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Abstract: The objective of the present study was to review the existing data on the association
between Zn status and characteristics of gut microbiota in various organisms and the potential role
of Zn-induced microbiota in modulating systemic effects. The existing data demonstrate a tight
relationship between Zn metabolism and gut microbiota as demonstrated in Zn deficiency, supple-
mentation, and toxicity studies. Generally, Zn was found to be a significant factor for gut bacteria
biodiversity. The effects of physiological and nutritional Zn doses also result in improved gut wall
integrity, thus contributing to reduced translocation of bacteria and gut microbiome metabolites into
the systemic circulation. In contrast, Zn overexposure induced substantial alterations in gut micro-
biota. In parallel with intestinal effects, systemic effects of Zn-induced gut microbiota modulation
may include systemic inflammation and acute pancreatitis, autism spectrum disorder and attention
deficit hyperactivity disorder, as well as fetal alcohol syndrome and obesity. In view of both Zn and
gut microbiota, as well as their interaction in the regulation of the physiological functions of the host
organism, addressing these targets through the use of Zn-enriched probiotics may be considered an
effective strategy for health management.
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1. Introduction

Zinc is a IIB group metal essential for all forms of life [1]. The first studies on the
biological essentiality of Zn2+ in fungi, plants, mammals, and humans originated more
than a century ago [2]. The metal is involved in regulating the activity of >300 enzymes,
mediating its role in a variety of biological processes. In the human organism, Zn plays a
significant role in the development and functioning of the immune, endocrine, nervous, car-
diovascular, and reproductive systems [3]. Due to the plethora of Zn-dependent processes,
its deficiency is associated with multiple metabolic disorders, contributing to the patho-
genesis of immune deficiency, neurodegeneration, diabetes mellitus, obesity, hypertension,
and coronary heart disease to name but a few [2].

Competition between the host organism and pathogenic microflora due to the presence
of high-affinity Zn transporters in the latter was shown to contribute to Zn in nutritional
immunity [4]. Specifically, the host-specific mechanisms inducing limited Zn availability
involve the modulation of Zn transporters [5], as well as the binding of Zn by calprotectin
and other proteins including S100 proteins [6] and metallothionein [7]. In turn, bacterial
cells have also evolved a broad spectrum of specific Zn transporters (e.g., ZnuABC) and
Zn uptake regulators to promote the uptake of Zn2+ for their metabolic demands. Corre-
spondingly, dysregulation of Zn2+ uptake due to ZnuA mutation results in altered growth
and reduced virulence in bacteria [8].

Following the golden rule that “the dose makes the poison” (Paracelsus), excessive Zn
levels may also be toxic for pathogenic bacteria. Particularly, Zn2+ may exert an inhibitory
effect by interfering with Mn2+ metabolism [9], development of oxidative stress [10], and
inhibition of biofilm formation [11].

In parallel to pathogenic microflora, zinc is also essential for intestinal commensal
microflora inherent to the gut microbiome. The latter consists of more than 1000 bacterial
species of various phyla with Bacteroidetes and Firmicutes being the predominant ones [12].
Recent findings have demonstrated that the gut microbiota is involved in the regulation of
multiple functions of the host through the production of bioactive bacterial metabolites [13],
thus being recognized as a novel human organ [14]. Specifically, gut microbiota was
shown to play a significant role in the functioning of the immune [15], endocrine [16],
reproductive [17], and other systems. The secretion of neuroactive metabolites underlies
the functioning of the gut–brain axis and the role of gut microbiota in neuropsychiatric and
neurodegenerative diseases [18].

The earliest indications on the impact of Zn on gut microbiota were obtained more
than 30 years ago [19]. Since then, accumulating evidence has demonstrated an association
between Zn deficiency and alterations in gut microbiota in chicks [20]. Multiple studies
have assessed the impact of Zn supplementation on the gut microbiome in pigs with a spe-
cial emphasis on diarrhea and growth [21]. Nonetheless, conclusions derived from animals,
including laboratory rodents, cannot be confirmed in human studies due to insufficiency
of the latter [22,23], although certain findings support the essential role of Zn for human
microbiota [24,25]. Moreover, given the role of gut microbiota in human health and disease,
it has been proposed that Zn-induced modulation of intestinal microflora and its metabo-
lites may be involved in the physiological regulation of the host organism. In addition, the
potential inconsistencies in the outcome of certain studies may be associated with the use
of various Zn species that are known to possess different biological activities [26].

Therefore, the objective of the present study was to review the existing data on the
association between Zn status and gut microbiota, as well as the role of this interplay in
the physiological effects of Zn by addressing the following aspects:
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1. The impact of Zn on characteristics of gut microbiota in various organisms.

a. Chicks
b. Piglets
c. Laboratory rodents
d. Humans

2. The influence of Zn on gut microbiota upon exposure to toxic and infectious agents.
3. The potential role of Zn-induced microbiota in modulating systemic effects with a

focus on extraintestinal diseases.
4. Interactive effects of Zn and probiotics on gut microbiota.

2. Relationship between Zn Status and Gut Microbiota
2.1. Poultry

Zn deficiency was shown to be associated with altered gut microbiota in poultry [20].
Specifically, zinc deficiency in Gallus gallus was associated with a significant reduction
in abundance of Firmicutes with a relative increase in Proteobacteria and Bacteroides.
At the genus level, a significantly higher prevalence of unclassified Ruminococcaceae and
Enterobacteriaceae and a reduced abundance of unclassified Clostridiales were observed
upon Zn deficiency [20]. Feeding chicks a Zn-deficient diet also significantly reduced gut
microbiota biodiversity with a significant decrease in the abundance of Firmicutes and
an increase in Proteobacteria phyla. At the same time, at the genus level, the authors
reported a significant increase in Enterococcus, Enterobacteriaceae, and Ruminococcaceae abun-
dance, whereas Peptostreptococcaceae and Clostridiales were characterized by a significant
decrease [27]. Correspondingly, in chicks fed Zn-fortified wheat, the abundance of Ru-
minococcus was considered the key genus associated with Zn status for discriminating
between Zn deficiency and Zn repletion [28].

Contrary to Zn deficiency, supplementation of 15-day-old broilers with Zn bacitracin
increased gut microbiota diversity, with a significant reduction in Lactobacillus and Eubac-
terium genus and an increase in the abundance of Clostridiales and Faecalibacterium [29]. In
another study in broilers, Zn hydroxychloride supplementation significantly decreased
total bacteria and Bacillus abundance, whereas Lactobacillus abundance was increased in
parallel with cecal lactic acid production and up-regulation of intestinal tight junction
proteins [30].

Zn supplementation was able to reduce the abundance of pathogenic bacteria in poul-
try. Supplementation of broilers with Bacillus subtilis-derived Zn nanoparticles significantly
reduced ileal Coliform, E. coli, and Salmonella abundance, along with increased expression
of tight junction proteins [31]. The competition for Zn binding between normal microbiota
and Campylobacter jejuni in chicks was considered an antipathogenic mechanism [32].

Despite certain inconsistencies, which may be reflective of variations in dosing, treat-
ment regimens, or chick characteristics, Zn appears to be beneficial for enhancing Firmicutes
and decreasing the abundance of E. coli as well as certain other bacterial pathogens. Modula-
tion of gut microbiota is also associated with improved gut wall integrity, thus contributing
to gut health.

2.2. Pigs

In view of the significant hazards associated with post-weaning diarrhea in the pig
industry [33], multiple studies have addressed the impact of Zn supplementation on the
interaction between gut integrity and gut microbiota. Dietary exposure to coated ZnO
in piglets resulted in a significant improvement in intestinal morphology and immunity,
including increased villi length, elevated immunoglobulin A (IgA) levels, increased gene
expression of IGF-1, occluding, zonula occludens 1, IL-10 and transforming growth factor
β1 (TGF-β1), as well as reduced gut microbiota diversity. The latter was characterized
by a decrease in the relative abundance of Lactobacillus and a non-linear response of
E. coli numbers, which were increased at lower doses and down-regulated at higher
concentrations of coated ZnO in diets [21]. Zn oxide supplementation in weanling piglets
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also resulted in increased jejunal mucosa TGF-β1 and IL-10 mRNA levels, whereas TNF-
α and IFN-γ were decreased concomitant with the reduced abundance of Clostridium
and E. coli, altogether resulting in the alleviation of postweanling diarrhea and growth
performance [34]. ZnO was shown to reduce coliform bacteria abundance in piglets,
leading to increased claudin-1 and zona occludens-1 gene expression, and these effects
were strongly dependent on the source of Zn [35]. Taken together, these studies indicate that
Zn supplementation diminished diarrhea in swine by improvement of intestinal integrity
and immunity, down-regulation of inflammation, as well as modulation of gut microbiota.

It is notable that the effect of Zn on gut microbiota in weaned piglets is site-specific.
In particular, ZnO nanoparticle (ZnONP) supplementation significantly reduced bacterial
abundance and diversity in ileum with increases in Streptococcus and decreases in Lacto-
bacillus numbers. In turn, cecal and colonic microflora biodiversity and abundance were
increased, with a specific elevation in Lactobacillus numbers and a decrease in Oscillospira
and Prevotella abundance. ZnONP—induced modulation of gut microbiome was associated
with increased expression of tight junction and antioxidant proteins, as well as reduced IL-
1β, TNF-α, and IFN-γ mRNA expression due to inhibition of NF-κB signaling, altogether
resulting in lower incidence of diarrhea [36].

In agreement with the earlier studies, Starke et al. (2014) demonstrated that high
dietary ZnO (2425 mg/kg) supplementation in weaned piglets reduced the abundance of
Lactobacillus genus, and especially L. acidophilus, L. mucosae, and L. amylovorus throughout
the full duration of the study (32–53 days), whereas L. johnsonii and L. reuterii responded
weakly to dietary intervention. In addition, the relative number of Enterobacteriacea was
found to be reduced at 35 days of treatment but not at later times. These findings demon-
strate that the response of gut microbiota to ZnO exposure decreases significantly at older
age [37]. High-dose dietary Zn oxide supplementation (3042 mg/kg) to piglets was shown
to significantly modulate ileal bacterial diversity and relative abundance of Lactobacillus,
Escherichia, as well as other minor species. Specifically, the majority of Enterobacteriaceae
were characterized by a significant Zn-induced increase in relative abundance, whereas
among bacterial species with relative abundance of >1%, Zn exposure resulted in a sig-
nificant increase in W. cibaria, W. confusa, Leuconostoc citreum, and S. equinus. In contrast,
the most abundant species L. reuteri decreased from 45% to 18% in response to Zn expo-
sure [38]. Another study revealed a significant increase in intestinal microbiota richness and
relative abundance of Lachnospiraceae, with a parallel decrease in Ruminococcus flavefaciens
in response to coated nano zinc oxide supplementation [39].

In addition to modulation of microbiome richness and bacterial abundance, Zn was
shown to prevent bacterial translocation from the gut to lymph nodes. Specifically, zinc-
methionine supplementation in piglets during the nursing period significantly reduced
the translocation of E. coli to small intestinal mesenteric lymph nodes [40]. Another study
demonstrated a ZnO-induced reduction in anaerobic, and to a lesser extent lactic bacteria
translocation to mesenteric lymph nodes in parallel with the elevation of intestinal IgA
levels [41].

Zn was also shown to modulate microbial metabolite production through modulation
of gut microbiota in pigs. Specifically, ZnO supplementation significantly increased total
bacterial count with elevation of Enterobacteria and a decrease in Clostridia XIa cluster. The
response of gut microbiota metabolites was shown to be non-linear with a significant in-
crease in ileal volatile fatty acids, acetate, and butyrate at lower ZnO doses (50–150 mg/kg),
and a subsequent decline to low levels at high ZnO concentrations. Only ammonia de-
creased with elevation of dietary ZnO doses [42]. In addition, an increase in microbial
metabolites acetate, propionate, and butyrate was considered a marker of Zn sulfate sup-
plementation in female pigs, and Zn-induced metabolic disturbances may significantly
modulate the metabolic effects of heat shock exposure [43]. Correspondingly, a significant
effect of ZnO supplementation on bacterial metabolites was observed, being characterized
by a reduction in ammonia in the jejunum and colon, as well as lower lactate levels in the
small intestine [37].
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Therefore, the existing data clearly demonstrate the significant impact of Zn on porcine
gut microbiota. Although the existing data are rather contradictory, being dependent on
the mode of treatment and animal age, the most typical Zn supplementation-associated
patterns may include increased bacterial richness, with a decrease in Enterobacteria and
Lactobacillus abundance. Increased bacterial diversity and richness was also associated
with elevated short-chain fatty acid levels, whereas lower lactate levels may correlate with
reduced abundance of Lactobacillus. In addition to distinct changes in gut microflora, Zn
supplementation in pigs was associated with improved gut integrity and consequently
reduced bacterial and metabolite translocation to the systemic circulation.

2.3. Laboratory Rodents

A detailed study demonstrated that dietary Zn deficiency significantly affects gut
microbiota in pregnant mice. Specifically, low dietary Zn significantly decreased the
abundance of Proteobacteria and Verrucomicrobia, whereas Actinobacteria, Bacteroidetes, and
Firmicutes phyla were increased. It is notable that the intake of Zn uptake inhibitors
also resulted in the alteration of the gut microbiota, although the patterns were quite
different, with a lack of significant changes in the abundance of Verrucomicrobia and Acti-
nobacteria. The observed perturbations in gut microflora were associated with reduced
Claudin3 protein levels in the gastrointestinal tract, altogether resulting in increased hepatic
lipopolysaccharide (LPS) levels [44]. These findings are indicative of the essential role of
Zn as a factor not only of impaired gut wall permeability but also gut microbiota. Being in
agreement with the indications of the influence of Zn deficiency on gut microflora, a recent
study demonstrated that Znt7 dysfunction also results in altered microbiota biodiversity,
although the effects were sex-specific. Particularly, Znt7+/− and Znt7−/− genotypes were
characterized by increased abundance of Allobaculum and unidentified members of the fam-
ily Coriobacteriaceae in female, but not male, mice. It is also notable that these differences
were associated with distinct patterns of mucin production, which were upregulated in
male and down-regulated in female mice [45]. Concomitantly, another study demonstrated
that dietary Zn deficiency did not cause substantial alterations in the gut microbiota in
contrast to a protein-deficient diet [46].

In agreement with the studies demonstrating the essentiality of Zn for the gut mi-
crobiota, several studies have also shown that the modulation of intestinal microflora
may mediate the beneficial effects of Zn. Although no significant alteration in bacterial
phyla was observed in ZnCl2-supplemented mice, a significant increase in Zn-induced
Clostridiacea abundance was observed in association with a significant improvement in
gene expression responsible for metallothionein (MT) and mucin biosynthesis, and epithe-
lial integrity, both in colon and intestine, as well as down-regulation of proinflammatory
cytokine genes [47]. Concomitantly, the gut microflora response to Zn supplementation
seemed to be age-dependent, being highly responsive to Zn status variability only in young
animals, whereas at advanced ages no such effect was observed [48].

Despite the clearly demonstrated role of physiological doses of Zn in the adequate
functioning of gastrointestinal and immune systems, high doses of Zn may cause adverse
effects in the intestine [49]. Specifically, the exposure of newborn mice to high doses of
Zn sulfate was shown to induce alterations of gut microflora biodiversity through an
increase in Pseudomonodales, Enterobacteriacae, Clostridiales, Bacteroides, and Campylobacter
abundance. Moreover, in the host, excessive Zn doses induced oxidative stress, reduced
gut wall integrity, increased gut permeability, and affected intestinal gene expression with
up-regulation of MT1, ALDH2, COX6b2, TMEM6, and CDK20, in parallel with CALU,
ST3GAL4, CRTC2, SLC28A2 and COMMD1 down-regulation, thus affecting immune
response, inflammation, and host–pathogen interaction. Altogether, these effects of Zn
overload would be expected to contribute significantly to systemic inflammation and necro-
tizing enterocolitis [50]. In addition, chronic toxicity of ZnSO4 in mice (e.g., 250 mg/kg for
7 weeks) was characterized by reduced body and organ weight and increased AST activity
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was associated with a significant elevation in the relative abundance of Enterobacteriaceae
without any impact on Bifidobacteria [51].

The existing data demonstrate that Zn deficiency is associated with profound alter-
ations in gut microbiota composition that may contribute to proinflammatory conditions
together with reduced gut wall integrity. However, Zn overload in laboratory rodents also
promotes gut dysbiosis with a shift to Enterobacteriaceae and altered gut permeability,
immunity, and inflammatory response.

2.4. Human

A limited number of studies have demonstrated the potential association between
Zn status and human gut microbiota. Specifically, in vitro stimulators of the human
colon demonstrated that ZnO nanoparticle exposure at high concentrations (50 mg/L)
significantly reduced the abundance of gut microbiota as well as decreased bacterial biodi-
versity, SFCA production, and antibiotic resistance genes. The observed increase in relative
abundance of Bacteroidetes was associated with a lower percentage of Firmicutes [22].
A preliminary study in Pakistani children demonstrated that formula-fed children with
Zn deficiency are characterized by lower abundance of Escherichia, as well as decreased
relative number of Veillonella, Streptococcus, Bacteroides, Leuconostoc, Subdoligranulum, Megas-
pheare, and Clostridia. However, correlation analysis did not reveal a strong association
between serum Zn levels and intestinal bacteria [23].

In agreement with the essential role of Zn for gut microflora, patients with a pleiotropic
missense variant of another Zn transporter, SLC39A8 (ZIP8), are also characterized by
altered taxonomic characteristics of gut microbiota, including reduced abundance of
Anaerostipes, Coprococcus, Roseburia, Lachnospira, SMB53, Ruminococcaceae, Eubacterium,
Dorea, and Bacteroides. The patterns of gut microbiota observed in SLC39A8 Thr allele
carriers shared several similarities with those shown in patients with Crohn’s disease and
obesity [24]. At the same time, another study did not reveal any significant association
between SLC39A8 missense variant and gut microbiota, although SLC39A8 [Thr]391 risk
allele was genetically associated with Crohn’s disease [25].

Taken together, the existing findings from human studies demonstrate that Zn de-
ficiency is associated with reduced gut microbiota biodiversity. However, no particular
patterns could be ascertained given the paucity of existing limited data. Certain other
studies involving human subjects demonstrated the potential involvement of the interplay
between Zn and gut microbiota in other “extraintestinal” diseases and will be discussed in
their respective sections.

2.5. Summary

Therefore, the existing data demonstrate that the effect of Zn on gut microbiota is
species-specific (Table 1). Particularly, studies in chicks revealed a significant association
between Zn sufficiency and Firmicutes, whereas the abundance of Enterobacteriaceae was
decreased by Zn supplementation. In pigs, a similar trend for Zn-induced inhibition of
Enterobacteriaceae colony growth was observed in parallel with a decrease in Lactobacillus
abundance. At the same time, Zn was found to be a significant factor for gut bacteria biodi-
versity, consistent with findings in rodents and human subjects. Effects of physiological and
nutritional Zn doses also result in improved gut wall integrity, thus contributing to reduced
translocation of bacteria and gut microbiome metabolites into the systemic circulation.

In contrast, Zn overexposure also induced substantial alterations in gut microbiota
with a shift to pathogenic strains of E. coli or other bacterial pathogens. Hypothetically,
such an increase may be mediated by increased Zn levels exceeding the binding capacity,
thus resulting in elevated “free” Zn available for bacterial pathogens, thus interrupting the
mechanisms of nutritional immunity.
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Table 1. A summary of studies demonstrating the impact of Zn on gut microbiota biodiversity and specific microbial taxa.

Species Zn Form Dose Microbiota
Biodiversity Reduced Taxa Increased Taxa Ref.

Broilers Zn bacitracin 50 ppm Zn Increased Lactobacillus
Eubacterium

Clostridiales
Faecalibacterium [24]

Broilers Zn hydroxy-
chloride

20–100 mg
Zn/kg Zn Decreased Bacillus Lactobacillus [25]

Piglets Zn oxide 2250 mg Zn/kg Decreased
Lactobacillus

E. coli
(at high doses)

E. coli
(at low doses) [21]

Piglets Zn oxide 3042 mg Zn/kg
(high dose) Increased L. reuteri

Enterobacteriaceae
W. cibaria
W. confuse

Leuconostoc citreum
S. equinus

[33]

Piglets Zn oxide NPs 600–2000 mg
Zn/kg

Decreased
(ileum)

Increased
(cecum, colon)

Lactobacillus (ileum)
Oscillospira,

Prevotella (cecum,
colon)

Streptococcus
(ileum)

Lactobacillus
(cecum, colon)

[31]

Piglets Coated nano
ZnO

0.100 g Zn/kg
diet Increased R. flavefaciens Lachnospiraceae [34]

Mice Zn chloride 12–250 mg/kg
b.w. No effect Lactobacillaceae

Enterobacteriaceae Clostridiacea [42]

Mice Zn sulfate 100 Zn µg/d
(high dose) Increased

Pseudomonodales
Enterobacteriacae

Clostridiales
Bacteroides

Campylobacter

[45]

The observed strain-specific response to Zn supplementation in bacteria may be
mediated by differences in the amount of Zn2+ required to meet metabolic demands, as
well as differences in tolerance to Zn [52].

In addition to the host species-specific response of gut microbiota to Zn, high het-
erogeneity of the findings may be associated with different biological effects of various
chemical forms of the metal. Particularly, different impacts of zinc oxide, sulfate, or zinc
oxide nanoparticles was observed in various species [53,54].

3. Zn and Microbiota upon Exposure to Toxic and Infectious Agents

Despite significant inconsistencies, existing evidence derived from studies on chicks,
pigs, mice, and humans clearly indicate the essentiality of Zn for gut microbiota. In
addition, Zn was shown to possess protective effects on gut microflora upon exposure to
toxic agents, including pathogenic bacteria and physical or chemical stressors.

Specifically, exposure to doxorubicin, an anthracycline and antitumor antibiotic that
affects cell growth through inhibition of DNA replication, induced a decline in Firmicutes
and an increase in Bacteroidetes abundance. In turn, these alterations in gut microbiota
biodiversity were shown to be ameliorated by Zn(II)-curcumin supplementation. At the
genus level, Zn-curcumin supplementation also prevented a decrease in Lachnospiraceae,
Clostridium_IV, Clostridium_XlVa, and Roseburia. These findings, together with improved
gut wall integrity, mirror the observation of reduced fecal and plasma LPS concentra-
tions [55]. Correspondingly, Zn(II)-curcumin complex was shown to ameliorate hepato-
cellular carcinoma-induced alterations in gut microflora by increasing the abundance of
Firmicutes and decreasing Bacteroidetes, in addition to possessing anticancer effects itself
and potentiating that of doxorubicin. The role of Zn-induced gut microbiota modulation
in anticancer activity has also been supported by observations on the lack of such effects
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upon microbiome depletion [56]. In addition, it has been demonstrated that Zn deficiency
alters gut microbiome and sensitizes it to As toxicity [57].

Along with the well-known mechanisms of nutritional immunity characterized by
competition between host and pathogen for metals including Zn2+, Zn may also be a target
for antagonism between commensal and pathogenic intestinal microflora. Specifically,
it has been demonstrated that dual Zn-transporter system (ZnuABC and ZrgABCDE)
in Vibrio cholerae mediate the advantage of the pathogen in competition for metal ions
with gut microflora, thus being associated with V. cholerae growth and pathogenesis [58].
ZnuABC also significantly contributes to S. typhimurium, competing for Zn2+ ions with
commensal bacteria, as well as assisting the pathogen to overcome calprotectin metal
sequestration in the inflamed gut [58].

Being a target of commensal and pathogenic bacteria interaction, Zn was shown to
modulate gut microbiota upon bacterial pathogen invasion. Specifically, in S. typhimurium-
infected broiler chicks, supplementation with Zn significantly attenuated the hazardous
effects of the infection through reducing apoptosis in intestinal cells, stimulating prolifera-
tion, increasing villi height, reducing Salmonella number, and reversing of S. typhimurium-
induced reduction in gut microbiota diversity and Lactobacillus abundance [59]. Inhibition
of bacterial translocation was shown to be associated with the maintenance of an adequate
expression of intestinal tight junction proteins [60].

Concomitantly, it has been demonstrated that excessive dietary Zn supplementation
significantly increased C. difficile toxin levels and aggravated clostridial infection [61], being
associated with impairment in gut microbiota characterized by decreased Turicibacter and
Clostridium genera, as well as increased Enterococcus and Clostridium XI genera abundance.
In turn, binding Zn ions with calprotectin elicited a significant antibacterial effect [62].
These findings are indicative of the potential hazards of “free” Zn2+ upon overexposure,
when the number of Zn ions exceed the Zn-binding capacity of the host organism. This
hypothesis is indirectly supported by the observation of a significant improvement in
symptoms and reduction in the risk of recurrence in Zn-deficient subjects with recurrent
C. difficile infection following Zn supplementation [63].

Data from experiments on gut microbiota profiling demonstrated that commensal
Enterobacteriaceae species, particularly E. coli, are one of the families most significantly
affected by Zn supplementation. Accordingly, next, we discuss the interaction between
Zn and E. coli with a special emphasis on pathogenic strains. Treatment with chitosan-
chelated zinc attenuated the noted decrease in gut microbiota diversity in E. coli-challenged
rats. In addition, Zn supplementation was associated with increased abundance of Lacto-
bacillus, Romboutsia, Clostridiales (unclassified), and Anaerotruncus, whereas Desulfovibrio,
Peptococcus, and particularly E. coli relative numbers were reduced. These changes were
accompanied by a reduction in proinflammatory TNFα, IL-1β, IL-6 levels in parallel with
up-regulation of IL-10 production. A tendency for improved total SFCA levels, and espe-
cially increased butyrate levels, was observed in Zn-supplemented animals challenged
with E. coli. However, the lack of chitosan control group does not allow us to separate
the effects of Zn from chitosan in the present study [64]. Correspondingly, dietary ZnO
nanoparticles significantly reduced the intestinal E. coli population as well as increased
villi height in the duodenum, jejunum, and ileum, resulting in improved immune response
in weaned pigs [65].

A detailed analysis of 179 Escherichia coli genomes obtained from piglets after comple-
tion of a Zn oxide feeding trial demonstrated that genes and operons associated with viru-
lence and bacteriocin production, as well as enterotoxigenic, enteropathogenic, and Shiga
toxin-producing pathotypes were less abundant in high Zn-supplemented animals [66].
In enteropathogenic Escherichia coli, exposure to Zn was shown to reduce expression of
virulence factors and reduced bacterial adhesion to the cells. Moreover, in rabbit ileum
Zn was shown to ameliorate enteropathogenic E. coli-induced fluid secretion, thus being
indicative of inhibitory effects of Zn on bacterial virulence factors [67]. It is also noteworthy
that in parallel to reducing E. coli numbers, protective effects of Zn against gut leakage
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may involve the alleviation of E. coli alpha-hemolysin (HlyA)-induced alteration in tight
junctions (claudins 4 and 5), focal leak formation, and cell exfoliation in piglet colonic tissue
preparations [68].

It has also been demonstrated that E. coli may be less sensitive to dietary Zn as
compared to beneficial bacterial strains, thus raising the risk of dysbiosis in response to in-
adequate Zn supplementation [69]. In particular, while E. coli growth and morphology were
nearly insensitive to ZnO nanoparticle exposure, L. acidophilus and especially B. animalis
growth was reduced in parallel with morphological deformation in response to increasing
Zn exposure [52]. Moreover, high-dose ZnO feeding in piglets was associated with an
approximately 15–20% increase in multidrug resistant E. coli as compared to controls [70].

Taken together, these data demonstrate that physiological Zn supplementation pos-
sesses protective effects on commensal gut microflora upon exposure to bacterial pathogens
or xenobiotics, thus promoting the the health-supporting role of normal gut microbiota.
However, excessive Zn exposure was shown to promote the growth and activity of bacterial
pathogens due to the impairment of nutritional immunity mechanisms through exceeding
the Zn-binding capacity of the host proteins.

4. Extraintestinal Effects in Models of Human Diseases

Although the majority of studies have linked the influence of Zn on gut micro-
biota with intestinal effects, such as gut wall permeability, inflammation, and intestinal
metabolomics, a small number of studies aimed to assess its potential extraintestinal effects.

In agreement with the well-known anti-inflammatory effect of Zn [71], the earlier
discussed studies demonstrated the role of microbiota-mediated decrease in LPS levels
upon Zn exposure, which may, at least partially, underlie Zn’s modulatory effect on
inflammation. In addition, it has been demonstrated that ZnSO4 reduced expression of
constitutive (STAT1-induced) interferon-stimulated response (ISRE) genes and interferon
regulatory factor (IRF) genes in intestinal epithelium, which was shown to be dependent
on Zn-induced modulation of gut microbiota, altogether resulting in preventing excessive
TNFα-dependent systemic inflammatory response [72]. In view of the role of systemic
inflammation in the pathogenesis of various diseases [73], its modulation through Zn-
induced changes in gut microbiota may be considered one of the mechanisms linking Zn
metabolism with multiple pathologies.

As a particular case of the proposed mechanism, an earlier study demonstrated
that Zn supplementation exhibits protective effects in a model of severe acute pancreati-
tis that appear to be at least partially dependent on the modulation of gut microbiota.
Specifically, Zn sulfate supplementation in rats with pancreatitis significantly reduced
endotoxic accumulation (LPS) and tissue IL-1β and TNFα expression, as well as attenuated
pancreatitis-associated gut permeability and bacterial translocation to pancreas, liver, and
mesenterial lymph nodes. The impact of Zn on gut microflora biodiversity was charac-
terized by a reduction in Escherichia numbers, and an elevation of Bifidobacterium and
Lactobacillus gene copy numbers in caecum [74]. Correspondingly, in patients with chronic
pancreatitis characterized by high incidence (~40%) of small intestinal bacterial overgrowth,
the latter was characterized by a significant negative correlation with serum Zn levels [75].

Modulation of gut microbiota was also considered a significant mediator of the reg-
ulatory role of Zn in immunity. Specifically, it has been demonstrated that Zn sulfate-
supplemented mice are characterized by reduced gut microbiota biodiversity, as well as
lower number and activity of T helper17 cells in murine small intestine. Moreover, trans-
plantation of gut microflora to germ-free mice was associated with a significant influence
on Th17 cells, indicative of the causal relationship between these processes [76].

However, Zn-mediated regulation of gut microflora is not linked only to immune
and inflammatory pathologies. Specifically, recent findings also unravel the potential
contribution of Zn in the modulation of the gut–brain axis in autism spectrum disorder
and other neurodevelopmental disorders.
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An earlier discussed study by Sauer and Grabrucker (2019) demonstrated that Zn
deficiency-associated alterations to gut microbiota, increased gut permeability, and ele-
vated systemic LPS levels are also associated with increased brain IL-6 levels and glial
fibrillary acidic protein (GFAP) expression in the brain, thus being indicative of the role of
altered gut microbiota, increased intestinal permeability, and endotoxinemia in neuroin-
flammation [44]. The authors also proposed that gut microbiota should be considered as
the potential link between zinc deficiency and autism spectrum disorders [77]. Correspond-
ingly, in an autism model of Shank3B -/- KO mice, Zn supplementation (150 ppm) was
shown to revert alterations in fungal and bacterial diversity, modify expression of tight
junction genes, as well as genes involved in immune diseases and energy metabolism [78].
In corroboration, a recent study demonstrated that ZnONP supplementation in children
with autism spectrum disorder (ASD) was associated with significant improvement in
intestinal bacterial biodiversity, ameliorated ASD-associated increases in Proteobacteria
abundance, as well as a reduction in relative Firmicutes and Actinobacteria numbers [79].
Distinct patterns were revealed in another neurodevelopmental disorder, attention deficit
hyperactivity disorder (ADHD). Although ZnO nanoparticles possessed bacteriostatic and
bactericidal effects both in healthy children and ADHD patients, ZnO supplementation
reduced gut bacteria diversity up to the level observed in healthy controls [80].

In agreement with our earlier suggestion on the contribution of gut dysfunction and
microbiota to the role of Zn deficiency in the development of fetal alcohol syndrome [81],
a recent study demonstrated that Zn deficiency aggravated alcohol-induced Paneth cell
dysfunction with a reduction in α-defensin production, as well as impairment of gut
microbiota composition and gut barrier integrity [82].

In obese Korean children, zinc intake was found to be inversely associated with
dietary zinc intake [83]. These findings corroborate earlier data on the beneficial role
of Bacteroidetes in body weight regulation [84], thus providing an additional potential
mechanism for protective effects of Zn in obesity [85].

In contrast to the abovementioned studies, researchers have also demonstrated the
potential contribution of intestinal microbiota to Zn neurotoxicity upon overexposure.
Specifically, oral exposure to ZnONPs was shown to affect spatial learning, memory, and
motor function in mice along with alterations of hippocampal gene expression. Despite
the lack of Zn exposure on gut microbiota biodiversity, increased relative abundance of
Actinobacteria was observed. At the same time, the observed effects of ZnONPs on serum
metabolomics and hippocampal Bdnf and Dlg4 gene expression were found to correlate
significantly with ZnONP-induced modulation of gut microflora with Actinobacteria, Bifi-
dobacteria, Sutterella, and Adlercreutzia taxa characterized by the most profound association
with these variables. Thus, it is plausible that the impact of Zn on brain physiology may be
mediated not only through increased gut permeability and elevation of bacterial proinflam-
matory lipopolysaccharides, but also through modulation of gut microflora metabolites,
including the neuroactive ones [86]. Correspondingly, an increased biosynthesis and trans-
port of 5-hydroxytryptamine (5-HT) in gut upon Zn oxide exposure was also shown to
result in increased brain 5-HT levels, although the role of gut microflora in this effect is yet
to be elucidated [87].

Despite the paucity of studies, the existing data demonstrate that the interplay be-
tween Zn and gut microflora not only affects intestinal physiology underlying local effects
but may also be involved in the pathogenesis of extraintestinal pathology, including neuro-
logical, systemic inflammatory, and metabolic diseases. Moreover, the modulation of gut
microbiota may mediate not only the physiological but also the supraphysiological and
toxic effects of Zn.

5. Probiotics

Given the existing data on the role of Zn in the regulation of gut microbiota, the
efficiency of its co-supplementation with probiotics has been investigated in a number
of studies.
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In heat-exposed Wistar rats, zinc potentiated beneficial effects of probiotics on in-
flammatory response, heat shock protein levels, and antioxidant enzymes, although the
maximal effect was observed in the case of Zn, Se, and probiotic co-supplementation [88].
In another study, a combination of zinc with a probiotic complex and rosavin was shown to
ameliorate monosodium iodoacetate-induced osteoarthritis in a rat model through down-
regulation of proinflammatory cytokines and catabolic factor expression in cartilage [89].

In turn, a combination of multistrain probiotics with Zn sulfate supplementation
significantly improved intestinal morphology in broilers, as revealed by villi height and
weight, crypt death, lamina propria thickness, as well as goblet cell number [90]. A similar
effect was observed in broilers exposed to heat stress [91]. At the same time, no beneficial
effects along with the presence of side-effects like reduced iron absorption and lower
hemoglobin levels were observed following the addition of a high Zn sulfate dose to
Lactobacillus reuteri-based probiotics [92].

The potential beneficial effects of Zn and probiotic co-supplementation may be associ-
ated with the mutual interaction of these agents. On the one hand, probiotics were shown
to increase Zn bioavailability [93]. Zn also exerts a significant impact on the probiotic
microflora, although the effect appears to be highly non-linear. Specifically, Zn at doses of
100—500 mg/l was shown to increase the growth rate of L. plantarum CCM 7102, lactate
production, and adhesion to enterocytes, as well as inhibit E. coli and S. typhimurium growth,
whereas higher doses reversed these beneficial effects [94]. It is also notable that probiotic
supplementation may also counteract certain effects of Zn species like the proinflammatory
effect of inorganic ZnSO4 in intestinal epithelial cells [95].

Zn may also be involved in the mediation of the protective effects of probiotics.
Specifically, probiotic Escherichia coli Nissle 1917 (E. coli Nissle) was shown to compete
with pathogenic S. typhimurium for Zn2+ due to the presence of Zn-binding siderophore
yersiniabactin [96].

Pilot studies have also been performed to evaluate the potential effects of Zn and
probiotic supplementation in humans. Early on, Zn was considered a potential tool for the
improvement of diarrhea due to its effects on gut permeability, immune system, epithelial
function, and electrolyte balance [97], whereas the potential impact of Zn on gut microflora
was not considered as protective. However, a recent study demonstrated that Zn may
be even more effective in the treatment of diarrhea in children aged 6–24 months as
compared to probiotics while also having fewer complications [98]. At the same time, co-
supplementation of Zn and microencapsulated Lactobacillus plantarum IS-10506 in preschool
children did not have added advantages on the effects on fecal IgA levels in comparison
to treatment with a probiotic alone; although improved Zn status was proposed to be
beneficial for immunity [99]. Probiotic and Zn co-supplementation has also been proposed
as a potential tool for the management of hepatic encephalopathy [100].

Generally, the existing data demonstrate the potential usefulness of Zn and probiotic
co-supplementation due to certain potentiating effects in animal models of local and sys-
temic inflammation. However, insufficient human data from Zn-probiotic supplementation
trials do not conclusively establish the efficiency of the latter.

6. Conclusions

Despite being rather contradictory and dose- and species-specific, the existing data
demonstrate a tight relationship between Zn metabolism and gut microbiota with both
Zn deficiency and excess having adverse effects on gut microbiota (Figure 1). Moreover,
the interplay between Zn status and intestinal microflora was shown to have significant
local and systemic effects. The first one is characterized by improved gut wall integrity
and reduced intestinal inflammation. In turn, systemic effects may include systemic
inflammation, acute pancreatitis, autism spectrum disorder, attention deficit hyperactivity
disorder, fetal alcohol syndrome, and obesity. It is highly likely that further research in the
field will unravel additional multilevel effects of Zn mediated by gut microbiota.
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