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The persistence of latent reservoir of the human immunodeficiency virus (HIV)

is currently the major challenge in curing HIV infection. After HIV infects the

human body, the latent HIV is unable to be recognized by the body’s immune

system. Currently, the widely adopted antiretroviral therapy (ART) is also unble

to eliminate it, thus hindering the progress of HIV treatment. This review

discusses the existence of latent HIV vault for HIV treatment, its formation

and factors affecting its formation, cell, and tissue localization, methods for

detection and removing latent reservoir, to provide a comprehensive

understanding of latent HIV vault, in order to assist in the future research and

play a potential role in achieving HIV treatment.
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Introduction

HIV is a global health problem. At present, nearly 37 million people around the world

are living with HIV infection (Ortblad et al., 2013). HIV evades the host immunity in

many ways after infection (Theys et al., 2018; Beitari et al., 2019; Yin et al., 2020), among

which the most common is through the establishment of latent reservoir of the HIV

(Sengupta and Siliciano, 2018; Pedro et al., 2019). After HIV infects activated CD4+T

lymphocytes, it produces a large number of viral RNA and viral proteins, which are

eventually recognized and killed by the host immune system (van Zyl et al., 2018).

Subsequently, some HIV after integration into the host cells mainly exist in CD4+T cells

of resting memory, and constitute the latent reservoir of HIV (Bruner et al., 2019). These

cells carry the integrated latent protovirus and exist through homeostasis or antigen-

driven proliferation (Shan et al., 2017; Rezaei et al., 2018). At present, ART control the

HIV level in people living with HIV (PWLH) below detection line, which plays an

important role in the process of antiviral therapy (Lu et al., 2018). However, due to the

existence of a latent HIV reservoir, ART cannot eliminate the latent virus in the reservoir,

and HIV will rebound once the treatment is stopped (Xiao et al., 2019; Cohn et al., 2020).

HIV cannot be completely cured, although some breakthroughs have been made in the

research field of latent HIV reservoir. However, its specific mechanism of action is not
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completely clear. This review provides insight into the

formation, location, detection and elimination of latent

HIV reservoir.
Formation of latent HIV reservoir
and its influencing factors

The reservoir of latent HIV can be established in the early

stage of infection and is mainly composed of CD4+T cells with

resting memory (Moranguinho and Valente, 2020). After HIV

enters the human body, it mainly infects human CD4+T

lymphocytes. The RNA is first reversely transcribed into HIV

DNA, which is then integrated into the DNA of CD4+T cells,

part of which transforms into a resting state in oder to inhibit the

viral gene expression. The HIV in these resting CD4+T cells

becomes the latent HIV, which is the main formation mode of

the latent HIV reservoir at present (Garcıá et al., 2020). In

addition, with the advent of research, other mechanisms for the

establishment of latent HIV reservoirs have also been proposed.

For instance, HIV can directly infect CD4+T cells that revert to a

G0 dormant memory state, thus enabling the virus to enter

latency (Garcıá et al., 2018). It has been suggested that latency

may be established by direct infection of resting memory CD4+T

cells (Trm cells) (Garcıá et al., 2020; O’Neil et al., 2021). Selective

reverse transcriptional products tyrosine aminotransferase (Tat)

and negative factor (Nef) exist in Trm cells (Schulze-Gahmen

and Hurley, 2018), and can induce cell activation so that the

virus genome can be integrated into the cell genome (Donahue

et al., 2013; Pinto et al., 2020). Moreover, it has also been found
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that although Trm cells are resistant to HIV compared with

activated CD4+T cells, mild stimulation of chemokine CC ligand

19 (CCL19) and chemokine CC ligand 21 (CCL21) and

cytokines interleukin (IL)-4 and interleukin (IL)-7 can

promote the direct infection of resting CD4+T cells with HIV

without inducing significant T cell activation (Saleh et al., 2007;

Wu, 2010; López-Huertas et al., 2019). The establishment and

maintenance of latent infection may be influenced by a variety of

factors, including the availability of host transcription factors,

epigenetic modifications, HIV Tat protein defects, integration

sites and directions, and post-transcriptional regulatory

mechanisms. After the reservoir of latent HIV is established,

the transcription level of HIV in the reservoir is very low, and

almost no virus is produced as there is no viral protein, and the

latent infected cells will not be affected by cytotoxicity, nor will

they be recognized by the immune system, so that they can exist

stably for a long time. Figure 1 shows the main formation

process of latent HIV reservoir.

The factors affecting the formation of latent HIV reservoir

can be generally divided into two aspects: inhibiting the

formation of latent HIV reservoir and promoting the

formation of latent HIV reservoir. B-cell lymphoma 2 (BCL2)

is a key regulatory molecule of lymphoid tissue homeostasis,

affecting HIV homeostasis in infected lymphocytes. BCL2 can

directly bind Casp8p41 and prevent the latter from binding and

activating Bcl-2 homolog antagonist/killer (BAK), thereby

inducing apoptosis (Cummins et al., 2016). It has been found

that the expression of Casp8p41 in resting memory CD4+T cells

is negatively correlated with the absolute CD4+T count. BCL2

can inhibit the formation of latent HIV reservoirs depending on
FIGURE 1

The formation process of latent HIV reservoir. (A) HIV mainly infects human CD4+T lymphocytes. When it enters the cell, the RNA is first
reversely transcribed into HIV DNA, which is then incorporated into the DNA of CD4+T cells. Some CD4+T cells with integrated HIV DNA are
converted into a resting state, and the HIV in the resting CD4+T becomes latent HIV. (B) HIV directly infects CD4+T cells that revert to a G0
dormant memory state, thus enabling the virus to enter latency. (C) HIV establishes incubation by directly infecting resting memory CD4+T cells
(Trm cells).
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the enhanced cytotoxicity of Casp8p41 (Cummins et al., 2017).

In addition, the purified Tat protein inhibits the establishment of

latent HIV reservoir without changing the susceptibility of cells

to HIV (Donahue et al., 2012).

On the contrary, some substances may also promote the

formation of latent HIV reservoirs. Programmed cell death

protein 1 (PD-1) and lymphocyte activation gene 3 (LAG-3) were

initially identified as markers of HIV-infected cells (Fromentin

et al., 2016). PD-1 plays an active role in silencing HIV transcription

(Boussiotis and Patsoukis, 2022). A recent study reported that the

TRIM28 protein helps in binding a chemical marker called

SUMOylation to the cell’s gene regulators and inhibits the activity

of HIV genes, thereby inhibiting its expression and promoting

latency (Ma et al., 2019). The binding of interferon-g-induced
protein (IP) -10 to C-X-C chemokine receptor 3 (CXCR3) has

also been reported to enhance latent infection of resting CD4+T

cells against HIV (Wang et al., 2021). IP-10 stimulation promotes

cofilin activity and actin dynamics, thereby promoting HIV entry

and DNA integration, suggesting that IP-10 is also a key factor in

the formation of latent HIV reservoir, and targeting IP-10 therapy

may be a potential strategy in inhibiting latent HIV infection (Lei

et al., 2019; Wang et al., 2021). In addition, cell-to-cell contact

between infected cells and uninfected cells is also a key feature in the

formation of an HIV latent virus reservoir (Pedro et al., 2019;

Okutomi et al., 2020). Cell-to-cell contact enhances the

susceptibility of resting CD4+T cells to HIV (Agosto et al., 2018).

Previous studies have shown that monocytes or myeloid dendritic

cells (mDCs) co-culturing with activated HIV-infected T cells may

facilitate their transition to the activated latent state, highlighting the

role of intercellular contact in the establishment of HIV latent

reservoir. Furthermore, cytokines are also important factors in the

formation of HIV latent virus reservoir (Vandergeeten et al., 2012).

For instance, IL-10, IL-8 and transforming growth factor –b (TGF-

b) can produce long-term latent infectious cells by reducing T cell

activation, which has been proved in in vitro experiments (Wilson

and Brooks, 2011; Travis and Sheppard, 2014; Morris et al., 2017).
The cell reservoir of HIV

Currently, CD4+T cells of resting memory constitute the

major reservoir of latent HIV, which has widely been recognized

by researchers (Campbell et al., 2018; Kwon et al., 2020;

Moranguinho and Valente, 2020). However, a study reported

that the rate of virus recurrence after the termination of ART

therapy is much higher than the replication rate of CD4+T cells,

indicating the presence of other reservoirs of latent HIV in

addition to CD4+T cells (Chun et al., 2000). It has been proved

that a variety of cells in circulating blood can also exist in the

form of a latent reservoir of HIV after infection, which is

associated with a variety of diseases and affect the

development of HIV (Burdo, 2019; Kristoff et al., 2019;

Veenhuis et al., 2019).
Frontiers in Cellular and Infection Microbiology 03
CD4+T lymphocytes of resting memory

CD4+T cells of resting memory are stable reservoirs of latent

HIV infection (Garcıá et al., 2018). A previous study stated that

there was no significant loss of integrated HIV DNA in resting

memory T cells over time, with a half-life of about 25 years

(Murray et al., 2014). Resting memory T cells can be divided into

different subtypes, including primitive T cells (TN) and memory

T cells (TM) (Terahara et al., 2019). TM cells are divided into

central memory T cells (TCM), transitional memory T cells

(TTM), effector memory T cells (TEM) and stem cell memory T

cells (TSCM) (Corneau et al., 2017; Gálvez et al., 2021). Viral

DNA has been detected in all of the above mentioned resting

CD4+T cell subpopulations in HIV patients (Zerbato et al.,

2016), suggesting that CD4+T lymphocytes of resting memory

may be major hosts of latent viral infection.

Studies have confirmed that TM is an important part of the

reservoir of latent HIV. In terms of function, TSCM cells exhibit

higher response ability upon stimulation by homologous antigen

(Lugli et al., 2013). Moreover, some TSCM cells express CC

chemokine receptor 5 (CCR5) and C-X-C chemokine receptor

4 (CXCR4), the main co-receptors for HIV entry, and making

them susceptible to HIV infection (Tabler et al., 2014). In

addition, TSCM cells have a very long half-life and thus form

the most stable part of the latent reservoir (Cartwright et al.,

2016). TSCM cells can produce highly differentiated cells, such as

TCM and TEM, while TTM are intermediate phenotypes between

TCM and TEM cells, each of which maintains its latent reservoir

(Kulpa et al., 2019). As mentioned above, in addition to the virus

exposure, there are many other factors influencing the latent

infection of the resting CD4 + T cells, as some of the negative

control cells activate the immune factors. Previous study

reported that some factors in TEM, TTM, and TCM are more

active, which affect the reservoir of lurking in the formation

these cells (Kwon et al., 2020).

Compared with TM, viral DNA could be detected in TN cells

despite the low frequency of HIV infection (Gibellini et al.,

2017). At the same time, data have shown that infected TN cells

are treated with drugs that reverse latency. The number of

extracellular virions produced by TN in each infected cell was

the same as that of TM cells, suggesting that TN cells with latent

infection may also be the important source of the virus after

treatment interruption or failure, that is, they are important

hosts of latent HIV infection, and should not be ignored because

of their low infection frequency (Zerbato et al., 2019).
Mononuclear macrophages

In addition to resting memory CD4+T cells, myeloid cells,

especially mononuclear macrophages, are currently considered

to be important reservoirs of the latent HIV (Kumar et al., 2014).
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Mononuclear macrophages are considered to be early targets of

HIV infection, because both CD4 receptors and CCR5 or

CXCR4 co-receptors express on their surfaces (Lee et al.,

1999). It has been shown that mononuclear macrophages play

a key role in the innate immune response to pathogens, viral

persistence, and viral library formation (Abreu et al., 2019;

Kruize and Kootstra, 2019). Monocytes from bone marrow

circulate in the blood and migrate to tissues to differentiate

into various types of macrophages. Although monocytes rapidly

differentiated into macrophages, studies have suggested that

HIV has been detected in monocytes (Saini and Potash, 2014).

In addition, macrophages have a long life span, found in almost

all tissue in the body. Macrophages are relatively resistant to

HIV-induced apoptosis, and can remain in antiviral treatment,

so they are considered to play a key role in the establishment and

persistence of latent HIV reservoir (Kruize and Kootstra, 2019).

Brown et al. designed a long-term cultured in vitro model of

macrophages infected with green fluorescent protein (GFP)

labeled recombinant HIV. The results revealed that

macrophages can establish incubation periods in vitro (Brown

et al., 2006).

A quantitative virus outgrowth assay (QVOA) was used to

measure the myeloid cells of latent infection in the simian

immunodeficiency virus (SIV)-rhesus monkey model. The

findings revealed that mononuclear macrophages with latent

infection were detected in blood Broncho-alveolar lavage fluid,

lung, spleen and brain (Abreu et al., 2019a; Abreu et al., 2019b),

indicating that these cells persist during SIV infection and may

act as latent viral reservoirs during antiretroviral therapy.

Moreover, the isolated viruses produced by macrophages can

infect activated CD4+T cells, suggesting that latent infected

macrophages can re-infect after treatment interruption.
Dendritic cells

Dendritic cells (DCs) are a heterogeneous group of antigen-

presenting cells, playing an important role in immune response

(Worbs et al., 2017; Balan et al., 2019; Yin et al., 2021). DCs are

divided into myeloid dendritic cells (mDCs) and plasmacytoid

dendritic cells (pDCs) based on maturity and origin (Verna

et al., 2021). mDCs and pDCs, in an in vitro experiment were

found to have different susceptibility to HIV (Smed-Sörensen

et al., 2005; Groot et al., 2006).

Low levels of preHIV can be detected in DCs, suggesting

that DCs may play a role in the HIV reservoir (Pope et al.,

1995). Through the formation of infectious or virologic

synapses (McDonald et al., 2003), DCs will transfer the

infection to antigen-specific CD4+T cells upon HIV

encounter (Loré et al., 2005), thereby weakening the

establishment of anti-HIV immune response. In addition,

HIV can appear in DCs and fuse with T cell membranes (Yu

et al., 2008). Subsequently, DCs may be a potential target for
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HIV infection and latency due to surface pattern recognition

receptor interac t ions wi th pathogens (Card inaud

et al., 2017).

Follicular dendritic cells (FDCs) present in secondary

lymphoid tissue are the major sites of HIV infection during

antiretroviral therapy (Olivetta et al., 2020; Ollerton et al., 2020).

The virus is captured as an immune complex on its surface, the

resulting complex is highly infectious to CD4+T cells (Keele

et al., 2008). A previous study reported that FDCs in mice can

retain the captured virus particles in an infected state for at least

9 months in vivo (Smith et al., 2001). Data also suggested that

HIV captured by FDCs is capable of replication and exhibit

greater genetic diversity than viruses found in other tissues or

cells, and hence is an important host for an infectious and

diverse group of HIV (Keele et al., 2008).
Hemopoietic progenitor cells

Since hematopoietic progenitor cells (HPCs) express HIV

receptors, long-term infection of HPCs may also be an

important factor in the residual HIV after treatment (Carter

et al., 2011). It has been confirmed that different subtypes of HIV

can infect HPCs in vivo or in vitro (Li et al., 2017). To study

latent infection in HPCs, Carter et al. (2010) conducted

experiments using cells with different infection states. the

findings revealed that viral gene expression was induced upon

the treatment of latent HPCs with cytokines, stimulated the

differentiation of bone marrow cell lines (granulocyte-

macrophage colony-stimulating factor GM-CSF and tumor

necrosis factor TNF-a), suggesting that HIV could infect

HPCs and cause both active and latent infections.

Studies have shown that CD34+HPCs expressing CD4

CCR5 or CXCR4 and other receptors and co-receptors are

associated with the susceptibility of these cells to HIV (Carter

et al., 2010; McNamara et al., 2013). In addition, McNamara

et al. (2013) assessed HIV infection of CD34+HPCs in 9 HIV

patients who received ART and had no detectable viral load for

at least 6 months. In four of the nine patients, preHIV genomes

were detected in CD34 cells at a frequency of 3-40 genomes per

10,000 cells, suggesting that HPCs can serve as a reservoir of

latent HIV.
Astrocyte

HIV can invade the central nervous system (CNS), causing

neuroinflammatory immune activation and neurodegenerative

alterations, resulting in HIV-related neurocognitive impairment

(Knight et al., 2018; Knight et al., 2020). Astrocytes are the most

abundant cell type in CNS and play a vital role in maintaining

the CNS homeostasis and regulating blood flow in response to

injury and diseases (Guttenplan and Liddelow, 2019).
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Due to the absence of CD4 receptors, astrocytes lead to

restricted HIV infection. Although the proportion of HIV binding

to astrocytes is low, HIV DNA and RNA have been found in

astrocytes using in-situ hybridization laser capture anatomy and

nested polymerase chain reaction (PCR) (Churchill et al., 2006;

Chong et al., 2018), suggesting that astrocytes can be infected by

HIV. In addition, studies using human astrocytes and human

peripheral blood mononuclear cell chimeric model further

confirmed that astrocytes are the host of HIV (Lutgen et al., 2020).

HIV infection is found to be acquired through pH-

dependent endocytosis, which consumes most of the virus

particles, however, pH-dependent endocytosis still may be an

important pathway for HIV to establish incubation in astrocytes

(Chauhan and Khandkar, 2015). Previous studies reported that

Tat protein expression can affect HIV infection and latency

establishment in astrocytes. Tat protein promotes the formation

of HIV latency by inducing tri-methylation of histone H3 on

Lys27 (H3K27me3) expression in astrocytes. A decrease in Tat

protein expression decreases the formation of latent HIV

infected cells (Chauhan and Khandkar, 2015). Meanwhile, the

in vitro use of latency reversing agents (LRAs) has further

identified astrocytes as part of the reservoir of latent HIV

(Schneider et al., 2015).
Other cells

In addition to the aforementioned cells, several other cells

types are also reported to form latent reservoirs of HIV.

Macrophages and microglia in the central nervous system are

the main antigen-presenting cells that can be infected with HIV.

Previously, researchers detected HIV DNA in these pair of cell

isolated from the brain tissue of five dead individuals, proving

them as the main cellular hosts for latent HIV (Thompson et al.,

2011). At the same time, microglia can be sustained for a long

time and can proliferate in situ, and hence proved to be a key

drive for viral reservoirs (Wallet et al., 2019).

Epithelial cells are also susceptible to HIV. Renal tubular

epithelial cell co-cultured with infected T cells becomes

susceptible to HIV. HIV DNA and RNA were detected in

renal tubular epithelial cells by in situ hybridization of biopsies

collected from patients with HIV-associated nephropathy

(Katuri et al., 2019). In addition, it has been reported that

integrated HIV DNA can be detected after in vitro infection of

liver cell lines and primary liver cells, and the release of

infectious viruses was also found in the liver epithelium

(Ganesan et al., 2018).
Tissue reservoir of HIV

Studying the latent HIV reservoir in tissues is challenging

due to the difficulty of tissue sampling. In recent years, the
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research on the latent HIV reservoir in tissue has mainly focused

on the autopsy of non-humans primates and humans (Cohn

et al., 2020). Lymph nodes (LN) and gut-associated lymph tissue

(GALT) were found to be the major tissue reservoirs rich in

viruses and with high frequency of infected cells (Churchill et al.,

2016). In the course of HIV infection, B cell follicles in the

lymphoid structure actively reject effector CD8+T cells to

maintain normal B cell function, thereby providing favorable

conditions for the formation of latent HIV reservoir (Connick

et al., 2014; Fukazawa et al., 2015). Previous studies suggested

that the gut may be the body’s largest reservoir of HIV. In

addition, by examining the vaults of SIV-infected rhesus

monkeys, the researchers found that the vast majority (>98%)

of storage stocks are present in the gut (Estes et al., 2017).

Previously, a human autopsy study revealed that the HIV

provirus was detected in 28 tissues, including the liver, spleen,

genital tract and brain (Chaillon et al., 2020). Several major HIV

reservoir cells, such as resting memory CD4+T cells, dendritic

cells, macrophages and microglia, are widely located in these

tissues (Honeycutt et al., 2017; Wallet et al., 2019). Some of the

studied sites are termed sanctuary sites, which are protected

from ART penetration (the brain and testis) and pose additional

challenges for HIV treatments (Fletcher et al., 2014).

Tissue macrophages such as those found in seminal vesicles,

urethra, adipose tissue and liver tissue are considered to be

important hosts of HIV, including macrophages (Deleage et al.,

2011; Ganor et al., 2013; Damouche et al., 2015). In addition,

infected macrophages have been found at low but detectable

frequencies in lung and duodenal tissue of patients on ART with

undetectable plasma viruses (Cribbs et al., 2015). The

reproductive tract is also rich in macrophages and may be an

important reservoir of latent HIV, where antiretroviral drugs are

difficult to enter. Study has found that the male reproductive

tract may also exist in the latent HIV (Ganor et al., 2019).

Additionally, tissue resident memory CD4+ T cells in the female

genital tract (particularly the cervix) are highly enriched with

HIV DNA (Cantero-Pérez et al., 2019). Figure 2 shows the main

tissue reservoirs of HIV.
Detection of latent HIV reservoirs

At present, detection methods for finding accurate, sensitive,

and scalable reservoirs of latent HIV are important in the

treatment of reservoirs. Virus outgrowth assay (VOA) is

considered the gold standard for the quantification of latent

HIV reservoir. It measures the replicability of the original virus

by diluting resting CD4+T cells and activating the intracellular

viral gene expression, resulting in inducing the release of HIV

from latent infected cells (Wang et al., 2018). However, this

method is time-consuming, expensive, and requires a large

amount of blood culture. Moreover, single stimulation is not

sufficient to activate all latent viruses, which underestimates the
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size of latent HIV reservoir (Massanella et al., 2018; Wonderlich

et al., 2019). Detection of HIV DNA based on PCR is relatively

simple and rapid method for the detection of the latent reservoir,

and provides a supplement for the VOA test (Ho et al., 2013).

Quantitative real-time polymerase chain reaction (qPCR) for

detection of HIV DNA to determine the amount of HIV DNA

carried (Thomas et al., 2019), digital PCR (dPCR) for detection

of HIV DNA for absolute quantitative HIV (Henrich et al.,

2017), and Alu-polymerase chain reaction (Alu-PCR) for

detection of HIV integration the amount of DNA is used to

evaluate the size of the latent reservoir of HIV (Lada et al., 2018).

PCR has made rapid development in the determination of latent

reservoir of HIV, however, the size of the reservoir may be

overestimated because PCR cannot distinguish intact from

defective original virus (Ho et al., 2013).

To counter the above mentioned challenges, several

innovative approaches have been developed for detecting

latent HIV reservoirs including intact proviral DNA assay

(IPDA), which differentiates intact and defective viruses, and

screen different defective viruses by plasmid control (Gaebler

et al., 2021). It was found that 90% of the defects in the viruses

occurred in the encapsulation signal (y) and env regions. With

the detection of y and env regions by dPCR, complete viruses

and defective viruses could be identified (Bruner et al., 2019).

Tat/Rev induced restricted dilution test (TILDA) is used to

measure the frequency of CD4+T cells of latent HIV proto-

virus. Researchers discovered that changing the preamplification

settings did not affect on the Tat/Rev multiple splicing RNA

assay, confirming the stability of the assay and supporting its

adaptability to limited modifications to ensure better clinical use

in latent HIV reservoirs (Bertoldi et al., 2020; Lungu et al., 2020).
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ISH and flow cytometry, have a higher sensitivity to replication

of the original virus, and can phenotype host cells (Deleage et al.,

2018; Pardons et al., 2019). There was a study that described how

to use this technology to address some of the major questions

remaining in the HIV feld in the era of ART.They discussed how

CD4+T cell responses to HIV antigens, both following

vaccination and HIV infection, can be characterized by

measurement of cytokine mRNAs. They also described how

their development of a dual HIV mRNA/protein assay (HIVRNA/

Gag assay) enables high sensitivity detection of very rare HIV-

infected cells and aids investigations into the translation

competent latent reservoir in the context of HIV cure (Baxter

et al., 2017). The emergence and development of these detection

techniques provide strong evidence for the study of latent HIV

reservoir. Table 1 summarizes the testing methods for latent

HIV reservoirs.
Strategies for removing latent
HIV reservoirs

Shock and kill strategies

Shock and kill therapy use drugs to activate the gene

transcription (shock) of HIV lurking in cells, and then kill the

virus (kill) through the body’s immune system, ART or other

intervention methods to eliminate the latent HIV. It is one of the

most effective methods to remove the latent HIV (Sadowski and

Hashemi, 2019; Nixon et al., 2020). LRAs are used for activation

of viral transcription, the production of viral proteins, release of

virus particles, and, effectively eliminating latent HIV in
FIGURE 2

The main tissue locations of latent HIV reservoir.
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combination with ART (Spivak and Planelles, 2018; Delannoy

et al., 2019). Therefore, LRAs play an important role in this

process. It has been found that many substances can be used as

LRAs to activate latent HIV reservoir, such as: 1) cytokines or

receptor agonists, such as IL2, IL7, IL15, toll-like receptor 2,3

(TLR2, 3) agonists, etc. The drugs were found to reactivate the

expression of HIV, but they did not eliminate the latent infection

cells, or affect the size of the HIV reservoir (Rochat et al., 2017;

Madrid-Elena et al., 2018). 2) Epigenetic modification enzyme

inhibitors, such as histone deacetylase inhibitors (HDACi)

histone methyltransferase inhibitors (HMTi), and DNA

methylation inhibitors (DNMTi), etc. HDACi and HMTi have

been shown to reactivate HIV expression to some extent in vitro

and in vivo (Archin et al., 2017). In addition, DNA methylation

inhibitor 5-AzadC can also induce HIV expression in vitro, while

its oxidation analog 5-AzaC is unable to do so (Bouchat et al.,

2016). 3) Cellular signaling modulators, such as protein PKC

receptor agonist prostratin and bryostatin, activate the protein
Frontiers in Cellular and Infection Microbiology 07
kinase C (PKC) pathway to release NF-kB and positive

transcription elongation factor b (pTEFb) from inactive

complexes and increase pTEFb expression, ultimately leading

to HIV reactivation (Wang et al., 2017; Schwartz et al., 2017). In

addition, antioxidants, AKT regulators, protein phosphatase 1,

and many other substances induce the expression of HIV proto-

virus (Chirullo et al., 2013; Doyon et al., 2014; Smith et al., 2015;

Tyagi et al., 2015), however, their specific mechanism of action

remains unclear and needs further study. Table 2 summarizes

commonly used latent reversal agents.

Schwartz et al (Schwartz et al., 2017) investigated the

reactivation potential of compounds releasing active pTEFb in

combination with PKC agonists. The combination of HMBA/

BETi and PKC agonists led to strong synergistic activation of

HIV expression in several in vitro post-integrated latency cell

line models (Darcis et al., 2015). Continuous treatment with

demethylation agents (5-AZADC) and clinically tolerated

HDACi was also shown to be more effective than
TABLE 1 The different detection methods of latent HIV reservoir.

Assay Advantages and disadvantages References

Viral
outgrowth
assay (VOA)

The replicable proto-virus was measured by diluting resting CD4+T cells to
activate intracellular viral gene expression and induce the release of HIV from
latent infected cells

The gold standard for measuring latent HIV
reservoirs
But it is expensive, time-consuming, requires a lot of
blood culture and underestimates the size of the
latent reservoir

(Wonderlich
et al., 2019)
(Massanella
et al., 2018)
(Fun et al.,
2017)
(Badia et al.,
2018)

PCR Detection of HIV DNA using primers/probes Simple, fast, and provides a
supplement for VOA experiment
But it’s possible to overestimate
the size of the repository

(Ho et al.,
2013)

qPCR Testing for HIV DNA to determine the amount of HIV DNA carried (Thomas et al.,
2019)
(Vandergeeten
et al., 2014)

ddPCR Detection of HIV DNA for absolute HIVquantification (Henrich et al.,
2017)
(Lada et al.,
2018)

Alu-PCR The amount of integrated HIV DNA was measured to evaluate the size of the
latent reservoir

(Vandergeeten
et al., 2014)
(Lada et al.,
2018)

Intact
proviral
DNA assay
(IPDA)

Complete proviruses were measured by multiplex digital PCR, and different
defective proviruses were verified by plasmid control

Fast and able to distinguish between intact and
defective proviruses
But it didn’t screen the whole genome

(Bruner et al.,
2019)

TILDA CD4+T cell frequency of latent HIV proto-virus was measured by Tat/Rev
induced restricted dilution test

High sensitivity and stability
But the transcripts measured may come from
defective provirus genomes

(Bertoldi et al.,
2020)
(Frank et al.,
2019)

ISH and flow
cytometry

mRNA and viral proteins were measured after T cell activation It has high sensitivity and
can phenotype host cells
But it can not prove that RNA or
proteins are made by replicating
protoviruses

(Baxter et al.,
2017)
(Deleage et al.,
2018)
(Pardons et al.,
2019)
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corresponding concurrent treatment in inducing HIV gene

expression in vitro and ex vivo (Bouchat et al., 2016). These

datas demonstrate the importance of treatment schedules in

combination with LRAs for HIV activation.

The ability of LRAs to activate in vitro is correlated with the

size of the HIV reservoir.However, some patients have very low

or extremely high reactivation relative to the size of their

reservoir (Darcis et al., 2017). Timely administration of LRAs

in reactivation trials and a better understanding of the variability

of reactivation in patients are important.A defective Cas9

(dCas9) protein fused to activators may be a new tool to

reactivate potentially infected cells. CRISPR/dCas9 may be

used to reactivate latent HIV in vitro experiments (Zhang

et al., 2015). Similarly, CRISPR/dCas9 synergistically activates

HIV when used in combination with HDAC inhibitors and PKC

activators (Limsirichai et al., 2016).

Exosomes, as a way of material and information

transmission between cells, are the key features in viral

infection (Chen et al., 2021). Research studies on the

activation of latent HIV reservoir have found exosomes to

induce the activation of resting CD4+T cells infected with HIV

through different mechanisms. For example, exosomes from

HIV-infected cells have been shown to activate resting CD4+T

lymphocytes via ADAM17 and tumor necrosis factor-a
(TNF-a) dependent mechanisms (Arenaccio et al., 2014;

Arenaccio et al., 2015). In addition, HIV-coded Tat protein is

an effective viral transcription transactivator. Tat protein is

encapsulated in exosomes for targeted delivery to latently

infected CD4+T lymphocytes, which reactivate the virus.

When combined with an HIV LRA, the expression of HIV

mRNA increases by >30-fold (Tang et al., 2018).

Despite the reactivation of latent HIV, LRAs alone cannot

significantly reduce the size of the reservoir, suggesting that kill

is needed to destroy HIV-infected cells after shock therapy

(Castro-Gonzalez et al., 2018; Sadowski and Hashemi, 2019;
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Maina et al., 2021). ART is an important method used to reduce

the activated virus, and HIV-specific CD8+T cells play a key role

in eradicating HIV hosts. However, the immune system of ART

patients is unable to produce sufficient anti-HIV cytotoxic

CD8+T cell response, therefore, it is unable to eliminate the

activated cells in large numbers. Consequently, it is necessary to

enhance cellular or humoral mediated immune response to

promote cell apoptosis, and eliminate the latent HIV (Kim

et al., 2018).
Block and lock

Contrary to the shock and kill strategy, the block and lock

strategy permanently silence the original HIV to prevent the

virus from rebounding. The block and lock strategy prevents the

transcription and reactivation of HIV in the latent infection cells

to inhibit the emergence of the latent virus (Moranguinho and

Valente, 2020; Vansant et al., 2020). HIV transcription is a

complex process involving many virus proteins and cytokines,

including Tat proteins to induce viral transcription extension,

host transcription factors, transcription suppressors, etc.

Alterations in any of these factors may silence HIV

transcription (Vansant et al., 2020). In addition, chromatin

and epigenetic landscape and HIV integration sites also play

important roles in viral transcription (Pearson et al., 2008; Tyagi

et al., 2010).

To address these potential targets affecting latent HIV

transcription and silencing, several block and lock strategies

have been proposed: 1) Inhibition of Tat protein expression

through didehydro-cortistatin A (dCA). dCA is an effective

inhibitor of Tat protein, which can block the transcription and

reactivation of HIV by LRAs in CD4+T cells. It has been found

that dCA treatment can reduce or delay virus recurrence.

Meanwhile, dCA has a strong specificity for Tat protein and
TABLE 2 The commonly used latent reversal agents.

Category Examples Mechanism of action References

Cytokines or receptor agonists IL2、IL7、IL15、TLR2,3 Reactivation of HIV expression (Rochat et al., 2017)
(Rasmussen et al., 2016)

Epigenetic modification enzyme
inhibitors

HDACi、HMTi、DNMTi Reactivation of HIV expression in vitro and in vivo (Archin et al., 2017)
(Bernhard et al., 2011)

Cell signal regulator Prostra、BryostatinC Activation of PKC pathway
results in the release of NF-kB
and pTEFb from inactive complex and increases pTEFb
expression

(Wang et al., 2017)
(Schwartz et al.,
2017)

Others

Antioxidant Auranofn
(AF)

The mechanism of action is
still unclear

(Chirullo et al., 2013)

AKT regulator Disulfram (Doyon et al., 2014)

Protein phosphatase 1 SMAPP1 (Smith et al., 2015)
(Tyagi et al., 2015)
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plays an important role in inhibiting virus reactivation (Kessing

et al., 2017). 2) Inhibition of HIV integration and relocalization

of the residual original virus by LEDGINs. Lens epithelium-

derived growth factor p75 (LEDGF/p75) is a determinant of HIV

integration site selection and affects the transcription status of

the original virus (Debyser et al., 2018). LEDGINs are small

molecular inhibitors of the interaction between LEDGF/p75 and

integrase (Christ et al., 2010), which can impede HIV integration

and the catalytic activity of HIV integrase (IN), to increase the

proportion of protovirus with transcriptional silencing

phenotype (Symons et al., 2018). 3)Small interfering RNA

(siRNA) is used to maintain the repressive heterochromatic

landscape at the HIV5’ LTR promoter (Ahlenstiel et al., 2015).

siRNA silenced HIV genes transcription by recruiting

Argonaute1(AGO1), histone deacetylase 1, and histone

methyltransferase (Méndez et al., 2018). 4) Promoting

chromatin transcription complex (FACT) is also one of the

important regulatory factors of HIV transcription. Curaxins

CBL0100, an anticancer drug, was discovered to suppress HIV

replication and reactivation by inhibiting RNAPII-mediated

transcriptional elongation in a Tat-dependent manner (Jean

et al., 2017). 5) Mammalian target of rapamycin (mTOR)

inhibitors, hinders HIV reactivation by down-regulating

cyclin-dependent kinase 9 (CDK9) phosphorylation and

blocking NF-kB signal transduction (Besnard et al., 2016).

In addition, it has been found that heat shock protein 90

(HSP90) inhibitors, Jak (Janus kinase)-STAT inhibitors, kinase

inhibitors and bromodomain protein 4(BRD4) regulators also

play corresponding roles in inhibiting the latent HIV

transcription and reactivation (Vansant et al., 2020). Although

many compounds are still in the early stages of HIV research,

their emergence offers new possibilities for cure. Figure 3 shows
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the main process of shock and kill, and block and lock to

eliminate the latent reservoir of HIV.
Immunization therapy

When the latent HIV is activated by LRAs, immunotherapy

can kill or eliminate HIV-infected cells. Moreover,

immunotherapy can stimulate the natural immunity of HIV-

infected cells (Ferrari et al., 2017). The immune response can be

enhanced by regulating cytokines and interleukins (Pankrac

et al., 2017). IL-15 enhances the activity of natural killer cells

(NK), thereby enhancing cell elimination after LRAs treatment

(Garrido et al., 2018). Subsequently, a polo-like kinase 1 (PLK1)

inhibitor can also enhance the anti-HIV effect of DCs (Gringhuis

et al., 2017).

Broadly neutralizing antibodies (bNAbs) target specific

proteins outside the HIV, thereby reducing infectivity. bNAbs

can significantly reduce viral load (Parsons et al., 2018). In

addition, bNAbs can also be used in combination with shock and

kill therapy to eliminate infected cells. When LRAs activate

potentially infected cells, bNAbs eliminate them (Martinez-

Navio et al., 2019). Antibody therapy can also promote

apoptosis of activated cells by targeting surface markers. In

addition, the conjugation of antibodies with cytotoxic

compounds or drugs can be used to target and kill specific cell

types recognized by antibodies. Antibodies used in this class of

antibody drug conjugate (ADC), including bNAbs, recognize

HIV gag or HIV env gene products and, may provide effective

killing of latent infected cells (Dan et al., 2018).

At the same time, the CD8+T cells isolated from HIV

patients can modify their specificity in vitro to produce anti-
A

B

A

FIGURE 3

The main process of shock and kill and block and Lock therapy to clear latent reservoir of HIV. (A) Shock and kill strategy: the latent HIV is
activated with a LRAs and then killed by ART or immunotherapy. (B) Block and lock strategy: by preventing the transcription and reactivation of
HIV in latent infection cells to inhibit the emergence of latent virus and prevent virus rebound.
frontiersin.org

https://doi.org/10.3389/fcimb.2022.945956
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


Chen et al. 10.3389/fcimb.2022.945956
HIV cytotoxic T lymphocytes (CTL) response and are amplified

and reintroduced into patients, which can also promote their

immune response to the reactivated cells, to eliminate the latent

infection cells (Yang et al., 2016).

In addition to the above strategies, some other methods

against latent HIV reservoir have been proposed, such as

interferon (IFN) combined with ART therapy, stem cell

transplantation (Kuritzkes, 2016), gene editing including

CRISPR (Das et al., 2019; Herrera-Carrillo et al., 2020; Atkins

et al., 2021), zinc-finger nucleases (Wayengera, 2011; Ahlenstiel

et al., 2020) etc. Target cells can be induced to develop HIV

resistance through gene editing, such as gene editing to remove

the CCR5 gene, and reduce the binding of HIV to CD4 cells

(Yang et al., 2016; Schwartz et al., 2017). Each method has its

own characteristics and plays a certain role in potentially

controlling the latent virus reservoir.
Discussion

The establishment of a latent HIV reservoir is a complex

process, and can exist in a variety of cells and tissues throughout

an infected person’s body, making it difficult to detect and

eliminate. With the deepening of HIV research, the existence

of latent HIV reservoir has gained extensive attention.

Subsequently, great progress has been made in the research of

latent HIV reservoir. Many methods for the detection and

elimination of latent HIV reservoir have been proposed.

At present, activating latent HIV to kill, is still the key to

eliminate the reservoir of latent HIV. Therefore, people are

committed to finding safe and efficient activators to activate

the latent HIV. Recently, exosomes have gradually become the

focus of HIV clinical research. Previous studies have found that

exosomes can activate latent HIV reservoir cells through various

mechanisms, and various substances carried by exosomes play

an important role in the occurrence and development of HIV,

which has broad application prospects in the clearance of latent

HIV reservoir and the treatment of HIV (Barclay et al., 2017;

Chandra et al., 2021). In addition, clinical research proved that

traditional Chinese medicine plays an irreplaceable role in the

treatment of HIV (Li et al., 2020; Qian et al., 2021). Our study

found that traditional Chinese medicine (TCM) and its related

components can also activate the latent HIV, providing a new

direction for TCM treatment of HIV. At the same time, new

mechanisms for activating latent HIV reservoir have been

proposed, which provide the possibility for the elimination of

latent reservoir.

However, research on latent HIV reservoir is still in the

initial stage, and further exploration is needed to better
Frontiers in Cellular and Infection Microbiology 10
understand the intricacies of possible mechanism, location,

detection, and clearance methods, to achieve a complete

elimination of latent HIV reservoirs.
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(2021). Atlas of the HIV-1 reservoir in peripheral CD4 T cells of individuals on
successful antiretroviral therapy. mBio 12 (6), e0307821. doi: 10.1128/mBio.03078-21

Ganesan, M., Poluektova, L. Y., Kharbanda, K. K., and Osna, N. A. (2018). Liver
as a target of human immunodeficiency virus infection. World J. Gastroenterol. 24
(42), 4728–4737. doi: 10.3748/wjg.v24.i42.4728

Ganor, Y., Real, F., Sennepin, A., Dutertre, C. A., Prevedel, L., Xu, L., et al.
(2019). HIV-1 reservoirs in urethral macrophages of patients under suppressive
antiretroviral therapy. Nat. Microbiol. 4 (4), 633–644. doi: 10.1038/s41564-018-
0335-z

Ganor, Y., Zhou, Z., Bodo, J., Tudor, D., Leibowitch, J., Mathez, D., et al. (2013).
The adult penile urethra is a novel entry site for HIV-1 that preferentially targets
resident urethral macrophages. Mucosal Immunol. 6 (4), 776–786. doi: 10.1038/
mi.2012.116
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Tormo, L., Santoyo, J., et al. (2019). Selective miRNA modulation fails to activate
HIV replication in in vitro latency models. Mol. Ther. Nucleic Acids 17, 323–336.
doi: 10.1016/j.omtn.2019.06.006
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