activation cascade.

Our results have important implications for the regulation of sorting and transport processes into

cilia. It has been shown earlier that Arl3 but not Arl2 can release ciliary cargo from the transport pro-

teins PDE6d and Unc119 (Ismail et al., 2012, 2011; Wright et al., 2011). One would predict that

Arl3, which is enriched in cilia but also in other microtubule dense structures (Grayson et al., 2002;

Zhou et al., 2006), is only activated inside cilia where Arl13B exclusively resides (Blacque et al.,

2005; Caspary et al., 2007; Duldulao et al., 2009) in order to avoid release of ciliary prenylated

and myristoylated cargo in the cytoplasm, where other cargo such as Ras, RheB, or Src kinases can

be released by Arl2. The observation that expression of constitutive active ARL-3 (Q70L/Q72L) in

Lieshmania donovani and in Caenorhabditis elegans resulted in decreased flagellum length and in

Table 4. Kobs values from data shown in Figure 4 A–D.

CrArl13B Switch interface mutants Kobs (s
-1) ± S.E.

CrArl3 intrinsic 1.4 � 10-4 � 4 � 10-6

+ 5 mM CrArl13B wt GTP 0.91 � 10-2 � 2 � 10-4

+ 5 mM CrArl13B F51A GTP 2.0 � 10-3 � 2 � 10-5

+ 5 mM CrArl13B F53A GTP 4.2 � 10-4 � 2 � 10-5

+ 5 mM CrArl13B Y83A GTP 0.9 � 10-3 � 1 � 10-5

+ 5 mM CrArl13B D46A GTP 4.1 � 10-3 � 8 � 10-5

+ 5 mM CrArl13B N75A GTP 4.4 � 10-3 � 3 � 10-5

CrArl13B and CrArl3 Interface mutants Kobs (s
-1) ± S.E.

CrArl3 wt intrinsic 1.1 � 10-4 � 1 � 10-6

CrArl3 wt + 5 mM CrArl13B K210E/R216E 1.5 � 10-4 � 1 � 10-5

CrArl3 D103R + 5 mM CrArl13B wt 1.4 � 10-4 � 5 � 10-6

CrArl3 D146R + 5 mM CrArl13B wt 1.4 � 10-4 � 6 � 10-6

CrArl3 wt + 5 mM CrArl13B H154W 0.88 � 10-2 � 2 � 10-4

CrArl3 wt + 5 mM CrArl13B wt 0.85 � 10-2 � 2 � 10-4

CrArl13B Deletion constructs Kobs (s
-1) ± S.E.

CrArl3 wt intrinsic 1.0 � 10-4 � 2 � 10-5

+ 5 mM CrArl13B 4203 1.0 � 10-4 � 8 � 10-6

+ 5 mM CrArl13B 4213 1.0 � 10-4 � 1 � 10-5

+ 5 mM CrArl13B 4220 1.1 � 10-3 � 1 � 10-5

+ 5 mM CrArl13B 4243 4.5 � 10-3 � 5 � 10-5

+ 5 mM CrArl13B 4233 5.0 � 10-3 � 6 � 10-5

+ 5 mM CrArl13B 18-278 6.6 � 10-3 � 2 � 10-4

CrArl13B Joubert mutants Kobs (s
-1) ± S.E.

CrArl3 intrinsic 1.4 � 10-4 � 3 � 10-6

+ 5 mM CrArl13B R77Q 5.5 � 10-4 � 1 � 10-5

+ 5 mM CrArl13B R194C 2.0 � 10-3 � 2 � 10-5

+ 5 mM CrArl13B wt 0.72 � 10-2 � 1 � 10-4

Kobs values were determined by fitting the data (Figure 4 A-D) to single exponential functions. If not stated other-

wise CrArl13B 18-278 is used for the measurements.

DOI: 10.7554/eLife.11859.010
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impaired ciliogenesis might be explained by Arl3-GTP being located all over the cell and by subse-

quent mistargeting of proteins destined for the cilium (Cuvillier et al., 2000; Li et al., 2010).

The different subcellular localization of Arl3-GAP and GEF resembles very closely the Ran driven

nucleocytoplasmic transport system. Nucleocytoplasmic transport through the nuclear pore is

Figure 5. Arl13B activates Arl3 in mammalian cells. (A) Endogenous Arl3�GTP was affinity-precipitated from

Human Embryonic Kidney 293 (HEK293) or murine inner medullary collecting duct 3 (IMCD3) cell lysates using

GST-PDE6d and analyzed as described in Materials and methods. HEK293 cells were transiently transfected with

full length Arl13B-GFP(pGLAP5); IMCD3 cells stably expressed the same construct. (B) HEK293 cells were

transiently transfected with increasing amounts of Arl13B-GFP (0, 1, 3, 6, 12 mg DNA) and constant amounts of

Arl3-Flag. Arl3�GTP level determined as in (A). (C) Arl3-Flag activation in the presence of wildtype and interface

mutant Arl13B-GFP was determined as in (A) and quantified in (D). (E) Arl3-Flag activation in the presence Arl13B

wt and Joubert syndrome mutants R79Q and R200C. (F) Quantification of (E). Data is represented as mean ± S.E.

(G) Arl3-Flag and Arl2-Flag activation in the presence of Arl13B-GFP in HEK293 cells.

DOI: 10.7554/eLife.11859.011
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regulated by a Ran gradient across the nuclear pore (Stewart, 2007). This gradient is regulated by

the Ran-GEF RCC1, which is retained inside the nucleus, and by the major form of Ran-GAP, which is

located at the exit side of the nuclear pore complex (NPC), by binding to RanBP2 (Mahajan et al.,

1997). Import cargo bound to importins is released from the carrier by Ran�GTP. The export com-

plex formed by the exportin-cargo complex is in turn stabilized by Ran�GTP and dissociated after

exit from the NPC and hydrolysis of GTP. Since the Arl3 specific GAP RP2 is absent from primary

cilia and enriched in the preciliary region as observed by us and others (Blacque et al., 2005;

Evans et al., 2010; Grayson et al., 2002), we can assume that a similar Arl3�GTP gradient exists

across the transition zone and that the Arl3�GTP compartment inside cilia creates a driving force for

the transport of prenylated and myristoylated proteins which are allosterically released by Arl3�GTP

from their carrier proteins PDE6d and Unc119a/b (see Figure 7 for a schematic overview). The Ran-

GEF RCC1 is retained in the nucleus through its interaction with nucleosomes (Nemergut et al.,

2001). In the case of Arl13B, the N-terminal palmitoylation site, but also the other domains seem to

be indispensable for its ciliary localization and retention (Cevik et al., 2010; Duldulao et al., 2009).

Since Arl13B’s GEF activity is higher in the GTP-bound conformation one may ask if and how the

nucleotide status of Arl13B itself is regulated. We have shown before that the intrinsic GTP hydroly-

sis activity of Arl13B is very low and that the protein active site does not contain a catalytic gluta-

mine residue (Miertzschke et al., 2014). Although we cannot exclude that an Arl13B specific GAP

would supply catalytic residues an alternative explanation would be that Arl13B in the absence of

GTP hydrolysis is mostly in the GTP-bound form. This does not exclude the existence of an Arl13B-

GEF which is presently unknown.

Since both the mutations of the Arl3-GAP RP2 in RP and the Arl3-GEF Arl13B in JSyndrome lead

to ciliary defects and ciliopathies, we conclude that the amount of Arl3�GTP needs to be precisely

regulated and that both an increase and a decrease of Arl3�GTP is not tolerated for proper function

of the cilium.

Material and methods

Yeast techniques
Mouse retina cDNA library was generated according to ’Mate&Plate’ Library System User Manual

(Clonetech), cloned into pGADT7 (short: pAD) and introduced into Saccharomyces cerevisiae Y187.

Yeast techniques and two-hybrid methods were performed according to the Yeast Protocols Hand-

book and the Matchmaker GAL4 Two-Hybrid System 3 manual (Clontech) with S. cerevisiae AH109.

Figure 6. The guanine nucleotide exchange factor (GEF) activity of human Arl13B is specific for Arl3. (A) GEF activity of human Arl13B18-–278 (purified

from insect cells) for murine Arl3. To 500 nM Arl3�mantGppNHp, 5 mM hsArl13B�GTP and 800 mM GTP were added. kobs (intrinsic): 4 � 10-4 s-1,

kobs(Arl13B�GTP): 0,36 s-1. (B) Human Arl13B�GTP does not accelerate nucleotide dissociation of Arl2�mantGppNHp. kobs(intrinsic):1.2 � 10-2 s-1;

kobs(Arl13B�GTP): 1.2 � 10-2 s-1.

DOI: 10.7554/eLife.11859.012
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Murine Arl34ND129N (residues 17–182), Arl64ND133N (residues 16–186), Arl24ND128N (residues 17–

184) and Arl13B (residue 20–278)were cloned into a Gateway compatible pBD-Gal4 vector (a kind

gift from R. Roepman) and S. cerevisiae AH109 used as recipient for transformation.

Protein expression and purification
CrArl13B (UniProt: A8INQ0) and CrArl3 (UniProt: A8ISN6) were amplified by PCR from a cDNA

library from C. reinhardtii CC-124 WT(wild- type)mt-[137c] [nit1, nit2, agg1] (a gift from T. Happe).

Respective mutants were generated by site directed mutagenesis PCR. CrArl3 and CrArl13B pro-

teins were expressed as GST-fusions and purified as previously described (Miertzschke et al.,

2014). CrArl3 full length was additionally cloned into the pET20 vector to produce C-terminally His-

tagged protein. Murine Arl3 full length (UniProt: Q9WUL7) and human Arl2 full length (Uniprot:

P36404) in pET20 vectors were already available. Proteins were expressed in BL21DE3 CodonPlus

RIL cells at 18˚C after induction with 100 mM Isopropyl b-D-1-thiogalactopyranoside (IPTG). Purifica-

tion of CrArl3-His, murine Arl3-His and human Arl2-His were conducted as described

previously (Veltel et al., 2008). Human recombinant His-Arl13B 18–278 was expressed in High-Five

Figure 7. The targeting cycle of Arl3 dependent ciliary cargo. In the cilium where Arl13B resides Arl3 gets

activated. Through the exclusive localization of Arl13B (Arl3-GEF [guanine nucleotide exchange factor]) inside and

retinitis pigmentosa 2 (RP2) (Arl3-GAP) outside the cilium an Arl3�GTP gradient is generated across the transition

zone. The carriers PDEd and Unc119a/b bound to ciliary lipidated cargo reach the cilium where Arl3�GTP binds to

the carrier proteins and releases the cargo. RP2 -– enriched in the preciliary region – stimulates the hydrolysis of

Arl3�GTP which leads to the dissociation of the carrier proteins from Arl3�GDP.

DOI: 10.7554/eLife.11859.013
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insect cells for 66 hr at 27˚C after virus infection. Insect cells were lysed in 30 mM Tris (pH7.5), 150

mM NaCl, 5 mM MgCl2, 3 mM b-mercaptoethanol, 10% glycerole, and 0.1 mM GTP and Complete

protease inhibitor cocktail (Roche) using a Microfluidizer M-110S (Microfluidics). Protein was purified

by affinity chromatography using a Talon Superflow column (Clonetech) and size exclusion chroma-

tography. All proteins were stored in buffer M containing 25 mM Tris (pH 7.5) 100 mM NaCl, 5 mM

MgCl2, 3mM b-mercaptoethanol and 1% glycerole.

Preparation of proteins with defined nucleotide state
Nucleotide exchange to GDP, GTP, or (N-methylanthraniloyl) mantGDP on Arl proteins was per-

formed in the presence of 50mM ethylenediaminetetraacetic acid (EDTA) and a five fold (two fold

for mantGxP) excess of nucleotide. After incubation for 2 hrs 100 mM MgCl2 was added and the

protein separated from the excess of nucleotide by a HiTrap desalting column (GE Healthcare). The

nucleotide exchange to GppNHp and mantGppNHp was performed using agarose coupled alkaline

phosphatase (AP). AP was removed by centrifugation and excess of nucleotide removed by a desalt-

ing column. The amount of protein-bound nucleotide was analyzed by C18 reversed-phase high per-

formance liquid chromatography (HPLC) and quantified with a calibrator detector (Beckman Coulter)

and an integrator (Shimadzu).

Pull-down assay with purified protein
Per sample 50 mg GST-CrArl3 was bound to 50 ml glutathione agarose and washed 2x with 500 ml

buffer M. GST-CrArl3 was incubated in 100 ml buffer M containing 1 mg/ml CrArl13B18-–278 (~37 mM)

for 30 min and afterwards washed 2x with 500 ml buffer M. Protein was eluted from beads by addi-

tion of sodium dodecyl sulfate (SDS) loading buffer and subsequent boiling and analyzed by sodium

dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE).

Crystallization, data collection and analysis
CrArl13B�GppNHp and CrArl3�GDP (12 mg/ml) were mixed in the presence of AP in the ratio 1:1.2

(Arl3:Arl13B). With the sitting drop/vapour diffusion method crystals appeared in 0.1M Tris pH 8.5,

25% PEG 6000 (PEGII suite, Qiagen) after 3 days. Crystals were fished out of the 96 well plate and

flash frozen in a cryo-solution containing the same constituents as the crystallization condition sup-

plemented with 20% glycerol. Data collection was done at the PXII-XS10SA beamline of the Swiss

Light Source (SLS) Villingen. Data were indexed and processed with XDS (Kabsch, 1993). Molecular

replacement was done with PHASER from the CCP4 package (The CCP4 suite: programs for protein

crystallography, 1994). The structure refinement was done using phenix.refine of PHENIX

(Adams et al., 2010). Images were generated with PYMOL (http://www.pymol.org). Atomic coordi-

nates and structural factors have been deposited in the Protein Data Bank (PDB) under the accession

code 5DI3.

Guanine nucleotide exchange assay
Nucleotide exchange reactions were performed in buffer M at 20˚C. As standard conditions, 500 nM

G-protein was incubated and the GEF reaction was started with the addition of a mix Arl13B and an

excess of nucleotide. Unless otherwise stated 5 mM GEF was used. Since the species of the in excess

added unlabeled G-nucleotide (GDP, GTP, or GppNHP) does not influence the velocity of the GEF

reaction, the mix always contained an 800-fold excess of the respective nucleotide which was bound

to Arl13B in order to avoid undesirable intrinsic nucleotide exchange of Arl13B. For the intrinsic dis-

sociation the same volume buffer containing unlabeled nucleotide was added. The fluorescence

change was monitored using a FluoroMax 4 Spectrofluorometer (Jobin Yvon) with an excitation at

366 nm and emission at 450 nm. Data was fitted to single exponential functions using Grafit5 (Eritha-

cus software) to obtain the koff values. All quantitative parameters were measured two or more

times. To ensure that all CrArl13B mutants are 100% loaded with the same nucleotide, they were

exchanged to GppNHp with alkaline phosphatase and the stimulation of the nucleotide release mea-

sured for CrArl3�mantGppNHp. KM and Vmax were obtained by fitting the data to the Michaelis

Menten equation using Grafit5.
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Cells lines
Mouse renal epithelial Flp-In cells from the inner medullary collecting duct (IMCD3 Flp-In; kind gift

from MV Nachury) and HEK293 cells were cultured at 37˚C and 5% CO2 in Dulbecco’s Modified

Eagle Medium (DMEM)/F12, 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) (Life tech-

nologies) complemented with 10% fetal bovine serum and 1% L-glutamine.

The parental IMCD3 Flp-In cell line contains a stably integrated FRT cassette and was co-trans-

fected with pOG44 coding a FLP recombinase and the appropriate pgLAP5 vector (Addgene) using

Lipofectamine 2000 (Life technologies). For selection of successful stable genomic integration the

media was supplemented with 200 mg/ml hygromycin (Merck) and expression of the GFP-fusion pro-

tein was checked by Western Blot using an anti-GFP antibody (Santa Cruz Biotechnology).

Analysis of Arl13B GEF activity in whole cell lysates
For pull-downs of overexpressed Arl3-Flag 2.5 � 106 HEK293 cells were seeded in 15 cm2 dishes

24 hr prior to transfection. Cells were transfected using Polyethylenimine (PEI) at a ratio 3:1 of PEI

(mg) : total DNA (mg). Cells were induced to ciliate by withdrawing serum for 30 hr. ~2.5 � 107 cells

(1 � 15 cm2 dish) were lysed in 1 ml lysis buffer for 30 min at 4˚C. For pull-downs of endogenous

Arl3 1 � 108 cells (4 � 15 cm2 dish) were used. Lysate was cleared by centrifugation and protein con-

centration normalized. Per sample 50 mg GST-PDE6d was coupled to 50 ml glutathione agarose

which was incubated with cleared lysates for 45 min at 4˚C. Cleared lysate was removed and beads

washed 2x with 500 ml buffer M. Samples were eluted with 1 � SDS-loading buffer. For the detection

of affinity-precipitated endogenous Arl3 an anti-Arl3 antibody (Novus Biologicals) was used, and in

case of Arl3-Flag an anti-Flag antibody (Thermo Scientific) was used. Expression of Arl13B-GFP was

checked using an anti-GFP antibody (Santa Cruz Biotechnology) and antibody against S-peptide,

which is located between Arl13B and GFP in pGLAP5. The level of Arl3�GTP was quantified using

ImageJ. Experiments were repeated two or more times.

Acknowledgements
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