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Predicting the occurrence of future events from prior ones is vital

for animal perception and cognition. Although how such

sequence learning (a form of relational knowledge) relates to

particular operations in language remains controversial, recent

evidence shows that sequence learning is disrupted in frontal

lobe damage associated with aphasia. Also, neural sequencing

predictions at different temporal scales resemble those involved

in language operations occurring at similar scales. Furthermore,

comparative work in humans and monkeys highlights

evolutionarily conserved frontal substrates and predictive

oscillatory signatures in the temporal lobe processing learned

sequences of speech signals. Altogether this evidence supports

a relational knowledge hypothesis of language evolution,

proposing that language processes in humans are functionally

integrated with an ancestral neural system for predictive

sequence learning.
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Introduction
The human language faculty is unique in the animal king-

dom because it harnesses open-ended combinatorial capa-

bilities operating on a massive semantic store. Language

affords humans the capacity to comprehend and to produce

structured sentences of speech sounds, visual symbols or

signs, with informative content at multiple temporal scales
www.sciencedirect.com 
(phonemic, syllabic, syntactic, etc.). There is general agree-

ment that the human language faculty is not monolithic, but

has core phonological, semantic and syntactic components

(see Friederici, Hagoort and Marslen-Wilson papers in this

issue). However, consensus is lacking on which functions

are language-specific and which engage cognitive domain-

general operations not specific for language [1–4] (also see

Campbell & Tyler in this issue). This issue may be better

understood by asking which aspects of human language rely

on evolutionarily conserved neurocognitive processes.

In this article, we discuss converging empirical evidence on

the neurobiology of sequence learning and natural lan-

guage. Sequence learning tasks, including those that use

Artificial Grammar (AG) learning paradigms, are designed

to emulate rule-based dependencies in language across

various temporal scales and distances. These tasks do

not engage identical processes as those in language, such

as syntactic operations on semantic units, but recent work

has shown that such sequence learning capabilities, firstly

have associations to temporally corresponding language

operations in children and adults, secondly are seen to

engage parts of the fronto-temporal language network,

again for processing at similar temporal scales, and finally

form a core part of the impairments seen in aphasic patients

with grammatical difficulties. Also, neural oscillations,

which reflect the coordination of neuronal populations,

are ubiquitous in the brain and are seen to be crucial for

segmenting the temporal structure of speech signals and

lexical or phrasal dependencies in a sentence. Moreover,

comparative work using sequence learning tasks is identi-

fying the evolutionarily conserved processes and neural

temporal predictive operations involved, which are seen to

reside in regions homologous to those supporting certain

speech and language-related processes in humans. On the

basis of the combination of this evidence, we extend a

relational knowledge hypothesis on the origin of language,

proposing that certain fronto-temporal language operations

are integrated with an evolutionarily conserved system for

predictive sequence learning, particularly when processes

require neural operations at corresponding temporal scales.

Finally, the synopsis highlights  empirical pathways for

advancing our understanding of the human language sys-

tem and its likely evolutionary precursors.

Empirical links between sequence learning and
analogous temporal operations in language
Rule-based sequence learning paradigms (Figure 1)

were originally employed to study human infants and
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Figure 1
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An Artificial Grammar (AG) learning paradigm establishing probabilistic transitions between nonsense words in a sequence. (a) Spectrograms of

the five nonsense word elements used in the study by Kikuchi et al. [71��]. (b) The AG used was developed by Saffran and colleagues [80], also

see [75,81]. It consists of obligatory (red) and optional (blue) nonsense word elements. In the illustration, following any of the arrows from start to

end generates a legal ‘consistent’ sequence. (c) Example consistent and matching violation sequence pair. The red box highlights the first illegal

sound element in the sequence. Neural responses were measured after this illegal transition over a probe stimulus window that contained identical

acoustical items as with the matched consistent sequence, which was wholly consistent with the learned AG sequencing relationships.
adults [5–7] and are also used to comparatively test the

sequence learning capabilities of nonhuman animals

[8,9]. Typically, there is an initial learning phase, via

exposure or operant training, where the participants

experience exemplary sequences following a specific

set of rule-based dependencies; for example, stimulus

A can be followed by stimuli C or D with some proba-

bility, and D is always followed by C for a sequence

including these stimuli to be legal (Figure 1b). Then, in

a subsequent testing phase, novel test sequences are

presented, which either follow or violate the learned

sequencing dependencies. Behavioral or neural

responses to consistencies or violations in the sequenc-

ing relationships can therefore determine which ordering

dependencies humans or other animals can process and

the neural substrates involved.

A number of sequence learning abilities now have estab-

lished links to language in humans, and some of these

abilities are known to be evolutionarily conserved in non-

human animals. Predictive sequence learning is associated

with infant and adult language processing [10–14], and

sequencing capabilities are impaired in developmental

language disorders, including specific language impairment

[15,16] and dyslexia [17]. For example, 7-month-old infants
Current Opinion in Behavioral Sciences 2018, 21:145–153 
show similar order sensitivity during an artificial grammar

learning task as they do with the word order dependencies

present in their natural language (Japanese infants can

expect the opposite word order from English infants: the

equivalentofTokyoni ‘Tokyo to’ inJapanese is ‘to Tokyo’ in

English) [18��]. As another example, within a serial reaction

time task, the ability of adults to process an artificial

grammar with non-adjacent dependencies (an AXB para-

digm where A and B items are associated with one another

across the intervening X items) is associated with the speed

of reading object-relative rather than subject-relative

clauses in natural language, the latter of which are quicker

to parse [13]. There is also growing evidence from compar-

ative behavioral work that nonhuman animals such as

primates, songbirds and rodents can process adjacent and

non-adjacent sequencing dependencies between items in a

sequence [19,20�,21–24].

Additional empirical evidence for links between

sequence processing and related temporal scales of anal-

ysis in language comes from patient studies and neurobi-

ological data. Aphasic patients with prefrontal vascular or

degenerative pathologies affecting their grammatical abil-

ities are also severely impaired on sequence processing

tasks using speech or non-speech sounds [25–27]. The
www.sciencedirect.com
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sequence processing deficits appear to affect simpler

predictable adjacent dependencies between two items

in a sequence through to more complex sequencing

dependencies [28�].

Neurobiological studies in healthy humans have shown

that processing AG sequences of different forms of com-

plexity engages distinct frontal and temporal brain

regions and pathways. Adjacent operations on words in

a sentence or analogous operations in AG learning tasks,

such as the processing of adjacent dependencies between

items, primarily involve the ventral processing stream

interconnecting anterior temporal to inferior frontal areas

such as the frontal opercular cortex [20�,29]. By compari-

son, in humans, more complex non-adjacent or hierar-

chically organized dependencies during language proces-

sing or AG learning tasks additionally engage regions

interconnected by the dorsal arcuate fasciculus pathway,

including Broca’s area (Brodmann areas 44/45) [30–32].

We refer the reader elsewhere for details on how the

involvement of the frontal system depends on language

syntax or sequencing structural complexity [20�,29].

Recent comparative neuroimaging work in monkeys and

humans has identified cross-species correspondences in

the frontal operculum for processing adjacent sequencing

dependencies [33]. The study also found that the level of

involvement of neighboring prefrontal regions involving

Brodmann areas 44/45 was minimal in humans but more

variable in the monkeys. It is thus possible that BA44/45

in humans has evolved to cope with more complex

sequencing dependencies and those required for lan-

guage [20�], or to better integrate different cognitive

operations, such as the number of items and their

sequencing relationships [34]. However, how the human

inferior frontal cortex may have mechanistically differen-

tiated and for which purposes is unknown, requiring

further human work at the interface of language and

domain general operations complemented by compara-

tive work on temporal dependencies in nonhuman

animals.

Humans harness their syntactic and semantic knowledge

to build complex meaningful expressions, often creating

hierarchical dependencies between words or phrases in a

sentence [1]. While certain whale and songbird songs

contain phrases and simpler hierarchical organization of

song units [35], whether any nonhuman animal can learn

to process ‘language-like’ hierarchically organized rela-

tionships remains controversial [36]. On the other hand,

nonhuman primates, for instance, can organize complex

motor sequences [37], evaluate social knowledge based

on a rich hierarchy of social relations [38], and their

prefrontal cortex richly and dynamically encodes cogni-

tive behavior over time [39]. Thus, the full extent of

nonhuman animal sequence processing capabilities, the

phylogenetic pattern of complexity in those capabilities,
www.sciencedirect.com 
which types of hierarchical operations nonhuman animals

are able to learn and the correspondences that can be

made to language-related operations in humans remain

outstanding questions.

The need to anticipate: predictive coding of
environmental events and cross-frequency
oscillatory coupling
Intrinsic neural oscillations are ubiquitous in the brain

and can be categorized into different oscillatory fre-

quency bands reflecting different neurobiological func-

tions. For instance, memory-related operations [40] and

attentional sampling [41] are associated with low fre-

quency neural oscillations, such as those in the theta

frequency range (�4–8 Hz). Populations of neurons can

also entrain their oscillations to rhythmic sensory input,

both reactively and preemptively [42–44]. The latter is

thought to constitute a form of sensory prediction mani-

fest in hierarchically higher brain areas, as we consider.

The predictive coding framework posits that higher

level brain areas send predictions to hierarchically earlier

sensory areas [45], in the form of beta frequency oscilla-

tions (�15–30 Hz) [46]. These predictions are assessed

alongside ascending sensory input, and any discrepan-

cies generate a prediction error signal [47–49], which is

relayed to higher level areas in the form of gamma band

activity (>30 Hz). There can also be cross-frequency

coupling, such as the phase of low frequency signals

coordinating with high frequency signal amplitude,

known as phase-amplitude coupling (PAC). PAC is a

signature of information transfer between neural popu-

lations within and between spatially segregated brain

regions [50,51]. Neural oscillations and oscillatory cou-

pling are impaired in many neurological and psychiatric

disorders [52], such as over-coupling in Parkinson’s

patients in the beta and high-gamma bands [53] or

under-coupling in autism or schizophrenia in the

alpha/gamma band [54].

The research community now has a detailed understand-

ing of how rhythmic activity entrains the brain at partic-

ular oscillatory frequencies. We also better understand

how expected or unexpected (oddball) sounds elicit pre-

diction errors in the brain [55–57]. Much less is known

about how sequence learning affects neural oscillations

and how these relate to speech and language processes.

Neural oscillatory responses to speech
Speech has temporal regularities at multiple scales (e.g.

phonemic, syllabic, and phrasal rates) [58,59]. For exam-

ple, syllabic content occurs in an approximately theta

frequency cycle (4–8 Hz). This rhythm is consistent

across languages [60] and is also present in primate

vocalizations [61]. In human auditory cortex, neural oscil-

lations can entrain to the syllabic and phonemic content

in speech [59,62]. For example, phase entrainment of
Current Opinion in Behavioral Sciences 2018, 21:145–153
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Figure 2
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Conserved neural signatures in human (left column) and monkey (right column) auditory cortex in response to sequences of nonsense words. (a)

Recording sites in the human Heschl’s gyrus (left panel) and macaque auditory cortex (right panel). The macaque structural MRI image on the

right shows an axial MRI slice looking down on the supratemporal plane overlayed with a functionally defined auditory tonotopic map. (b) Time–

frequency responses to each of the sounds in the sequence, shown as power changes (event-related spectral perturbation, ERSP) in the recorded

local field potentials (LFPs) from human (left panel) and monkey (right panel) auditory cortex. Colored boxes on the top of the plots identify the

time of occurrence of the different nonsense words. Note the prominent high gamma power responses to each of the speech sounds in a

sequence. (c) Plots of the inter-trial phase coherence (ITC) across the frequency bands and in response to the sequences of sounds. These show

Current Opinion in Behavioral Sciences 2018, 21:145–153 www.sciencedirect.com
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speech signals at the syllabic rate is thought to be a core

process for perceptual segmentation of continuous speech

into its constituent parts [63,64]. A prominent neurobio-

logical model [59] postulates that theta phase entrain-

ment to the syllabic rate couples with high-frequency

gamma amplitude (>30 Hz), resulting in theta-gamma

phase-amplitude coupling as measured in local field

potential, EEG or MEG signals.

Neural oscillatory responses in temporal cortex are mod-

ulated within different oscillatory frequency bands during

phonotactic segmentation [65], by between-word phrases

[66��,67] and as a function of working memory demands

in sentence comprehension [68]. As another example, in

Mandarin speakers, segmenting Chinese phrases that

occur at a lower rate (�2 Hz) results in modulation of

low-frequency oscillations in fronto-temporal regions that

phase-lock to the perceived phrase structure [66��]. Such

low-frequency neural tracking of phrasal structure may

further modulate higher frequency neural oscillations

such as those in the gamma band [59]. Another intracra-

nial recording study in humans using natural sentences

shows that as words within a phrase are being processed

there is an accumulation of frontal neural activity in the

gamma range [67]. Once a phrase boundary occurs there is

a drop of gamma activity, possibly indicative of a change

in representation from individual words to a phrase.

Furthermore, recent patient work suggests that the pri-

mary deficit in prefrontal cortex atrophy is not the forma-

tion of predictions per se, but that speech predictions are

overly precise and inflexible [69��]. These disrupted

predictions are linked to increased pre-stimulus beta

band oscillatory activity in the patients that can be

detrimental for speech perception. Thereby, predictive

neural operations at various temporal scales feature prom-

inently not only in processing sequences of environmen-

tal events, but also for processing speech and language.

Conserved neural oscillatory coupling and
sequencing predictions in human and monkey
auditory cortex
Two recent studies show that speech and sequencing

predictions in auditory cortex are evolutionarily con-

served between humans and monkeys [70,71��]. Both

studies found the morphology of oscillatory coupling to

speech signals to be remarkably similar, as we consider

here.

Zoefel and colleagues recorded from monkey primary

auditory cortex (A1) neurons and report theta-gamma

coupling in response to natural speech [70], similar to

speech responses in human EEG signals [72]. Kikuchi

and colleagues [71��] recorded from primary and adjacent
(Figure 2 Legend Continued) phase alignment at particular frequency band

(PAC) in response to the nonsense words. The modulation index (MI) values

phase (x-axis) and high frequency amplitude (y-axis).

www.sciencedirect.com 
auditory cortical regions in monkeys in response to

sequences of speech sounds, comparing the neural

responses to these signals in monkeys with those obtained

in humans from intracranial depth electrode recordings of

Heschl’s gyrus. The study showed similar theta-gamma

coupling in the human and monkey auditory cortex in

response to the speech sounds (Figure 2), supporting the

notion of evolutionarily conserved neural oscillatory pro-

cesses for speech sounds in auditory cortex.

The study by Kikuchi and colleagues also assessed the

processing of adjacent sequencing relationships, using an

AG learning paradigm that regulates the predictability of

the between word transitions [71��]. After exposing the

humans and monkeys to sequences that establish the AG

sequencing dependencies, they tested the two species

with novel sequences that were consistent with or in

violation of the learned AG sequencing relationships.

In both species, they saw that theta-gamma coupling, a

sequencing prediction error signal, was increased by an

illegal sequencing transition in the violation sequences.

They also saw that in a different subset of neurons the

theta-gamma coupling strength was increased by the legal

predicted sequencing relationships present in the

sequences consistent with the AG.

With monkeys as a model system in which a substantial

number of single neuron responses can be recorded, the

authors were able to link the observed neural oscillatory

responses to local single neuron activity. This is illus-

trated in Figure 3, which presents a physiological model

of predictive sequencing operations in auditory cortex.

Here it can be seen that stimulus-driven theta-gamma

coupling occurs in response to each of the speech sounds

in the sequence (green in Figure 3). However, sequenc-

ing prediction and prediction error signals are distinct

from stimulus driven effects. Namely, if a correctly pre-

dicted transition occurs, a predictive signal (blue) is seen

to accumulate later in a subset of neural responses

(�500 ms). If, however, a sequencing violation has

occurred, this manifests at an even later time

(�600 ms) as modulation of theta-gamma coupling in

another neural subpopulation (red). This relatively late

neural signal associated with sequencing prediction errors

matches a late event related potential seen in human and

macaque EEG [73,74]. Also, the neurophysiological pre-

diction error signal from auditory cortex occurs at a

behaviorally meaningful time, at the approximate time

that macaque monkey eye tracking data shows that they

notice specific sequence order violations [75]. The later

neural response latency in relation to the relatively earlier

accumulation of predictive signals may stem from the

need to accumulate information to assess sensory input in
s (such as theta; 4–8 Hz). (d) Exemplary phase-amplitude coupling

 show the strength of PAC for each combination of low frequency

Current Opinion in Behavioral Sciences 2018, 21:145–153
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Figure 3
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A physiologically informed model of sequencing predictions in time. This physiological model is based in part on the results of the study by

Kikuchi and colleagues [71��]. (a) Speech signals, as complex sounds, entrain to low-frequency phase that further coordinates with high frequency

amplitude, resulting in phase-amplitude coupling (PAC). (b) After exposure to structured sequencing relationships, different neural signals (LFP,

SUA, oscillatory coupling) show sequencing context-dependent response modulations, lagging sound onset. Prediction signals, reflected in PAC

and likely emanating from hierarchically higher brain areas such as frontal cortex or the hippocampus, occur when the ordering relationships are

consistent with the learned sequence ordering relationships. These influence auditory cortical neurons prior to concomitant effects being seen in

local field potential power. This prediction signal accumulates and is modulated later in time (�600 ms) when a sequencing violation occurs (a

prediction error), evident as high-gamma power predominantly responding to the violation sequences, see [71��].
relation to predictive signals likely emanating from other

sites interacting with auditory cortex. Thus, distinct

sequencing prediction effects segregate in both space

and time, with theta driven phase-amplitude coupling

coordinating in tandem with local single neuron

responses, prior to effects on other neural responses

(Figure 3).

These neural results on sequence processing are gener-

ally consistent with the predictive coding framework
Current Opinion in Behavioral Sciences 2018, 21:145–153 
[71��]. We further postulate that low-frequency theta

oscillations may be a feedback prediction signal from

inferior frontal cortex [33] and/or the hippocampal mem-

ory system [76] that influences auditory cortical neuronal

responses involved in segmenting complex signals, such

as speech. The high-gamma responses related to

sequencing violations appear to be a sequencing predic-

tion error signal that is relayed forward from auditory

cortex to hierarchically higher level brain areas [77].

Feedback signals may enhance low-frequency phase in
www.sciencedirect.com
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auditory cortex, strengthening the gamma prediction

error signal as a function of the learned sequencing

relationships.

In summary, auditory cortex neural responses in humans

and monkeys show a signature of learned sequencing

dependencies, which is seen to be remarkably similar

across the species and is now linked to single neuron

responses in monkeys as a model system. Further com-

parative work is needed to identify the feedforward and

feedback processes involved in sequence learning and

how these predictive neural processes compare across the

species and with temporally aligned language-specific

processes that can be studied in humans.

The relational knowledge hypothesis of
language origins
Wilson and Petkov motivated a relational knowledge hypoth-
esis of language evolution [78], developed from observations

of primate sequence learning behavior and how monkeys

apply their social knowledge during natural vocal inter-

actions [38]. We extend this hypothesis here with the

neurobiological observations that were considered above.

Sequence learning is a form of relational knowledge [79],

where temporal dependencies are established via learn-

ing at the appropriate temporal granularity. After learn-

ing, the brain evaluates incoming sequences of sensory

events in relation to expectations from previously learned

sequencing dependencies in the form of feedback from

hierarchically higher frontal and other sites. When pre-

dictions for subsequent sequences cannot be supported, a

sequencing prediction error results and updates synaptic

weights that are fed-forward throughout the network to

update future predictions. Differential aspects of the

neurocognitive system, including broader aspects of infe-

rior frontal cortex, are likely engaged as a function of the

complexity of the temporal dependencies [20�], as is also

seen for language syntactic operations [29].

Conclusions
Language-critical processes in humans appear to be func-

tionally integrated with an ancestral neural system sup-

porting relational knowledge, such as sequence learning.

The extent to which this or any other domain general

neural system can be segregated from the one supporting

language is an active area of research aiming to clarify the

neural specializations for language. It remains possible

that two separate systems exist side-by-side in humans,

by way of evolutionary duplication and differentiation of

general processes for language. Even so, it follows that at

some levels a shared process can identify the generic

neural mechanisms involved, aspects of which could be

modelled in nonhuman animals at the circuit, cell and

molecular levels if the process is also shown to be evolu-

tionarily conserved. The relevance to language notwith-

standing, understanding the impact of serial order on the
www.sciencedirect.com 
brain and behavior remains an important endeavor. Thus

future studies could seek to clarify the laminar and inter-

regional feedforward and feedback neural dynamics

involved in predicting environmental events at different

temporal scales, perturbing the system as necessary to

establish causal relationships.
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