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Abstract

Objective: Diabetic nephropathy (DN) is a serious complication for patients with

diabetes mellitus (DM). Emerging evidence suggests that complement C3a is

involved in the progression of DN. The aim of this study was to investigate the effect

of C3a Receptor Agonist (C3aRA) on DN and its potential mechanism of action in

rats with type 2 diabetes mellitus (T2DM).

Methods: T2DM was induced in SD rats by a high fat diet (HFD) plus repeated low

dose streptozocin (STZ) injections. T2DM rats were treated with vehicle or C3aRA

for 8 weeks. Biochemical analysis, HE and PAS stains were performed to evaluate

the renal function and pathological changes. Human renal glomerular endothelial

cells (HRGECs) were cultured and treated with normal glucose (NG), high glucose

(HG), HG+C3a, HG+C3a+C3aRA and HG+C3a+BAY-11-7082 (p-IKBa Inhibitor) or

SIS3 (Smad3 Inhibitor), respectively. Real-time PCR, immunofluorescent staining

and western blot were performed to detect the mRNA and protein levels,

respectively.

Results: T2DM rats showed worse renal morphology and impaired renal function

compared with control rats, including elevated levels of serum creatinine (CREA),

blood urea nitrogen (BUN) and urine albumin excretion (UACR), as well as

increased levels of C3a, C3aR, IL-6, p-IKBa, collagen I, TGF-b and p-Smad3 in the

kidney of T2DM rats and C3a-treated HRGECs. In contrast, C3aRA treatment

improved renal function and morphology, reduced CREA, UACR and the intensity

of PAS and collagen I staining in the kidney of T2DM rats, and decreased C3a,
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p-IKBa, IL-6, TGF-b, p-Smad3 and collagen I expressions in HRGECs and T2DM

rats.

Conclusion: C3a mediated pro-inflammatory and pro-fibrotic responses and

aggravated renal injury in T2DM rats. C3aRA ameliorated T2DN by inhibiting IKBa

phosphorylation and cytokine release, and also TGF-b/Smad3 signaling and ECM

deposition. Therefore, complement C3a receptor is a potential therapeutic target for

DN.

Introduction

Diabetes mellitus (DM) is a major and increasing health problem worldwide [1].

Diabetic nephropathy (DN) is one of the most important causes leading to end-

stage renal disease, which affects 15–25% of T1DM patients and 30–40% of T2DM

patients [2, 3]. Multiple factors are involved in the pathogenesis of DN, including

advanced glycation end products (ACEs), protein kinase C (PKC), transforming

growth factor (TGF-b) and oxidative stress [4–6]. Recent studies have shown that

T1DM patients with nephropathy had higher levels of mannose-binding lectin

(MBL) [7], and T2DM patients with high level of MBL at baseline had a

significantly increased risk of developing albuminuria [8], suggesting that the

complement system is involved in the progression of DN.

The complement system serves as a part of the innate immune system [9, 10],

with inappropriate activation of complement pathways leading to kidney damage

[11–13]. The complement system mediates the progression of renal disease via

both immune and non-immune pathways [10]. C3a is a small fragment derived

from complement C3, which can bind to the G protein-coupled C3a receptor

(C3aR) [14]. C3aR is expressed by various cells, including cells of hematopoietic

origin such as neutrophils and monocytes, but also non-hematopoietic cells such

as renal proximal tubular epithelial cells (PTECs) [14]. C3a was shown to induce

anaphylatoxic reactions and recruitment of inflammatory cells [10]. Previous

studies reported the increased expression of C3 in the glomeruli of diabetic mice

and rats, and diabetic rats showed greater intensity of C3 staining in the renal

mesangium when compared with controls [9]. We have previously shown that

C3a is a pro-fibrotic factor, which can induce epithelial-myofibroblast

transdifferentiation (EMT) in human renal proximal tubular epithelial (HK-2)

cells via activation of the TGF-b1/CTGF pathway [15].

Glomerular endothelial cells (GECs) are characterized by fenestrations (60–

80 nm transcellular holes) in the peripheral cytoplasm, which occupy a large

proportion of the surface of glomerular filtration barrier (GFB), and play a key

role in mediating the permeability of GFB to water and small molecules [16]. Loss

or a reduced number of GECs will lead to dysfunction of glomerular filtration.

Increasing evidence indicates that endothelial dysfunction is an early feature of

DN [17–18]. It has been reported that GEC injury is already present in the
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normoalbuminuric stage of DN before podocyte injury [17]. It also contributes to

the reduction of glomerular filtration rate (GFR) in DN [18]. Despite the role of

complement-induced endothelial injury being proposed in other diseases, the

specific effect of complement on GECs during the development of DN is

incompletely known. Therefore, the effect of complement C3a on GECs was

elucidated.

It is well documented that enhanced inflammatory responses occur in both

animal models and human DN [19]. Nuclear factor kappa B (NF-kB) is a key

transcription factor that controls the progression of inflammation. Many pro-

inflammatory cytokines are transcriptionally regulated by NF-kB and are

implicated in the pathogenesis of DN [19–20]. TGF-b/Smads are a key mediator

of renal fibrosis and play a critical role in the progression of DN [21]. TGF-b/

Smads mediate renal fibrosis by stimulating extracellular matrix (ECM)

production and inducing the transformation of tubular epithelial cells (TECs) to

myofibroblasts through EMT. However, the effect of C3aR blockade on the

inflammatory and fibrotic pathways remains unclear.

To investigate the effect of complement C3a receptor blockade on T2DN, we

treated rats with T2DM with C3aRA, and analyzed the morphological and

functional renal changes. To further explore the underlying molecular mechan-

ism, the expression of inflammatory and fibrotic signaling molecules was analyzed

in human renal glomerular endothelial cells (HRGECs).

Materials and Methods

Ethics statement

Animal experiments were performed with the approval of the Animal Care and

Use Ethics Committee of Sichuan University.

Animal experiments

Male Sprague-Dawley (SD) rats (aged 6 weeks, 180–200 g) were purchased from

the Laboratory Animal Centre of Sichuan University and kept under standard

conditions at a temperature of 22¡2 C̊, with a 12-h light/12-h dark cycle and

relative humidity of 40–60%. T2DM was induced in rats using a high fat diet

(HFD)+low-dose STZ method as previously reported [22]. All rats were allocated

to one of two dietary regimens for an initial period of 6 weeks: normal pellet diet

(NPD, n56) or high-fat and high-sugar diet (HFD), containing regular diet plus

27.3% lard, 54.6% sucrose, 16.4% cholesterol, and 1.6% sodium cholate [w/w],

n518). Then, HFD rats with high HOMA-IR (fasting plasma glucose [mmol/

L]6fasting insulin [mIU/L]422.5) were defined as insulin resistant, and were

injected with repeated low-dose STZ (four doses of 25 mg/kg, Sigma, St Louis,

MO, USA) in citrate buffer (pH54.5) after overnight fasting. NPD animals were

injected with citrate buffer (1 ml/kg). The rats with fasting glucose levels

>16.7 mmol/l at 72 h after STZ injection for three consecutive tests were used for

C3aR Antagonist Ameliorates Type 2 DN

PLOS ONE | DOI:10.1371/journal.pone.0113639 November 25, 2014 3 / 18



the study. The rats with established T2DM were divided into two groups:

T2DM+vehicle group (n56), T2DM+C3aRA group (n56). T2DM+vehicle and

T2DM+C3aRA group was intraperitoneally injected daily with PBS or C3aRA

(1 mg/kg, Merck, Darmstadt, Germany, dissolved in PBS) respectively for 8

weeks.

Sample collection

Blood, urine and renal tissue samples were collected from rats after 8 weeks of

treatment. Prior to sacrifice, rats were kept individually in metabolic cages and

24 h urine samples were collected. Rats were anesthetized with an intraperitoneal

injection of sodium pentobarbital (40 mg/kg) and blood samples were collected

by heart puncture. Their kidneys were removed and weighed, then the left kidney

was fixed in 4% paraformaldehyde and the right kidney was snap frozen in liquid

nitrogen then stored at 280 C̊ for future use.

Biochemical Measurements

Clinical biochemical analysis was performed on a biochemistry autoanalyzer

(Cobas Integra 400 Plus, Roche, Basel, Switzerland) using commercial kits, and

the following parameters were measured: fasting blood glucose (FBG), total

cholesterol (TC), triglyceride (TG), blood urea nitrogen (BUN), serum creatinine

(CRE), urinary protein excretion (ALB).

Cell culture

Human renal glomerular endothelial cells (HRGECs) were purchased from

SienCell Research Laboratories (San Diego, CA, USA). HRGECs were cultured in

endothelial cell medium (ECM, ScienCell) supplemented with 5% fetal bovine

serum (FBS, ScienCell), 1% endothelial cell growth supplement (ECGS, ScienCell)

and 1% penicillin/streptomycin (ScienCell) at 37 C̊ in a humidified incubator

with 5% CO2. Cells were harvested with 0.25% trypsin (Gibco, Life Technologies,

Carlsbad, CA, USA) at approximately 80% confluence, and the cells used within

six passages experiments. Six groups were included in this study: normal glucose

(NG, 5 mmol/L), high glucose (HG, 25 mmol/L), HG+C3a (50 nmol/l, Merk),

HG+C3a+C3aRA (1 mmol/L, Merk), HG+C3a+SIS3 (Smad3 Inhibitor, 1 mmol/L,

Santa Cruz, Dallas, TX, USA) or HG+C3a+BAY-11-7082 (BAY, p-IKBa Inhibitor,

5 mmol/L, Sigma). HRGECs were transferred to serum-free medium 24 h prior to

treatment, and then treated with the above conditions for 3 or 5 days as indicated.

Cells were then harvested for further analysis by RT-PCR and western blot.

Real-time PCR

Total RNA was isolated from HRGECs using Trizol reagent (Takara, Shiga, Japan)

according to the manufacturer’s instructions. Total RNA was dissolved in RNase-

free water and its concentration measured on a microspectrophotometer
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(Nanodrop 2000, Thermo Scientific Inc., MA, USA). The quality of RNA was

determined by agar gel electrophoresis. cDNA was synthesized from RNA using a

commercial kit (Bio-Rad, Hercules, CA, USA). Primer sequences are given in

Table S1. PCR reactions were carried out in a volume of 20 ml on a CFX96 Real-

Time PCR System (Bio-Rad) with SYBR Green kit (Tli RNaseH Plus, Takara),

followed by melting curve analysis to distinguish the specific and non-specific

PCR products. The relative expression of each gene was calculated using the delta-

delta Ct method with GAPDH as a reference gene.

Histological examination

Renal tissues were fixed in 4% paraformaldehyde, embedded in paraffin then

4 mm sections cut and stained with H&E, PAS and IHC staining for Collagen I

(Calbiochem, Merck Millipore, MA, USA), C3a and C5b-9 (both from Abcam,

MA, USA). For immunofluorescence (IF) staining, fresh frozen 4 mm sections of

renal tissue were first fixed in 4% paraformaldehyde, permeabilized in 0.1%

Triton X-100 for 30 min, and incubated with primary mouse anti-C3a (Abcam)

and anti-IL-6 (Santa Cruz) antibodies diluted in 2% BSA in TBST at 37 C̊ for 2 h,

then overnight at 4 C̊ overnight. Double-IF staining with rabbit anti-C3aR

(GeneTex Inc., CA, USA), mouse anti-p-IKBa (Abcam, MA, USA), mouse anti-

TGF-b (Calbiochem, Merck Millipore, MA, USA) and rabbit anti-p-Smad3 (Santa

Cruz, CA, USA) with the endothelial cell markers mouse anti-CD31 (Abcam, MA,

USA) or rabbit anti-CD31 (Bioworld Technology Inc., MN, USA) was also

performed. The sections were washed with PBS and incubated with diluted

fluoresce-conjugated secondary antibodies including goat anti-rabbit IgG/TRITC

(Merck Millipore, Billerica, MA, USA) and goat anti-mouse IgG/FITC (Millipore)

at 37 C̊ in the dark for 1 h, and then stained with DAPI (Calbiochem). The

micrograph of stained sections was acquired on a confocal microscope (Fluoview

1000, Olympus, Tokyo, Japan) with FV10-ASW software (version 1.7, Olympus),

and morphologic analysis of images was done with Image J software. The double-

blind experiment was carried out in the histological examination, and the person

who evaluated the morphologic changes was blinded to the researcher who

performed the treatment.

Western blot

The cultured cells were lysed in RIPA buffer plus protease inhibitor (PMSF). Total

cellular protein was collected by centrifugation, and the concentration determined

by the BCA method. Proteins were first separated by SDS-PAGE and then

transferred to PVDF membranes (0.45 mm, Millipore). The PVDF membranes

were washed with TBST, blocked for 1 h with 5% skim milk powder dissolved in

TBST, and incubated with primary antibodies against TGF-b (Calbiochem, MA,

USA), Smad3 (Santa Cruz, CA, USA), p-Smad (Santa Cruz, CA, USA), Collagen I

(Merck Millipore, MA, USA), C3a (Abcam, MA, USA), C3aR (GeneTex Inc.,

USA), IL-6 (LSBio, Seattle, WA, USA), p-IKBa (Abcam, MA, USA) and IKBa
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(Santa Cruz, CA, USA) at 4 C̊ overnight with dilutions recommended by the

manufacturer. b-actin was used as an internal reference. The PVDF membranes

were washed with TBST and incubated with horseradish peroxidase (HRP)

conjugated secondary antibodies at 37 C̊ for 1 h. Protein bands were detected

using chemiluminescence (ECL) reagent (Pierce, Thermo Scientific). The

quantitative analysis of protein band density was performed on Quantity One

(Bio-Rad).

Statistical analysis

Statistical analysis was performed with SPSS software (version 11.5, IBM Corp.,

NY, USA), and descriptive statistics were presented as mean ¡ SD. Comparison

between groups was analyzed with one-way analysis of variance (ANOVA) and

Tukey’s Post-hoc test, and p,0.05 was considered statistically significant.

Results

C3aRA ameliorates albuminuria and renal function in T2DM rats

The general and biochemical results of rats are shown in Table 1. T2DM rats had

higher levels of BW, KW/BW, HOMA-IR, GLU, TC and TG than controls.

However, there were no significant differences in these parameters between T2DM

and C3aRA-treated rats. T2DM rats also showed impaired renal function when

compared with the controls, including increased levels of BUN, CREA and UACR.

In contrast, C3aRA treatment significantly reduced UACR and CREA levels in

T2DM rats, and while BUN was slightly decreased in C3aRA-treated rats the

difference was not significant.

Effect of C3aRA on renal morphology in T2DM rats

The histological results of kidneys from different treatment groups are shown

Figure 1. T2DM rats showed clear renal lesions, including tubular hypertrophy,

basement membrane thickening, mesangial proliferation and glomerulosclerosis.

To assess the degree of glomerular sclerosis, PAS staining was performed. T2DM

rats showed higher ratios of PAS-positive to PAS-negative areas than control rats.

This ratio was significantly decreased in C3aRA-treated rats compared with

T2DM rats. The collagen I level in glomeruli, which reflects the degree of matrix

accumulation, was analyzed by IHC. Our results showed that C3aRA treatment

markedly reduced glomerular collagen I disposition in T2DM rats.

Effect of C3aRA on C3a/C3aR and collagen I levels

As shown in Figure 2, we observed positive staining of C3a and C3aR in

glomeruli, and C3aR expression co-localized with CD31-positive GECs. T2DM

rats showed higher intensity of C3a and C3aR staining than control rats. In

contrast, C3aRA-treated rats showed decreased C3a levels when compared with
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T2DM rats, while C3aR level did not change significantly. These results indicated

that C3aRA reduced renal C3a, but not C3aR, levels in T2DM rats. The level of

C5b-9 was also analyzed (Figure S1). T2DM rats showed higher levels of C5b-9

than controls, while C3aRA had no effect on C5b-9 expression. These results

indicate that the complement membrane attack complex (MAC) may be involved

in the development of DN.

The effect of C3aRA on HRGECs is shown in Figure 3. Compared with NG and

HG group, HG+C3a treatment increased C3aR and collagen I level in HRGECs,

while C3aRA and SIS3 (p-Smad3 inhibitor) reduced collagen I level in HG+C3a-

treated HRGECs, although they did not affect C3aR level. These results indicated

that C3aRA reduced collagen I expression, and that this effect was dependent on

blocking C3a-C3aR interaction.

Effect of C3aRA on IL-6 and p-IKBa levels

As shown in Figure 4, we observed positive immunostaining of p-IKBa in GECs of

glomeruli. Compared with controls, T2DM rats showed higher levels of IL-6 and p-

IKBa, while C3aRA treatment significantly decreased IL-6 and p-IKBa levels in

T2DM rats. Furthermore, as shown in Figure 5, HG-treated HRGECs showed

higher level of IL-6 than NG-treated HRGECs, and the addition of C3a further

increased IL-6 expression. In contrast, C3aRA significantly reduced IL-6 level in

HG+C3a-treated HRGECs, which was similar to the result obtained with BAY-11-

7082 (a p-IKBa inhibitor). Despite the mRNA level of total IKBa was unchanged,

the p-IKBa level was increased in HG+C3a-treated HRGECs. Both C3aRA and BAY

reduced p-IKBa levels in HG+C3a-treated HRGECs, which suggested that C3aRA

reduced IL-6 expression by inhibiting IKBa phosphorylation.

Table 1. General and biochemical parameters in different groups.

Parameters Control T2DM T2DM+C3aRA

Body weight (g) 306.8¡21.0 377.3¡42.3a 332.1¡36.3b

KW/BW(g/kg) 3.45¡0.35 4.44¡0.28a 3.86¡0.18b

HOMA-IR 0.78¡0.26 2.55¡0.75a 2.42¡0.96b

GLU (mmol/L) 4.1¡0.7 23.7¡1.2a 24.7¡1.85b

TC (mmol/L) 1.3¡0.5 3.39¡1.3a 3.41¡1.5b

TG (mmol/L) 0.6¡0.1 5.6¡2.5a 5.4¡1.6b

BUN (mmol/L) 5.6¡0.5 16.4¡4.2a 14.6¡0.7b

CREA (mmol/L) 25.8¡8.2 69.8¡11.8a 54.7¡5.3b c

UACR (mg/mmol) 0.6¡0.2 8.45¡3.8a 7.60¡2.9b c

Note:
acontrol vs T2DM (p,0.05);
bcontrol vs T2DM+C3aRA (p,0.05);
cT2DM vs T2DM+C3aRA (p,0.05).

doi:10.1371/journal.pone.0113639.t001
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Figure 1. Histological analysis of glomerular injury of the different groups. (A) HE, PAS and IHC staining for collagen I (scale bar550 mm). (B)
Quantitative analysis of PAS-positive area and collagen I level detected by IHC (*p,0.05, **p,0.01).

doi:10.1371/journal.pone.0113639.g001
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Effect of C3aRA on TGF-b and p-Smad3 levels

T2DM rats showed increased levels of TGF-b and p-Smad3 when compared with

control rats, while C3aRA treatment reduced both TGF-b and p-Smad3 level in

T2DM rats (Figure 6). These results indicated that C3aRA can inhibit the

activation of the TGF-b/Smad3 pathway in T2DM rats. The effect of C3aRA on

TGF-b/Smad3 in HRGECs was also analyzed (Figure 7). HG+C3a-treated

HRGECs showed higher levels of TGF-b and p-Smad3 than the NG group. In

contrast, C3aRA reduced TGF-b and p-Smad3 levels in HG+C3a-treated

HRGECs, suggesting that the effect of C3aRA is partially mediated by inhibition of

the TGF-b/Smad3 pathway.

Discussion

Diabetic nephropathy is a serious complication of diabetes mellitus and has

become the most common cause of end-stage renal disease worldwide. Although

Figure 2. Immunofluorescent analysis of C3a and C3aR expression in kidney of different groups. (A) IF
staining for C3a and double-IF staining of C3aR with CD31 (scale bar550 mm). (B) Quantitative analysis of
C3a and C3aR level (*p,0.05, **p,0.01).

doi:10.1371/journal.pone.0113639.g002
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Figure 3. Real-time PCR for (A) C3aR and (B) collagen I expression in HRGECs. (C) Western blotting for C3aR and collagen I in HRGECs. Quantitative
analysis of (D) C3aR and (E) collagen I level as detected by western blot (*p,0.05, **p,0.01).

doi:10.1371/journal.pone.0113639.g003
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the relationship between complement C3a and renal disease has been reported in

various studies [9, 12], the specific effect of complement in DN and the related

molecular mechanism has not been well elucidated. In this study, we investigated

the potential effect of C3a on glomeruli, especially on GECs in DN, and assessed

whether blocking C3aR could ameliorate renal injury in a rat model of T2DM.

T2DM was induced in rats using a HFD+repeated low-dose injections of STZ.

T2DM rats demonstrated hyperglycaemia, hyperlipidemia, increased BW, KW/

BW and HOMA-IR, which are consistent with typical characteristics of T2DM in

humans [1]. Our data showed that T2DM rats also had increased levels of BUN,

CREA and UACR, which indicated renal dysfunction in T2DM rats. T2DM rats

also showed obvious renal lesions, including increased intensity of PAS and

collagen I staining in glomeruli, reflecting ECM deposition and renal fibrosis.

These results demonstrated that the rat T2DN model was well established in our

study.

A relationship between the complement system and renal disease has already

been proposed in previous studies [23]. The complement-mediated renal injury

Figure 4. Immunofluorescent analysis of IL-6 and p-IKBa expression in the kidney of different groups.
(A) IF staining for IL-6 and double-IF of p-IKBa with CD31 (scale bar550 mm), and (B) quantitative analysis of
IL-6 and p-IKBa expression (*p,0.05, **p,0.01).

doi:10.1371/journal.pone.0113639.g004
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Figure 5. Real-time PCR for (A) IL-6 and (B) IKBa mRNA expression in HRGECs. (C) Western blotting for IL-6, IKBa and p-IKBa protein expression in
HRGECs, and quantitative analysis of (D) IL-6 and (E) p-IKBa (*p,0.05, **p,0.01).

doi:10.1371/journal.pone.0113639.g005
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can be induced via direct damage of membrane attack complex (MAC) to the cell

surface, or through the activation of complement receptor and its downstream

signals by complement fragments [10]. MAC such as C5b-9 can form

transmembrane channels causing disruption of the target cell membrane and cell

lysis, and C5b-9 has been involved in the glomerulonephritis such as membranous

nephropathy [9]. C3a is a cleavage product of C3, which can induce inflammatory

responses via binding to C3aR and activate its downstream signaling cascades

[11]. In this study, T2DM rats showed increased level of C3a and C5b-9 in kidney,

which was due to the abnormal activation of complement system in diabetes.

C3aRA is a selective, high affinity and competitive antagonist of C3a receptor,

which can inhibit C3a-induced internalization of C3aR [24]. T2DM rats treated

with C3aRA showed clear improvement in renal function and pathology. C3aRA

decreased the CREA and UACR in T2DM rats, while other biochemical

parameters were not changed. These results suggested that C3aRA was able to

ameliorate DN, and this effect was independent of mediating glucose and lipid

Figure 6. C3aRA inhibited TGF-b/Smad3 pathway in the kidney of T2DM rats. (A) Double-IF staining of
TGF-b and p-Smad3 with CD31 (scale bar550 mm). (B) Quantitative analysis of TGF-b and p-Smad3
expression level (*p,0.05, **p,0.01).

doi:10.1371/journal.pone.0113639.g006
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Figure 7. Real-time PCR for (A) TGF-b and (B) Smad3 mRNA in HRGECs. (C) Western blot for TGF-b, p-Smad3 and Smad3, and quantitative analysis of
(D) TGF-b level and (E) p-Smad3/Smad3 ratio (*p,0.05, **p,0.01).

doi:10.1371/journal.pone.0113639.g007
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metabolism. Although C3aRA slightly reduced renal C3a level in T2DM rats, the

level of C5b-9 was not affected. This result indicated that C3aRA ameliorating

renal injury mainly through inhibiting C3aR and its downstream signaling

pathways, but not via directly reducing C5b-9 expression.

Previous studies indicate that the inflammatory response is a common

pathogenic mechanism in chronic kidney disease (CKD), and that increased pro-

inflammatory factors are associated with the progression of DN in human and

animal models [25, 26]. Although the effect of C3a on the activation of

neutrophils and its contribution to inflammatory responses is well documented,

its specific effect on GECs in DN is not completely clear. The NF-kB pathway

plays a crucial role in modulating pro-inflammatory factor expression, including

cytokines, chemokines, growth factors and adhesion molecules, while inhibition

of NF-kB signaling markedly reduces inflammatory responses [27, 28]. The

phosphorylation and degradation of IKBa is a key step in the activation and

translocation of the NF-kB complex to the nucleus [27]. We observed increased

C3a and C3aR expression with increased p-IKBa and IL-6 in the kidney of T2DM

rat, as well as increased p-IKBa and IL-6 in C3a-treated HRGECs, suggesting that

C3a induces IL-6 release via p-IKBa and NF-kB activation. BAY 11-7082 is a

selective inhibitor of IKBa phosphorylation, which specifically blocks the

activation and translocation of NF-kB [29]. Both C3aRA and BAY could reduce

p-IKBa levels in T2DM rats and C3a-treated HRGECs, which was associated with

reduced IL-6. Therefore, our results demonstrated the anti-inflammatory effect of

C3aRA in T2DM rats, and that this effect may be because of its inhibition of IKBa
phosphorylation and NF-kB activation in GECs of the kidney.

Renal fibrosis is a hallmark of progressive renal disease leading to DN, which is

characterized by excessive accumulation of ECM components, with collagen I

being used as a common marker for ECM deposition [21, 30]. C3aRA treatment

significantly reduced ECM deposition in T2DM rats, including decreased intensity

of PAS and collagen I staining, which suggests C3aRA has a role in inhibiting renal

fibrosis. To explore the potential mechanism, the C3a/C3aR and collagen I levels

in HRGECs were also analyzed. We observed higher levels of C3a/C3aR and

collagen I in the HG+C3a-treated group, while collagen I level was decreased in

the C3aRA-treated group, suggesting that C3aR activation and its associated

downstream signaling pathways contributed to the over-expression of ECM. A

previous study reported the ability of C3a to induce phenotype change of PTECs

by up-regulating TGF-b and collagen I [13], but its effects on GECs is still

unknown. The TGF-b/Smad3 pathway plays a critical role in controlling ECM

production and fibrosis [21]. After stimulation by TGF-b, Smad3 is phosphory-

lated at carboxyl terminal serine residues, then p-Smad3 forms a complex with

Smad4 and translocates to the nucleus to induce pro-fibrotic gene expression [31].

In this study, we observed increased TGF-b and p-Smad3 in C3a-treated HRGECs

and T2DM rats, suggesting that C3a plays an important role in the activation of

TGF-b/Smad3 signaling and is a potential inducer of renal fibrosis. In contrast,

C3aRA treatment inhibited TGF-b/p-Smad3 in T2DM rat and C3a-treated

HRGECs, which showed similar effects to SIS3. SIS3 is an inhibitor of the
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phosphorylation of Smad3 [32], which also reduced p-Smad3 and collagen I in

C3a-treated HRGECs. These results demonstrate that C3aRA can inhibit pro-

fibrotic gene expression by inactivating TGF-b/Smad3 signaling in GECs. In

addition, we also observed some positive staining of C3a/C3aR and the changes of

its downstream signals in other glomerular and tubulointerstitium cells including

podocytes and PTECs. As the previously studies had found that C3aR expressed

on podocytes and PTECs [13, 33], our results also raised the possibility that

C3aRA mediated the intracellular signals in these cells as well as in GECs.

Therefore, further work will be needed to define the precise effects of C3aRA on

the other type of renal cells such as podocytes and PTECs.

In conclusion, our study showed that C3a aggravates renal injury via up-

regulation of the inflammatory and fibrotic responses in the T2DM rats. C3aRA

treatment ameliorated renal injury, deceased albuminuria and ECM deposition in

T2DM kidneys. C3aRA not only inhibited IKBa phosphorylation, but also

inactivated TGF-b/Smad3 signaling in GECs. More importantly, our results

demonstrated the anti-inflammatory and anti-fibrotic effect of C3aRA in the

kidney of T2DN rats. Taken together, these findings suggest that C3aR activation

potentially leads to the progression of DN, and thus C3aRA may serve as a novel

therapeutic agent for DN.
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