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Abstract 

Seasonal influenza virus predominantly evolves through antigenic drift, marked by the accumulation of mutations at antigenic sites. 
Because of antigenic drift, influenza vaccines are frequently updated, though their efficacy may still be limited due to strain mismatches. 
Despite the high levels of viral diversity observed across populations, most human studies reveal limited intrahost diversity, leaving the 
origin of population-level viral diversity unclear. Previous studies show host characteristics, such as immunity, might affect within-host 
viral evolution. Here we investigate influenza A viral diversity in children aged between 6 months and 18 years. Influenza virus evolution 
in children is less well characterized than in adults, yet may be associated with higher levels of viral diversity given the lower level of 
pre-existing immunity and longer durations of infection in children. We obtained influenza isolates from banked influenza A-positive 
nasopharyngeal swabs collected at the Children’s Hospital of Philadelphia during the 2017–18 influenza season. Using next-generation 
sequencing, we evaluated the population of influenza viruses present in each sample. We characterized within-host viral diversity using 
the number and frequency of intrahost single-nucleotide variants (iSNVs) detected in each sample. We related viral diversity to clinical 
metadata, including subjects’ age, vaccination status, and comorbid conditions, as well as sample metadata such as virus strain and 
cycle threshold. Consistent with previous studies, most samples contained low levels of diversity with no clear association between the 
subjects’ age, vaccine status, or health status. Further, there was no enrichment of iSNVs near known antigenic sites. Taken together, 
these findings are consistent with previous observations that the majority of intrahost influenza virus infection is characterized by low 
viral diversity without evidence of diversifying selection.
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Introduction
In most years, global influenza-associated respiratory mortality 
accounts for 291,000–645,000 deaths, with 9,200–105,000 deaths 
occurring in children under 5 years of age (Iuliano et al. 2018). Prior 
episodes of influenza disease do not protect against re-infection 
due to antigenic drift, whereby an accumulation of substitutions 
change the viral surface proteins to allow evasion of the host’s 
antibody response. The influenza vaccine is updated annually to 
counter the effects of antigenic drift, providing boosted immunity 
against the influenza strains that are predicted to circulate. While 
mutations that facilitate antigenic drift are identifiable in retro-
spect (Li et al. 2013; Chambers et al. 2015), the inability to fully 
predict which mutations are most likely to emerge each season 
limits vaccine efficacy (D’Mello et al. 2015).

There has been increasing interest in characterizing intra-
host diversity of rapidly evolving RNA viruses, including SARS-
CoV-2, HIV, and influenza. The rise in interest has been driven 
by technological advancements and recognition of the link 

between the within-host and between-host scales (Xue et al. 

2018). The development of deep-sequencing technologies facil-

itates quantifying intrahost viral population diversity beyond 

just the consensus-level genetic sequence. Yet, despite the 

advancements in next-generation sequencing (NGS), the identi-

fication of intrahost single-nucleotide variants (iSNVs) remains 

technically difficult due to the high background noise and 

sequencing artifacts. Studies of within-host viral evolution have 

demonstrated that variants identified during prolonged infections 
may be predecessors to variants later observed in the general
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Table 1. Clinical metadata for subjects categorized by age. Clinical metadata categories are as follows. Cat: age range contained in 
category, N: number of subjects, age, cycle threshold (Ct), and symptoms are shown with mean ± standard deviation. Symptoms describe 
the # of days of symptoms prior to sample collection. Vaccine, PMCA, and comorbidities are shown with number of subjects (% of subjects 
in age category). PMCA: pediatric medical complexity algorithm, N-CD: no chronic disease, NC-CD: non-complex chronic disease, C-CD: 
complex chronic disease. CLD: chronic lung disease. IC: Immunocompromised.

Cat N Age Ct Symptoms  Vaccine  PMCA  Comorbidities

No Yes N-CD NC-CD C-CD CLD IC

0–4 59 1.6 ± 1.0 22.3 ± 3.4 3.2 ± 2.7 23 (39) 36 (61) 28 (47) 21 (36) 10 (17) 16 (27) 2 (3)
5–11 22 8.7 ± 2.0 21.9 ± 2.8 3.0 ± 1.8 8 (36) 14 (64) 2 (9) 9 (41) 11 (50) 16 (73) 1 (5)
12–18 30 15.8 ± 1.8 24.6 ± 3.3 2.8 ± 1.2 8 (27) 22 (73) 2 (7) 13 (43) 15 (50) 21 (70) 3 (10)

population (Xue et al. 2018). Moreover, prolonged infections may 
give rise to highly divergent viral lineages (Choi et al. 2020; 
Weigang et al. 2021; Ko et al. 2022; Gonzalez-Reiche et al. 2023), 
which in some cases may facilitate strain replacement, spec-
ulated to be the origin of the omicron lineage of SARS-CoV-2
(Shrestha et al. 2022). 

While there are many examples of how prolonged viral infec-
tions give rise to divergent lineages, recent studies have shown 
that within-host viral populations generally show low-viral diver-
sity (Debbink et al. 2017; McCrone et al. 2018; Moncla et al. 2020; 
Valesano et al. 2020). In the case of influenza viruses, cohort stud-
ies have shown that the within-host viral populations contain low 
numbers, <10 iSNVs, per sample (Debbink et al. 2017; Valesano 
et al. 2020). The paucity of within-host diversity is unsurprising 
given that most influenza infections are subject to narrow trans-
mission bottlenecks and short infectious periods (Xue et al. 2018). 
Transmission bottlenecks describe the number of unique viral 
genomes that give rise to new infections and serve as essential 
determinants of within-host viral diversity for acute infections. 
Narrow transmission bottlenecks of 1–2 virions severely limit the 
starting viral diversity of the first infection (McCrone et al. 2018). 
Short-lived infections with few rounds of viral replication provide 
limited opportunity for viruses to accumulate sufficient muta-
tions to substantially increase within-host diversity (Xue et al. 
2018). Moreover, intrahost influenza virus evolution during acute 
infections is dominated by purifying selection to remove deleteri-
ous mutations. In contrast, diversifying or positive selection, such 
as antibody-mediated selection of antigenic variants, is rarely 
observed.

Observations suggest that a small subset of infections may 
be driving viral evolution at the population level (Lumby et al. 
2020), akin to how rare individuals have an outsized effect on 
viral transmission, as seen with superspreaders (Lloyd-Smith et al. 
2005). Identifying the proportion of the population with higher 
levels of intrahost influenza virus diversity could improve viral 
surveillance efforts and, thus, strain selection for the seasonal 
influenza vaccine. While high levels of viral diversity have been 
identified in severely immunocompromised individuals, these 
comprise a very small proportion of the general population and 
it is unclear if they are the primary source of pathogenic variants
(Eden et al. 2017).

Some infection characteristics giving rise to prolonged, high-
diversity infections in the immunocompromised can also be 
observed in children. Children shed virus for a longer duration 
than adults (Ng et al. 2016), which is likely related to limited prior 
immunity. The longer duration of viral replication and shedding, in 
turn, could potentially provide a greater opportunity for the accu-
mulation of intrahost mutations. Delayed antibody induction can 
potentially provide a source of diversifying selection that gradu-
ally increases over the course of infection. Furthermore, children 

are already recognized as a key driver of influenza virus transmis-
sion (Worby et al. 2015), which could facilitate the transmission 
of antigenic variants. A recent study of influenza virus evolution 
of children in Vietnam has assessed within-host viral evolution in 
this population with longitudinal sampling (Han et al. 2021), and 
found that non-synonymous mutations tended to increase in fre-
quency over the course of infection. However, given the key role of 
children in influenza virus propagation, further studies are needed 
of pediatric populations.

In this study, we evaluated 111 clinical influenza virus isolates 
from children collected during the 2017–18 influenza season using 
NGS. Our results show that the majority of these samples contain 
low numbers of iSNVs, suggesting low intrahost diversity. While 
we identified two clinical isolates with significantly higher levels 
of diversity, further analysis of the variants identified in many of 
the identified iSNVs were in phase each other. This observation 
suggests that the high diversity was not attributable to de novo
evolution and, as such, they were excluded from subsequent anal-
yses. For the remaining subjects, we found no association between 
the intrahost viral diversity and the age, vaccine status, or health 
status of the corresponding subject.

Results
Study participants
The viral isolates analyzed in this study were obtained from resid-
ual influenza virus-positive diagnostic nasopharyngeal swabs 
banked by the Children’s Hospital of Philadelphia (CHOP) Infec-
tious Diseases Diagnostics Laboratory (IDDL). We included sam-
ples from children between 6 months and 18 years of age. All 
banked samples from the 2017 to 2018 flu season were first 
stratified into distinct subgroups based on age and vaccination 
status. Vaccination status was defined relative to receipt of the 
2017–18 seasonal flu vaccine only. From these defined subgroups, 
a directed random sampling strategy was implemented, resulting 
in the selection of 197 samples for further analysis. Of the iden-
tified samples, 118 met our quality control criteria. Further clini-
cal and demographic metadata for these samples were obtained 
through medical record review. Previous studies of influenza and 
other viruses have shown that days since symptom onset and the 
amount of viral genetic material in a sample, often quantified 
using cycle threshold (Ct), may influence diversity metrics (Vale-
sano et al. 2020; Han et al. 2021; Voloch 2021). The samples within 
our age-based categories did not differ based on the days since 
symptom onset or Ct (Table 1). We assessed the general health 
status of the subjects using the Pediatric Medical Complexity Algo-
rithm, a tool used to stratify children based their level of medical 
need due to chronic health conditions (Simon et al. 2014). Children 
are stratified into three groups: children without chronic disease 
(N-CD), children with non-complex chronic disease (NC-CD), and 
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Table 2. Comparative distribution of iSNVs across influenza gene 
segments. The table delineates the iSNV counts across influenza 
gene segments. Synonymous (S) and non-synonymous (NS) muta-
tions for each segment under different categories.

Segment  H3N2  H1N1

# Name S NS S NS

1 PB2 9 4 5 5
2 PB1 9 4 2 2
3 PA 8 9 2 2
4 HA 9 4 1 2
5 NP 9 5 5 1
6 NA 5 7 0 5
7 MP 1 2 0 1
8 NS 4 1 1 5

Avg 6.75 4.5 2 2.9

children with complex chronic disease (C-CD), based on diagnoses 
codes from the International Classification of Diseases coding sys-
tem. Complex chronic conditions are associated with higher uti-
lization of healthcare resources and poor health outcomes (Berry 
et al. 2015). Our study population had a higher proportion of chil-
dren with complex chronic disease, particularly in the 5–11 and 
12- to 18-year-old age groups, which can be explained by CHOP’s 
role as a quaternary referral center. The most frequently identified 
medical comorbidity was chronic lung disease, which included 
asthma and chronic lung disease of prematurity, known risk fac-
tors for severe influenza (Coffin et al. 2007), which was identified 
in 48 per cent of our subjects overall. We included children with 
immunocompromising conditions, though they comprised a small 
proportion of the study participants in each age category. 

Sample quality control
The samples were sequenced using the Illumina NextSeq plat-
form. We applied rigorous quality control (QC) methods to ensure 
the robustness of our findings since sample contamination, tech-
nical errors, and sequencing artifacts can significantly affect the 
results of within-host viral diversity studies (McCrone, Lauring, 
and Dermody 2016; Xue and Bloom 2019; Roder et al. 2023). Pre-
vious studies have shown that low-starting cDNA concentrations 
can impact the accuracy of variant identification, thus we only 
considered samples with a Ct < 30 (McCrone, Lauring, and Der-
mody 2016). All samples were sequenced in duplicate from the 
beginning of our workflow at the viral RNA extraction step. We 
trimmed all short reads to the middle 50 per cent of the read prior 
to alignment with A/Michigan/45/2015 (H1N1) and A/Washing-
ton/17/2016 (H3N2) reference sequences. We masked nucleotides 
within short reads with phred scores <30 and/or mapping qual-
ity scores < 40. Within the alignment, we masked nucleotides with 
coverage of <100 reads. To pass QC, we required the sample to have 
at least 100× coverage for ≥95 per cent of the influenza genome. 
iSNV detection is highly sensitive to variant calling thresholds. We 
chose an iSNV threshold of 3 per cent to minimize the identifi-
cation of artifactual iSNVs, a threshold that a prior study using 
amplicon-based sequencing validated as effective at removing 
false-positive iSNVs when combined with replicate sequencing 
(Grubaugh et al. 2019). Additional studies evaluating within-host 
viral diversity have also employed a minimum frequency thresh-
old of 3 per cent (Braun et al. 2021; Lythgoe et al. 2021).

Even when stored at −80∘C, viral RNA in clinical isolates can 
degrade over time (Cannon et al. 2019). Given that these samples 
were at least 5 years old at the time of sequencing, we expected 

Figure 1. iSNV detection in technical replicates. (A) Concordance of iSNV 
frequency across between technical replicates. (B) Distribution of 
intersection iSNV frequency. (C) Association between the number of 
intersection iSNVs identified in a sample and that sample’s Ct.

a subset of samples to yield low-quality sequences. To that end, 
we excluded all samples where <50 per cent of the detected iSNVs 
in each replicate were identified as intersection iSNVs, which we 
define as an iSNV found in both replicates with a frequency of at 
least 3 per cent. This criterion was applied only if there was more 
than one iSNV detected. As a result of this QC requirement, twenty 
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samples were excluded. For those samples passing our QC crite-
ria, there was a strong linear correlation (R2 = 0.89) between iSNV 
frequency across replicates (Fig. 1A).

The majority of identified iSNVs were generally observed at low 
frequency with a mean(υvar) ± SD of 9.97 ± 10.09 per cent, where 
υvar represents the average iSNV frequency across both replicates 
(Fig. 1B). While we excluded samples with high Ct values, we still 
had concerns about the potential lingering impact of a sample’s Ct

on the number of identified iSNVs. To investigate this possibility, 
we performed a linear regression analysis, examining the relation-
ship between the samples’ Ct values and the number of iSNVs 
detected in the corresponding sample. Our analysis failed to iden-
tify a significant association between Ct and the number of iSNVs 
(R2 = 3.03 × 10–5) (Fig. 1C), indicating that, for the samples analyzed 
in this study, the within-host viral diversity was independent of 
the amount of viral material in the samples.

Phylogenetics
We reconstructed phylogenetic trees using the consen-
sus sequence for hemagglutinin (HA) protein from each sample 
using Nextstrain for both influenza A subtypes (Hadfield, Megill, 
and Bell et al. 2018; Sagulenko, Puller, and Neher 2018). Of the 111 
samples that passed our QC requirements, 84 sequences (76 per 
cent) were identified as H3N2 with the remaining 27 sequences 
identified as H1N1. This is consistent with the viral surveillance 
data, which showed that ∼85 per cent of subtyped influenza A 
viruses circulating during the 2017–18 were H3N2 with a regional 
predominance ranging from 76 percent to 91 per cent (Garten et al. 
2018). We aligned the hemagglutinin sequences obtained from our 
study samples with publicly available hemagglutinin sequences 
available from GISAID. We selected the sequences from GISAID 
using randomized, targeted, subsampling of all sequences sub-
mitted by the CDC for the United States between 2013 - 2018. 
We further enriched for sequences collected in Pennsylvania by 
incorporating additional randomly selected sequences obtained 
in Pennsylvania betwen 2017 and 2018, the year that the samples 
analyzed in this study were collected (Khare et al. 2021). Additional 
details describing the subsampling technique and phylogenetic 
reconstruction can be found in the ‘Methods’ section. The tree tips 
for both H3N2 and H1N1 sequences from our study were inter-
spersed with the tips representing the general sequences from the 
USA and Pennsylvania (Fig. 2). The H3N2 samples fell within the 
3C.2a2 and 3C.3a1 subclades and the H1N1 samples fell within the 
6b1.A subclade, clades that were known to be circulating within 
the Northern Hemisphere during that time (Garten et al. 2018). 
Based on the categorization of our sequences into clades of the 
contemporaneous circulating influenza subtypes and the relative 
ratio of those subtypes in our data, we conclude that sequences 
from our study are representative of influenza viruses circulating 
in the USA during 2017–18.

Identification of mixed infections and possibility 
of cross-contamination of samples with high 
iSNVs
Mixed infections can lead to the detection of multiple mutations 
within a sample (Ghedin et al. 2011), which may be a poten-
tial explanation for higher numbers of iSNVs in some samples 
(McCrone et al. 2018). The iSNVs identified in CHOP-101 and 
CHOP-117 were predominately found on the HA segment. Dur-
ing inspection of the fastq files from the HA segment in these 
samples, we observed that many of the variants were in phase 
with one another. Furthermore, they occurred at residues that dif-
fered between the 3C.2a2, the clade of those samples’ consensus 

sequences, and the 3C.3a1 subclade co-circulating at the time of 
sample collection (Supplementary Fig. S1). Thus, it is likely that 
these isolates represent mixed infections. We also cannot rule out 
the possibility of cross-contamination with other samples from 
our study as a subset of the other influenza isolates sequenced 
belonged to the 3C.3a1 clade. As the high diversity in these sam-
ples was not likely attributable to de novo evolution, we excluded 
these samples from subsequent analysis.

Variant analysis
We compared within-host diversity across the samples based on 
the number of identified synonymous and nonsynonymous iSNVs. 
We found low levels of within-host viral diversity with a mean and 
standard deviation of 0.64 ± 0.91 synonymous and 0.54 ± 0.84 non-
synonymous intersection iSNVs per sample (Supplementary Fig. 
S2A), consistent with the low within-host diversity described in 
previous studies (McCrone, Lauring, and Dermody 2016; Debbink 
et al. 2017; Han et al. 2021). All iSNVs identified in our study are 
shown in Supplementary Table S2. The distribution of the num-
ber of iSNVs per sample did not follow a normal distribution; 
instead, it exhibited a right-sided tail, indicative of overdispersion. 
To assess the association between the subtype and the number of 
iSNVs, we fitted a negative binomial regression model and com-
pared the groups using a chi-squared (χ2) test, applying a Bonfer-
roni correction to account for multiple comparisons. We observed 
no association between subtype and the number of synonymous 
or non-synonymous iSNVs, P = 1.00 and 0.07, respectively (Supple-
mentary Fig. S2B). Thus, we combined samples from H1N1 and 
H3N2 for the subsequent analyses, where appropriate, as has been 
done in other studies (McCrone et al. 2018).

We next evaluated the association between the number and 
characteristics of iSNVs identified in the sample and elements 
of the clinical metadata abstracted from the electronic medical 
record (EMR). We fit a negative binomial linear regression to assess 
the relationship between a subject’s age and the number of iSNVs 
identified in his/her viral isolate (Fig. 3A). The regression anal-
ysis demonstrated there was no relationship between age and 
either synonymous iSNVs (R2 = 0.0038) or non-synonymous iSNVs 
(R2 = 0.019). To assess the relationship between vaccination sta-
tus and within-host diversity, we compared the mean number 
of iSNVs between vaccinated and unvaccinated subjects (Fig. 3B) 
using a negative binomial regression generalized linear model. The 
results of this analysis indicated that there was no statistically 
significant difference between vaccinated, n(Vaccinated) = 71, and 
unvaccinated individuals, n(Unvaccinated) = 38, for either synony-
mous iSNVs (P = 1.00) or non-synonymous iSNVs (P = 0.35). We 
also considered factors related to the severity of infections, such 
as days of symptoms prior to sample collection and the under-
lying health status of the subject, categorized by the pediatric 
medical complexity algorithm (PMCA), the setting where the sam-
ple was obtained, and whether the child was admitted. For this 
analysis, we considered the setting to be either outpatient or 
inpatient, where the inpatient category included children whose 
swabs were obtained following admission to CHOP or in the emer-
gency department (ED). We again used a linear regression model 
to assess the relationship between iSNVs and age and we used 
a negative binomial regression model to assess the relationship 
between iSNVs and PMCA, setting and admission. We observed 
no significant association between the days of symptoms prior 
to sample collection for synonymous (R2 = 9.68 × 10−7) or non-
synonymous iSNVs (R2 = 1.83 × 10−4) (Fig. 3C). Because we did 
not identify a significant relationship between days since symp-
tom onset, we did not consider this a factor in our subsequent 
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Figure 2. Time-resolved phylogenetic reconstruction of HA sequences from clinical influenza virus isolates for samples collected during the 2017–18 
influenza season for: (A) H3N2 and (B) H1N1. The HA sequences from CHOP samples (blue) are shown in relation to sequences obtained from GISAID 
from the USA (black) and Pennsylvania (red). The clade designations for the CHOP sequences are identified at the clade-defining node.
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Figure 3. Relationship between the number of iSNVs and four different variables: (A) the subject’s age, (B) vaccination status, (C) number of days of 
symptoms prior to sample collection, and (D) medical complexity as categorized by PMCA. Synonymous iSNVs are represented by black markers, 
while non-synonymous iSNVs are shown in teal. For numeric variables (age and days of symptoms), associations with the number of iSNVs were 
assessed using a linear regression model, with the best fitting regression line depicted in the respective plots. Associations between the number of 
iSNVs and categorical variables (vaccination status and medical complexity) were evaluated using a negative binomial regression model, though no 
signifciant associations were found at α = 0.05. Plots B–D use minor spread along the x-axis to improve the distinctness of individual data points.

analyses. No significant association was observed between test 
setting and admission status, in relation to the occurrence of syn-
onymous or non-synonymous iSNVs. Specifically, the comparison 
of inpatients (n(Inpatient) = 86) to outpatients (n(Outpatient) = 23) 
revealed no significant difference for synonymous (P = 0.70) or 
non-synonymous iSNVs (P = 0.31). Similarly, no significant dif-
ference was found when comparing admitted (n(Admitted) = 19) 
versus not admitted (n(Not Admitted) = 90) patients for synony-
mous (P = 1.0) and non-synonymous iSNVs (P = 0.97). In examining 
health status, children categorized as having complex chronic 
conditions (n(C-CD) = 34) were not found to have a higher number 

of iSNVs compared to children without chronic disease (n(N-
CD) = 32) or with non-complex chronic disease (n(NC-CD) = 43) 
(Fig. 3D).

In addition to the number of iSNVs identified in the influenza 
isolates, we also characterized within-host viral diversity using the 
diversity statistic π (Nei and Li 1979; Nelson and Hughes 2015), 
calculated as: 
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Figure 4. iSNV distribution across influenza gene segments for subjects infected with H3N2. The eight influenza gene segments are shown above with 
in grey with gene segment’s complementary determining sequence (CDS) in light blue. The CDS for the overlapping genes (OLG), PB1-F2, PA-X, M1, and 
NS1, are shown in dark blue. iSNVs from all subjects plotted along the gene segment in which they were identified according to the figure legend.

 where L represent the length of the viral genome and (Dl) repre-

sents the expectation value of pairwise diversity at locus l. The 
expression (Dl) represents the expected nucleotide diversity is 
calculated as: 

where pi represents the frequency of allele at locus l (Zhao and 
Illingworth 2019). We chose this metric of estimating nucleotide 
diversity based on the evaluation by Zhao and Illingworth which 
showed this metric avoid bias introduced by differences in cover-
age. For our samples, we estimated the mean(π) = 0.0012 ± 0.00048 
(Supplementary Fig. S3A). As with the number of iSNVs, we failed 
to identify an association between π and either the subject’s age, 
vaccine, or health (Supplementary Fig. S3B–D).

In addition to quantifying within-host viral diversity with 
iSNV counts, we evaluated the distribution of those iSNVs across 
influenza virus gene segments. Our analysis revealed an even dis-
tribution of iSNVs across the gene segments (Table 2), with no 
evidence of enrichment on or within any specific gene segment 
for either H3N2 (Fig. 4) or H1N1 subtypes (Fig. 5). This suggests a 
lack of pressure from diversifying selection in particular areas of 
the genome, particularly on the HA or NA gene segments.

Location of substitutions on influenza virus 
glycoproteins
Most neutralizing antibodies target influenza virus glycoproteins, 
HA, and neuraminidase (NA), embedded in virus membrane and, 
therefore, we next evaluated the non-synonymous substitutions 

identified in these gene segments. Overall, we identified few non-

synonymous SNVs on either gene occurring at or near previously 

identified antigenic sites. There were two non-synonymous iSNVs 

identified on HA gene segment, one occurring on H3N2 and the 

other on H1N1 (Fig. 6A and B). The H3 iSNV G200V, identified 

in CHOP-080, was adjacent to antigenic site D, though it did not 

widely circulate during 2017–18 or subsequent influenza seasons 

(Neher and Bedford 2015). The H1 iSNV K311R, identified in CHOP-

127, was not in close proximity to influenza’s antigenic sites. We 

identified a greater number of mutations on the NA gene segment 
for both N2 and N1. For the N2 NA gene segment, we identified five 
unique mutations, each in a single subject (Fig. 6C–E). While we 

did not identify the same NA iSNVs across subjects, the mutations 
appeared to cluster around two regions. The first cluster contained 

R210K from CHOP-096 and V216I from CHOP-043. The number-
ing refers to the residue position in the mature N2 peptide (Zhu 
et al. 2012). Many of the iSNVs occurred within or near previously
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Figure 5. iSNV distribution across influenza gene segments for subjects infected with H1N1. The eight influenza gene segments are shown above with 
in grey with gene segment’s complementary determining sequence (CDS) in light blue. The CDS for the overlapping genes (OLG), PB1-F2, PA-X, M1, and 
NS1, are shown in dark blue. iSNVs from all subjects plotted along the gene segment in which they were identified according to the figure legend.

identified antibody binding sites. For the N1 protein, we identified 
a total of two iSNVs in the head domain (Fig. 6F-G)—both in sub-
ject CHOP-037, though neither occurred within or near previously 
described antibody-binding sites (Dai et al. 2021; Strohmeier et al. 
2021).

Discussion
Our study shows that influenza viruses recovered from infected 
children generally display low levels of within-host viral diver-
sity. This observation is in line with prior studies of within-host 
influenza evolution that have similarly shown that most infec-
tions are characterized by low-viral diversity (Debbink et al. 2017; 
McCrone et al. 2018; Han et al. 2021). While there were two individ-
uals with significantly higher levels of diversity, further analysis 
indicated these were likely the result of mixed infection or cross-
contamination. We also evaluated the relationship between met-
rics of within-host diversity, the number of iSNVs and the diversity 
statistics π. We showed that there was not a significant associa-
tion between either of these metrics of diversity with elements of 
the clinical metadata including the child’s age, vaccine, or health 
status. We did not explicitly consider dN/dS, a commonly used 
method for characterizing the type of selective pressure acting on 
a population, as this metric assumes that the population has had 
time to equilibrate, and may be neither sensitive nor specific for 
identifying diversifying selection in within-host viral populations 
(Kryazhimskiy, Plotkin, and Gojobori 2008; Lauring 2020). Finally, 
we show that a subset of the non-synonymous iSNVs detected 

on the influenza glycoproteins, HA, and NA, occur in proximity to 
previously described antigenic sites and known epitopes. Though, 
given the small number of these iSNVs and absence of paired 
serum samples, it is difficult draw broad conclusions related to 
immune escape from this observation.

The principal finding of this study is that there are low lev-

els of within-host viral diversity in the pediatric population. The 

observation of low diversity, quantified by the number of iSNVs 

relative to the consensus sequence of the influenza virus in the 

corresponding sample, is consistent with other studies in the 

general (Debbink et al. 2017; McCrone et al. 2018) and pediatric 

populations (Han et al. 2021). Similar to previous reports, our 

findings also indicate no significant difference in viral diversity 

between vaccinated and unvaccinated individuals (Dinis et al. 
2016; Debbink et al. 2017), or host age (Han et al. 2021). Fur-
thermore, we did not identify a significant association between 
viral diversity and proxies for disease severity (test setting and 
whether the child was admitted) or health. Our study included 
six children who were immunocompromised. While previous work 
has shown higher levels of influenza viral diversity and diversi-
fying selection can be observed in immunocompromised individ-
uals, this observation was limited to prolonged infections (Xue 
et al. 2017). The viral isolates from children in our study were 
obtained between 1and 4 days following symptom onset, and 
it is possible that longer amounts of time is required to allow 
for the accumulation of viral mutations in immunocompromised
children.
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Figure 6. The structures of HA and NA featuring non-synonymous iSNVs identified in study subjects infected with H3N2 and H1N1 are illustrated. For 
HA, key antigenic sites on H3 (A, PDB 4O5N, (Burke, Smith, and Digard 2014)) and H1 (B, PDB 4LXV, (Yang et al. 2014; Liu et al. 2018)) are shown. The 
vaccine status and PMCA categorization as no chronic disease (N-CD), non-complex chronic disease (NC-CD), and chronic disease (C-CD) is listed for 
each of the subjects, where a mutation was identified. The most representative views of the HA structure are displayed for samples CHOP-080 (H3, 
unvaccinated, C-CD) and CHOP-127 (H1, unvaccinated, NC-CD), the subjects in which non-synonymous iSNVs were identified, with the iSNVs shown 
in black. For NA, the active site and previously identified epitope sites are depicted in varying colors as per the provided legend (Chen et al. 2018b; 
McAuley et al. 2019; Dai et al. 2021; Kirkpatrick Roubidoux et al. 2021), with iSNV locations shown in teal and labeled with the subject sample ID 
wherein they occurred. The subjects in which iSNVs affecting N2 were: CHOP-043 (vaccinated, N-CD), CHOP-057 (unvaccinated, NC-CD), CHOP-096 
(vaccinated, C-CD), and CHOP-136 (vaccinated, C-CD). Three orientations, (C) top-down, (D) bottom-up, and (E) internal-side are shown for the N2 
protein (PBD 4GZX, (Zhu et al. 2012). One iSNV was identified affecting N1 in CHOP-037 (N1, vaccinated, NC-CD). Two orientations, (F) top-down and (G) 
bottom-up for the N1 protein (PBD 7S0I (Strohmeier et al. 2021)). All illustrations were created with Pymol 2.1 (Schrödinger 2015).

The limited timing of viral replication prior to sample collection 
may also explain the lack of association between days since symp-
tom onset and the number of detected iSNVs, as was observed 
by Han et al. (2021). The samples from our cohort were collected 
with a mean of 3 days of preceding symptom, whereas the sampis 
from the Han et al., cohort had a mean of 6.1 days of preced-
ing symptoms, potentially allowing more time for viral mutations 
to accumulate. Additional studies of influenza virus within-host 
diversity have also failed to identify a link between days follow-
ing symptom onset and the number of iSNVs, though the average 
number of days of symptoms at the time of sample collection was 
also <6 (Debbink et al. 2017; McCrone et al. 2018). Also, unlike Han 

et al., we did not observe an association between Ct and the num-
ber of detected iSNVs. This disparity can likely be attributed to 
differences in the Ct values of the samples used in our respective 
studies. For our study, we used a maximum Ct value of 30 as the 
upper threshold for samples we selected for sequencing, which 
contributed to the mean sample Ct value of 22.9 for our samples. 
In contrast, the mean Ct value for Han et al.’s study was 30.0. 
Finally, Han et al. (2021), showed that the number of iSNVs dif-
fered between influenza subtypes H1N1 and H3N2. While we did 
not observe a difference in the number of iSNVs identified in H3N2 
vs H1N1 isolates, this reflect that our sample set included many 
fewer H1N1 samples than H3N2 samples, which is not surprising 
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given that the 2017–2018 flu season was H3N2 dominant (Garten 
et al. 2018). Therefore, it is possible that the distribution of synony-
mous versus non-synonymous iSNVs may have changed if more 
H1N1 samples had been identified. Thus, the seemingly discrepant 
findings between these two studies may be largely reconcilable, 
owing to differences in the characteristics of the samples
studied.

Previous studies that have shown evidence of diversifying 
selection in humans at the intrahost level for influenza virus have 
done so in the setting of prolonged infections (Ghedin et al. 2011; 
Xue et al. 2017). Recent studies have attempted to reconcile the 
disparate observations of levels of viral diversity at the intra-
host level with frequent emergence of antigenic variants at the 
population level. Morris et al. have proposed that selection for 
antigenic variants occurs at the time of inoculation rather than 
over the course of infection (Morris et al. 2020). Experimental 
work using barcoded virus in guinea pigs shows high viral diver-
sity for 1–2 days following inoculation before undergoing a steep 
reduction in viral diversity (Holmes et al. 2023). Importantly, both 
studies suggest the potential for immune-mediated selection to 
operate at or near the time of viral transmission. Thus, there is the 
potential to find evidence of selection by considering mutations 
detected at the consensus level relative to other co-circulating 
viruses within the same clade. Future studies should charac-
terize the specificity of individual serum antibody responses to 
determine if these antibodies are able to bind and neutralize the 
infecting virus relative to the other co-circulating virus.

Despite the constraints of our study, notably the lack of host 
serum samples and availability of only a single viral isolate per 
subject, our findings provide key insights into the evolutionary 
dynamics of influenza virus in children. The findings of our study 
emphasize the need for additional research to better understand 
the intricate interplay of host immunity and influenza virus evo-
lution, thereby shedding light on their collective implications for 
global viral evolutionary dynamics and influenza control.

METHODS
Subjects and specimens
This study was approved by the CHOP institutional review board 
(IRB) and we received a waiver of consent as this study was of 
minimal risk and, due to the retrospective nature and size of this 
study, it could not be practically carried out without this waiver. 
We collected banked samples from the CHOP Infectious Diseases 
Diagnostics Laboratory (IDDL) that were left over from nasopha-
ryngeal swabs and nasal aspirates collected between October 2017 
and March 2018. We selected samples for inclusion using random, 
targeted subsampling based on the subject’s age and vaccination 
status. We considered all available samples for subjects between 
6 months and 18 years of age at the time of sample collection but 
excluded all samples with a Ct ≥30. Cycle threshold was deter-
mined from the IDDL’s laboratory derived RT-PCR targeting the 
matrix gene segment. Chart review was conducted manually with 
data stored in a secure, password-protected spreadsheet and RED-
Cap (Harris et al. 2009, 2019). Data sources used for chart review 
include information contained in the EPIC, CHOP’s EMR and Penn-
sylvania Statewide Immunization Information System (PA-SIIS) 
accessed via EPIC.

Virus sample isolation and NGS protocol
We extracted influenza viral RNA from the clinical isolates 
using QIAGEN QIAmp Viral RNA Mini Kits. The extracted
RNA was reverse transcribed and amplified using the Superscript 

III One-Step RT-PCR Kit with PlatinumTM Taq High Fidelity DNA 
Polymerase (Fisher #12574-035) and universal influenza primers 
Uni12/Inf1 (GGGGGGAGCAAAAGCAGG), Uni12/Inf3 (GGGGGGAGC
GAAAGCAGG), and Uni13/Inf1 (CGGGTTATTAGTAGAAACAAGG). 
Reactions consisted of 12.5 μl 2× buffer, 0.2 μl Uni12/Inf1, 0.3 μl 
Uni12/Inf3, 0.5 μl Uni13/Inf1, 0.5 μl Taq HiFi DNA polymerase, 6 μl 
UltraPure DEPC-Treated Water (Thermofisher #750023), and 5 μl 
extracted viral RNA. The Thermocycler protocol was as follows: 
60 min at 42∘C, 2 min at 94∘C, followed by 5 cycles of 30 s at 94∘C, 
30 s at 44∘C, and 3 min at 68∘C, followed by 28 cycles of 30 s at 
94∘C, 30 s at 57∘C, and 3 min at 68∘C, followed by storage at 4∘C
until the next step. We purified the resulting cDNA with Ampure 
XP magnetic beads (Beckman Coulter #A63881). Presence of cDNA 
was confirmed with Quant-ITTM PicoGreen (Thermo #PLL496) prior 
to proceeding with NGS library preparation. We completed library 
prep using the Illumina DNA Prep (M) Tagmentation (Illumina 
#20060059 and 20,018,705). Samples were barcoded with IDT for 
Illumina DNA/RNA UD (#20027213). Following library preparation, 
we repeated the PicoGreen protocol to normalize DNA concen-
trations for pooling. The pooled cDNA was again purified using 
Ampure magnetic beads. We quantified the concentration of the 
pooled library using the QubitTM 1× dsDNA high-sensitivity assay 
kit (Thermo #Q33230) and diluted the library to 2 nM. The diluted 
library was loaded via either a NextSeq 500/550 High Output Kit 
2.5 (300 cycles) (Illumina #20024908) or NextSeq 1000/2000 P2 (200 
Cycles) v3 (Illumina #20046812) kits for sequencing on either the 
Illumina NextSeq 500 or Illumina NextSeq 2000 sequencer. Sam-
ples sequenced on 31 March 2022, 04 May 2022, 17 June 2022, and 
12 September 2022 used the NextSeq 500 with 2x125bp paired-end 
reads. Samples sequenced on 23 February 2023, 10 March 2023 
and 01 May 2023 used the NextSeq 2000 with 2x90bp paired-end 
reads. Each run included a positive control, either a virus with 
A/Cambodia/e0826360/2020 HA and NA segments and A/Puerto 
Rico/8/1934 (PR8) internals created by reverse genetics or a previ-
ously successfully sequenced clinical isolate, and a negative water 
control.

Sequence processing and variant identification
Samples were demultiplexed using custom bash scripts and then 
processed using FluPipeline. FluPipeline is a command line pro-
gram that finds intra-host variants using short read data. It takes 
as input paired-end short reads in fastq format and a list of 
influenza genomes in Genbank format. In the pre-processing, step 
all reads are trimmed and quality filtered using fastp v0.22.01 
(Chen et al. 2018a). Afterwards, a subset of reads from each sam-
ple is mapped to each influenza genome using BWA-MEM v0.7.172 
(Li 2013). The genome with the highest read coverage and depth 
at the HA contig, or in the event of a tie, the highest coverage 
and depth over all contigs, is selected as the reference genome 
for first-pass variant detection. FluPipeline identifies variants in 
two passes. In the first pass, reads are aligned against the selected 
reference genome using BWA-MEM. Variants are called and major 
variants (default occurrence of ≥50 per cent for SNPs and ≥80 per 
cent for INDELs) are used to create a consensus sequence. In the 
second pass, reads are aligned using BWA-MEM against the con-
sensus sequence to obtain intra-host variants (default ≥5 per cent 
for SNPs and INDELs). The default parameters use bcftools v1.15.1 
(Li 2011) as the variant caller for the first pass and BBMap v38.14 
(Bushnell 2014) for the second pass. The user can also specify 
whether a second pass is necessary depending on their needs. 
Users can also tune parameters that impact variant detection 
such as mapping quality, gap open and extension penalties, and 
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variant read depth, and score. FluPipeline is available on GitHub 
(https://github.com/agmcfarland/FluPipeline).

Our pre-processing steps with FluPipeline involved trimming 
either 22 bp (for samples sequenced on the NextSeq 500) or 
31 bp (for samples sequenced on the NextSeq 2000) from the 
short read ends. We randomly selected 10,000 short reads for 
alignment to reference strains: B/Wisconsin/01/2010 Yamagata 
lineage (CY115183-CY115190), B/Brisbane/60/2008 Victoria lin-
eage (FJ766840, FJ766841, KC866602-KC866607), influenza A virus 
((A/turkey/Massachusetts/3740/1965(H6N2), CY087752), A/Michi-
gan/45/2015(H1N1) (MK622934- MK622941), and A/Washing-
ton/17/2016(H3N2) (KX414254-KX414261). Following strain assign-
ment, the short reads were assembled to the selected reference 
sequence with down-sampling to 100,000,000. We called major 
variants with bcftools (Li 2011) and minor variants with bbtools 
(Bushnell 2014) with a minimum frequency of 0.01. We used differ-
ent variant callers as bcftools, while it has been used and validated 
extensive, has difficulty accounting for mutations, where multiple 
variant alleles may be present at single position within a sample, 
as could be expected for viral sequences. Short reads were filtered 
for a minimum average base quality score of 30 and a BWA-derived 
read mapping score of 40. Negative controls were considered suc-
cessful if there was a coverage of ≤10 reads for ≤10 percent of the 
influenza genome. Our reads had high depth, with an average cov-
erage between 1000 and 10,000 reads per position, Supplementary 
Figures S4–10.

Sequence post-processing was completed with custom R 
scripts available on GitHub (https://github.com/HensleyLab-
UPENN/CHOP_Retrospective_GitHub). Portions of the code for the 
custom R scripts in for data processing and statistical analysis 
were reviewed and optimized with the assistance of the OpenAI 
GPT-4 language model (OpenAI). Packages employed in the anal-
ysis are identified in the Readme file. Packages used for statistical 
analysis and manipulation of genomic information used for the 
above analyses include: tidyverse v2.0.0 (Wickham et al. 2019), 
Rsamtools v2.14.0 (Morgan et al. 2022), Biostrings v2.66.0 (Pagès 
et al. 2022), Lawrence et al. 2013 dplyr 1.1.2 (Wickham et al. 2023a), 
seqinr 4.2.30 (Charif and Lobry 2007), stringr v1.5.0 (Wickham 
2022), phylotools v0.2.2 (Zhang 2017), stringi v1.7.12 (Gagolewski 
2022), ggplot2 v3.4.2 (Wickham 2016), tidysq v1.2.0 (Rafacz, Bur-
dukiewicz, and Bakala 2022), patchwork v1.1.2 (Pedersen 2022), 
gridExtra v2.3 (Auguie 2017), ShortRead v1.56.1 (Morgan et al. 
2009), Biostrings v2.66.0 (Pagès et al. 2022), and data.table v1.14.8 
(Dowle and Srinivasan 2023). The fastq files for the influenza 
isolates analyzed in this study are available from the NCBI SRA 
database in BioProject PRJNA1066787.

During post-processing, we applied additional QC criteria to 
ensure adequate coverage and sequence reproducibility. For cov-
erage, we required that samples have >100 reads for ≥95 per cent 
of the genome. Individual sites with coverage <100 reads were 
masked. To ensure reproducibility, we required that all samples 
have technical replicates, i.e. replicates from separate RNA extrac-
tions, and that the consensus sequences for the replicates match. 
We did allow exceptions for disagreements between the consen-
sus sequences if: (1) the mismatch occurred within in either the 
first or last 20 bp of the gene segment, (2) the mismatch occurred 
because one of the replicate positions had been masked, or (3) 
if there was a high frequency variant (>10 per cent) at the site 
of the mismatch. If there were more than two technical repli-
cates, we selected the replicates with the lowest proportion of 
masked positions, i.e. positions with coverage <100 reads. In addi-
tion, excluded those samples with >1 iSNV detected and <50 per 

cent concordance between the replicates. Variants were consid-
ered nonsynonymous if they resulted in an amino acid change in 
the coding section of the gene segment. In cases where overlap-
ping reading frames were present, we considered a mutation to 
be nonsynomous if it resulted in an amino acid change in either 
reading frame. We required that all variants called be present 
in both technical replicates above 3 per cent, our minimum fre-
quency threshold, and have an average quality score of ≥20. We 
did consider variants called in a single replicate but present in 
the second replicate with an allele frequency of greater than or 
equal to the minimum variant frequency even if it was not called 
by bbtools. This criterion applied to 3 out of 241 iSNVs in our 
dataset: G1052A, identified in subjects CHOP-086 and CHOP-115, 
A541T identified in CHOP-117, and T548C identified in subjects 
CHOP-101 ad CHOP-117. While the discrepancy in whether or not 
the iSNV was called by bbtools in the replicates could indicate 
these iSNVs represent sequencing artifacts, we have chosen not 
to exclude these iSNVs as they represent a small proportion of 
the total iSNVs. Further, the decision of whether or not to exclude 
them would not affect the primary findings of this paper.

Statistical evaluations
For the assessment of the relationship between the number of 
iSNVs and elements of the clinical metadata, we used both linear 
regression models for numerical variables and nonlinear gener-
alized mixed linear models for categorical variables. We fit the 
independent variables, the number of synonymous and nonsyn-
onymous iSNVs, separately. We considered the following numeri-
cal variables: the number of days following symptom onset at the 
time of sample collection, age, and Ct. There was clearly no associ-
ation between any of the numerical-dependent variables and the 
number of iSNVs detected in each sample. Therefore, we did not 
assess for covariance between these variables. In addition, we felt 
it was more statistically appropriate to exclude these variables 
from further analysis involving the categorical variables, rather 
than transforming the categorical variables to assess to variance. 
The categorical variables considered included the subject’s vac-
cination status, categorization based on medical complexity, the 
setting in which the test was sent, and whether the subject was 
admitted to the hospital. We chose to simultaneously fit these 
variables using a negative binomial regression and a Bonferroni 
correction to account for multiple comparisons.

All statistical analyses were completed with custom R scripts 
available on GitHub (https://github.com/HensleyLab-UPENN/
CHOP_Retrospective_GitHub). Statistical and genomic packages 
used for the above analyses include: tidyverse v2.0.0 (Wickham 
et al. 2019), phylotools v0.2.2 (Zhang 2017), dplyer v1.1.2 (Wick-
ham et al. 2023a), stringi v1.7.12 (Gagolewski 2022), ggplot2 v3.4.2 
(Wickham 2016), seqinr v4.2.30 (Charif and Lobry 2007), patch-
work v1.1.2 (Pedersen 2022), data.table v1.14.8 (Dowle and Srini-
vasan 2023), cowplot v1.1.1 (Wilke 2020), reshape2 v1.4.4 (Wick-
ham 2007), MASS v7.3.60 (Venables and Ripley 2002), trackViewer 
v1.34.0 (Ou and Zhu 2019), GenomicRanges v1.50.2 (Lawrence 
et al. 2013), phylotools v0.2.2 (Zhang 2017), DECIPHER v2.26.0 
(Wright 2016), tidysq v1.2.0, (Rafacz, Burdukiewicz, and Bakala 
2022), genbankr v1.26.0 (Becker and Lawrence, 2022), Biostrings 
v2.66.0 (Pagès et al. 2022).

Phylogenetic analysis
The findings of this study are based on metadata associated 
with sequences available on GISAID up to 4 October 2023, full 
details of which are recorded in Supplementary Table S2. For the 
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GISAID sequences, we obtained all original full-length, unpas-
saged, HA gene segment sequences for influenza strains H3N2 
and H1N1pdm submitted by the Centers for Disease Control (CDC) 
collected during influenza season in the USA, between Octo-
ber 2013 and May 2018 (Khare et al. 2021). For each strain, we 
randomly subsampled these sequences to obtain up to fifteen 
sequences per flu season, pending availability, from influenza sea-
sons between October 2013—May 2017 and 30 sequences from 
2017 to 2018 influenza season. We also subsampled the October 
2017–18 sequences to obtain 50 sequences collected in Pennsyl-
vania (PA). Sequences and metadata were cleaned using custom 
R scripts. The sequences obtained from GISAID were combined 
with the sequences generated from the CHOP samples of the cor-
responding strain and duplicates were removed. We generated 
phylogenies with standard NextStrain tools and scripts (Hadfield 
et al. 2018; Sagulenko, Puller, and Neher 2018), with specific 
options as follows. The sequences were aligned in NextStrain to 
the reference strains A/Wisconsin/67/2004 for H3N2 (CY163680) 
and A/California/07/2009 (CY121680) for H1N1pdm using MAFFT 
(Katoh et al. 2002). Phylogenetic trees were constructed using 
IQ-TREE (Nguyen et al. 2015) with the GTR substitution model. 
Branch lengths for the time-resolved trees were inferred with 
TreeTime (Sagulenko, Puller, and Neher 2018) and we allowed up 
to ten iterations for convergence. The phylogenies were visual-
ized and annotated in FigTree (Rambaut 2018). All custom scripts 
are available on Github (https://github.com/HensleyLab-UPENN/
CHOP_Retrospective_GitHub).

Supplementary data
Supplementary data is available at Virus Evolution online.
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