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Abstract: Short-chain fatty acids (SCFAs), such as butyrate, produced by gut microorganisms, play a critical role in energy metabo-
lism and physiology of ruminants as well as in human health. In this study, the temporal effect of elevated butyrate concentrations on 
the transcriptome of the rumen epithelium was quantified via serial biopsy sampling using RNA-seq technology. The mean number of 
genes transcribed in the rumen epithelial transcriptome was 17,323.63 ± 277.20 (±SD; N = 24) while the core transcriptome consisted 
of 15,025 genes. Collectively, 80 genes were identified as being significantly impacted by butyrate infusion across all time points 
sampled. Maximal transcriptional effect of butyrate on the rumen epithelium was observed at the 72-h infusion when the abundance of 
58 genes was altered. The initial reaction of the rumen epithelium to elevated exogenous butyrate may represent a stress response as 
Gene Ontology (GO) terms identified were predominantly related to responses to bacteria and biotic stimuli. An algorithm for the recon-
struction of accurate cellular networks (ARACNE) inferred regulatory gene networks with 113,738 direct interactions in the butyrate-
epithelium interactome using a combined cutoff of an error tolerance (ε = 0.10) and a stringent P-value threshold of mutual information 
(5.0 × 10−11). Several regulatory networks were controlled by transcription factors, such as CREBBP and TTF2, which were regulated 
by butyrate. Our findings provide insight into the regulation of butyrate transport and metabolism in the rumen epithelium, which will 
guide our future efforts in exploiting potential beneficial effect of butyrate in animal well-being and human health.
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Introduction
Short-chain fatty acids (SCFAs, also known as volatile 
fatty acids or VFAs) are produced in the gastrointes-
tinal tract by microbial fermentation of carbohydrate 
substrates of both exogenous (dietary fiber) and 
endogenous origin (mucus). SCFAs contribute up 
to 75% of the total energy requirement in ruminants 
and ∼10% for humans.1 A broad range of biological 
functions have been ascribed to SCFAs, specifically 
butyrate, in addition to their value in energy and nutri-
tion metabolism.1,2 While as a preferred energy source 
for ruminal epithelial cells, butyrate plays a critical 
role in the development of the rumen epithelium.3 As 
an indirect factor, butyrate is able to affect blood flow 
in the gastrointestinal (GI) tract as well as insulin and 
glucagon secretion.1 Furthermore, butyrate reinforces 
intestinal barriers and modulates motility and visceral 
sensitivity of the intestine.4 Butyrate modulates cell 
differentiation and motility, induces apoptosis, and 
inhibits cell proliferation in vitro5,6 in contrast to the 
observed effects on cell proliferation documented 
in vivo7 Butyrate is known to be anti-inflammatory 
and anti-tumorigenic.4 Recently, butyrate has been 
shown to reduce bacterial translocation and inter-
nalization resulting from metabolic stress in human 
colon-derived cells.8 Beneficial effects of butyrate 
on human health and animal well-being have been 
extensively reviewed.4,9

Steady-state butyrate concentration in the rumen 
represents a balance between butyrate biosynthesis 
by ruminal microorganisms and absorption and uti-
lization by the rumen epithelium. Among factors that 
affect butyrate output of the gut microbial ecosys-
tem, such as redox potential and pH, gut turnover and 
motility, and mucosal transport,10 substrates in the 
gut play an essential role in butyrate production, pos-
sibly due to their influence on microbial population 
composition and dynamics.10–12 The community-level 
response of rumen microorganisms to exogenous 
butyrate has recently been characterized.12 Dietary 
supplements, such as butyrogenic resistant starch, 
and probiotic administration of butyrate-producing 
bacteria have been exploited in human medicine 
to boost gut butyrate concentration for its potential 
health benefit.13–15 In ruminants, butyrate produced 
by gut microbes is rapidly removed by the rumen 
or gut epithelium, and subsequently metabolized to 
ketone bodies (acetoacetate and β-hydroxybutyrate) 

or  oxidized to CO2 prior to being released into circu-
lation such that only 25% of the butyrate enters the 
systemic circulation.16 While substantial amounts of 
butyrate are absorbed across the rumen epithelium 
via passive diffusion, either trans- or para-cellularly,17 
other forms of butyrate transport may exist. Indeed, a 
butyrate transporter, SLC5A8, has been  identified.18 
Much of our knowledge relating to the transcrip-
tional effects of butyrate is derived from in vitro 
studies.2 However, butyrate has long been known 
to have an opposite effect in vivo, especially on cell 
 proliferation. In the present study, we quantified the 
changes in the rumen epithelial transcriptome of dairy 
cows in response to butyrate infusion using RNA-seq 
technology and bioinformatic tools.

Materials and Methods
Animal experiment
Four ruminally-cannulated Holstein cows used in this 
study were previously described.12 Briefly, the cows 
in their mid-lactation were fed ad libitum standard 
lactation rations with 50% corn silage and 50% con-
centrate on a dry matter basis. All animal care and 
handling were conducted according to the guide-
lines approved by the USDA Beltsville Area Institu-
tional Animal Care (Protocol # 09-008). Cows were 
moved to a tie stall barn for adaptation and acclima-
tion 7 days prior to the experiment. Ruminal infusion 
of butyrate was initiated immediately following 0h 
sampling (baseline controls) and thereafter continued 
for 168 h at a rate of 5.0 L/day of a 2.5 M solution 
 (representing .10% of daily anticipated metaboliz-
able energy intake to support lactation) in a buffered 
saliva solution (pH 7.0; 3.8% KHCO3, 7.3% NaHCO3) 
as a continuous infusion. Following the 168 h infu-
sion, infusion was stopped and cows were maintained 
on the basal lactation ration for an additional 168 h 
for sampling. Rumen epithelial samples were serially 
collected via biopsy through rumen fistulae at 0, 24, 
72, and 168 h of infusion, and 24 and 168 h post infu-
sion (post 24 h and post 168 h, respectively).  Ruminal 
pH was monitored using a standard pH meter and 
recorded at every sampling. Rumen epithelial sam-
ples were saved in RNAlater and stored in −80C until 
RNA extraction. Additionally, a bovine epithelial cell 
line treated with 10 mM of sodium butyrate (N = 4) 
and PBS, respectively, for 24 h was used as an in vitro 
model for comparison.2
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RnA extraction and sequencing  
using RnA-seq
Total RNA from 24 rumen epithelial samples and 
8 cell line samples was extracted using  Trizol 
 (Invitrogen, Carlsbad, CA, USA) followed by 
DNase digestion and Qiagen RNeasy column puri-
fication (Qiagen,  Valencia, CA, USA) as previously 
described.19,20 The RNA integrity was verified using 
an Agilent Bioanalyzer 2100 (Agilent, Palo Alto, 
CA, USA).  High-quality RNA (RNA Integrity num-
ber or RIN . 9.0) was processed using an Illumina 
TruSeq RNA sample prep kit following the manufac-
turer’s instruction (Illumina, San Diego, CA, USA). 
After quality control procedures, individual RNA-
seq libraries were pooled based on their respective 
 sample-specific 6-bp adaptors and sequenced at 50 bp/
sequence read using an Illumina HiSeq 2000sequencer 
as described  previously.21  Approximately 25.7 million 
sequences per sample (Mean ± SD = 25,746,641 ± 
7,637,237.4) were generated.

Data analysis and bioinformatics
Raw sequence reads were first checked using our qual-
ity control pipeline. Nucleotides of each raw sequence 
read were scanned for low quality and trimmed using 
SolexaQA.22 Trimming removed ∼24.9% of the raw 
reads; and mean length of resultant input reads were 
48.96 bp (±0.46, SD). Input reads were then aligned 
to the bovine reference genome (UMD3.1) using 
TopHat.23 Approximately 96.68% of input reads were 
aligned to the bovine genome whereas 71.58% of input 
reads were uniquely mapped to the gene space in the 
bovine genome. Each SAM output file from TopHat 
alignment, along with the GTF file from ENSEMBL 
bovine genebuild v65.0, were used in the Cuffdiff 
program in the Cufflink package (v1.3.0) as input 
files24 to test for differential gene expression. Mapped 
reads were normalized based on upper-quartile nor-
malization method. Cuffdiff models the variance in 
fragment counts across replicates using the negative 
binomial distribution as described.25

Differentially expressed genes in the transcriptome 
identified were further analyzed using Gene Ontol-
ogy (GO) analysis (https://github.com/tanghaibao/
goatools). Enrichment of certain GO terms was deter-
mined based on Fisher’s exact test. A multiple correc-
tion control (permutation to control false discovery 
rate, FDR) was implemented to set up the threshold to 

obtain the lists of significantly over-represented GO 
terms.

Co-regulatory gene networks were analyzed using 
Algorithm for the Reconstruction of Accurate Cellu-
lar Networks (ARACNE).26 Raw mapped sequence 
reads from 32 samples, including 24 rumen epithelial 
samples and 8 samples from a bovine epithelial cell 
line were first normalized (per million mapped reads) 
and log2 transformed. Only 15,469 genes with mean 
mapped reads greater than 10.0 across all 32 samples 
were used for subsequent analysis. Relative expres-
sion values of these genes were used as input files to 
infer global regulatory networks.

Results
A snapshot of the rumen epithelial 
transcriptome
Collectively, a total of 20,371 genes were detected at 
least once in at least one of the 24 rumen epithelial 
samples. The number of genes expressed per sample 
was 17,323.63 ± 277.20 (Mean ± SD). The number of 
genes with mean hits $ 5.0 were 15,015 whereas the 
core transcriptome of the rumen epithelium consisted 
of 15,025 genes, ie, genes represented by at least one 
sequence hit in each of the 24 samples tested.

According to the transcript abundance clas-
sification described previously,21 approximately 
70.78% of genes transcribed in the rumen epithe-
lium can be classified into “very rare” with a rela-
tive abundance #15 molecules per cell (Table 1), 
followed by “not expressed” (0 molecule per 
cell) at 17.24% and “rare” (16–99 molecules per 
cell) at 10.41%. “ Moderately abundant” genes 
accounted for 1.32% while the abundant transcripts 
with $500  molecules per cell accounted for only 
0.25% of genes detected in the transcriptome. Unlike 
what was observed in the bovine muscle tissue where 
the transcriptome was dominated by a handful of 

Table 1. Transcript abundance in the bovine rumen 
epithelium.

Transcript category Rumen  
epithelium

Small  
intestine

not expressed 17.24% 15.23%
Very rare 70.78% 68.27%
Rare 10.41% 14.91%
Moderately abundant 1.32% 1.41%
Abundant 0.25% 0.18%
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genes (Baldwin et al 2012, personal  communication), 
the most abundant gene in the rumen epithelial tran-
scriptome was a mitochondrial gene, cytochrome c 
 oxidase subunit I, represented by ∼6.23% of sequence 
reads. The 20 most abundant genes in the rumen epi-
thelial transcriptome, which accounted for ∼23.8% 
of sequences, included 6 genes of mitochondrial 
origin, such as cytochrome b, and 3 keratin genes, 
such as keratin, type I  cytoskeletal 17 (Ensembl ID: 
 ENSBTAG00000006806) and keratin, type II cytoskel-
etal 59 kDa,  component IV ( ENSBTAG00000039425). 
This is in contrast to the bovine small intestine 
transcriptome,21 in which the 20 most abundant genes 
accounted for ∼13.3% of sequences. Among the 
20 most abundant transcripts, only 3 genes were shared 
in the transcriptome of both the small intestine and the 
rumen epithelium, including cytochrome c oxidase 
subunit I (ENSBTAG00000043561), elongation fac-
tor 1-alpha 1 (ENSBTAG00000014534), and a novel 
 protein-coding gene (ENSBTAG00000034185).

Genes significantly impacted  
by butyrate
A total of 80 genes were found to be affected in the 
rumen epithelium by butyrate infusion at $ one time 
point at a stringent cutoff, FDR , 5% (Table 2). 
 Compared to pre-infusion at 0h, 24 h infusion affected 
15 genes, including down-regulation of solute carrier 
family 5 (iodide transporter), member 8 (SLC5A8), 
leukocyte surface antigen (CD47), lipopolysac-
charide binding protein (LBP), immunoglobulin 
lambda-like polypeptide 1 (IGLL1), and lactoper-
oxidase (LPO). The maximal effect of butyrate was 
observed at 72 h infusion when 59 genes were influ-
enced, including lymphocyte antigen 6D (LY6D), 
keratin 75 (KRT75), and tubulin beta-3 chain (TBB3). 
While the impact on some genes, such as a novel pro-
tein  (ENSBTAG00000039035), which was strongly 
induced by butyrate at only the 24 h infusion sampling, 
was seemingly transient, transcriptional responses of 
butyrate on many genes were long-lasting. The rumi-
nal butyrate concentration returned to its pre- infusion 
basal level 168 h after the infusion withdrawal (Fig. 1). 
However, as many as 13 genes remained significantly 
affected at 168 h post-infusion, compared to 0h, and 
these included cadherin 26 (CDH26), desmoglein 1 
(DSG1), and kallikrein-related peptidase 10 (KLK10). 
53 of the 80 differentially expressed genes were also 

significantly impacted by butyrate in the in vitro 
model. However, the remaining 27 genes were only 
significantly regulated by butyrate in the rumen epithe-
lium, such as dual oxidase maturation factors 1 and 2 
(DUOXA1 and DUOXA2) and keratin 36 and keratin 
75 (KRT 36 and KRT75). Additionally, of the 80 genes 
affected by butyrate, a majority were down-regulated 
by butyrate treatment, which is consistent with the 
effect of butyrate observed in bovine epithelial cells 
in vitro (Wu et al 2012, personal  communication). 
Eight genes up-regulated by butyrate at $one time 
point were heat shock 70 kDa protein 6 (HSPA6, 
24 h), transglutaminase 2 (TGM2, 72 h and 168 h), 
alcohol dehydrogenase 1C (class I), gamma polypep-
tide (ADH1C, 72 h and post 168 h), small nucleolar 
RNA SNORA31 (SNORA31, 168 h), farnesyl pyro-
phosphate synthase (FPPS, post 124 h),  keratin 36 
(KRT36, post 168 h), ornithine decarboxylase (ODC, 
post 168 h), and peptidoglycan recognition protein 2 
(PGLYRP2, post 168 h).

Gene Ontology (GO) analysis
GO terms significantly enriched in the rumen epithelium 
in response to butyrate infusion were identified using 
GOATOOLs. At 24 h infusion, five biological processes 
were significantly enriched at a Bonferroni- corrected 
P value , 0.05 (Table 3A), including responses to 
bacteria and biotic stimuli. When all 80 genes signifi-
cantly impacted by butyrate at one or more time points 
were analyzed, biological processes such as responses 
to bacteria and other organisms were enriched, con-
sistent with the 24 h observation. In contrast, cellular 
components related to “organelle” were significantly 
depleted by butyrate infusion when assessed relative 
to all 15,015 genes expressed in the rumen epithelium 
with mean mapped reads $5.0 (Table 3B).

Regulatory gene networks
Using a combined stringent cutoff of an error tolerance 
ε = 0.10 and a P-value threshold of mutual information 
(MI) at 5.0 × 10−11, ARACNE inferred global gene net-
works with 113,738 direct interactions in the butyrate-
epithelium interactome. Top 67 genes controlling .5% 
of all direct interactions and can be considered as hubs or 
master regulators (Supplementary File 1). Among these 
genes, 46 were impacted by butyrate in in vivo and/
or in vitro models. Of the 46, 7 were known transcrip-
tion factors or translation regulators, including CREB 
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binding protein (CREBBP), eukaryotic translation 
termination factor 1 (ETF1), hypoxia inducible factor 
1, alpha (HIF1A), lysine (K)-specific demethylase 5A 
(KDM5A), regulatory factor X, 2 (RFX2), transcrip-
tion elongation factor A (3TCEA3), and transcrip-
tion termination factor, RNA polymerase II (TTF2). 
The master regulator with the greatest number of 
direct interactions (or the first neighbors) was ETF1 
 (ENSBTAG00000011415). The product of this gene acts 
as an omnipotent protein release factor (RF) and directs 
the termination of nascent peptide synthesis (translation) 
in response to termination codons. ETF1 was down-
regulated by butyrate in vitro (P value = 3.97 × 10−8, 
FDR = 1.00 × 10−5). ARACNE inferred 123 direct inter-
actions (1st neighbors) and 6,195 2nd neighbors for 
ETF1. Among the indirect interactions (2nd neighbors), 
1052 of the 1472 genes involved were significantly 
impacted by butyrate, including a total of 111 transcrip-
tion factors in vitro. The predominant GO terms identi-
fied as enriched among its 1st neighbors relate to the 
cellular component organelle (GO:0043226), includ-
ing membrane-bounded organelle (GO:0043227) and 
intracellular organelle (GO:0043229). CREBBP (ENS-
BTAG00000026403) encodes a protein with intrinsic 
histone acetyltransferase activity, which acetylates 
both histone and non-histone proteins. CREBBP acts 
as a transcriptional coactivator of RNA polymerase 
II-mediated transcription and is known to play a criti-
cal role in cell growth and human diseases. This gene 
was significantly down-regulated by butyrate infu-
sion and had 87 1st neighbors (Fig. 2). An additional 
189 genes were involved in 3,327 of indirect interac-
tions of CREBBP (2nd neighbors). Of these CREBBP 
2nd neighbors, 140 were regulated by butyrate includ-
ing 19 transcription factors. Not coincidently, the GO 
terms predominantly enriched in the direct interaction 
of CREBBP were related to biological processes such 
as histone modification (GO:0016570) and  covalent 
chromatin modification (GO0016569), cellular com-
ponents such as histone acetyltransferase complex 
(GO:0000123) and NuA4 histone acetyltransferase 
complex (GO:0035267), and molecular functions such 
as histone acetyltransferase activity (GO:0004402) and 
nucleic acid binding (GO:0003676).

Discussion
Multiple effects of butyrate on local (intestinal) and 
systemic physiological function are  presumably due to 

its actions as a potent regulator of gene expression.4–6 
Butyrate metabolism, both biosynthesis by gut micro-
organisms and utilization in the gut, is tightly regu-
lated and thus, imbalance could play a critical role 
in the pathology of humans and animals. Typically, 
increased production of SCFA, especially butyrate, 
results in lower luminal pH, which, in turn, creates 
favorable niche for and stimulates proliferation of 
butyrate-producing bacteria.12 In modern intensive 
production systems used for ruminants, especially 
during physiologically critical stages, such as wean-
ing and the transition or periparturient period in dairy 
cattle, high concentrate rations are fed which can 
result in abrupt increases in SCFA production. This 
circumstance often results in production in excess of 
the utilization capacity, subsequently leading to the 
development of ruminal acidosis, a prominent diges-
tive disorder with a significant economical impact.27,28 
Individual variation in the capacity for uptake of ace-
tate and butyrate among animals fed the same rations 
can explain the degree of acidosis observed.29 In fact, 
considerable effort has focused on development of 
practical nutritional intervention strategies for use 
during transition periods to enhance rumen epithelial 
surface area prior to the introduction of high VFA pro-
ducing rations to facilitate better absorptive capacity 
and mitigate negative effects of acidosis.30 To date, 
these strategies have yielded mixed results with respect 
to increasing papillae surface area and total absorp-
tive capacity (Andersen, personal  communication). 
The development of a better understanding of the 
regulation of both rumen epithelial growth promotion 
and VFA transport capacity remains a concern to the 
industry.29 In this study, we assessed the rumen epi-
thelial transcriptome dynamics when butyrate con-
centration was elevated due to direct ruminal infusion 
with buffered butyric acid in order to assess transcrip-
tional effects of butyrate and its potential role in regu-
lating butyrate transport in cattle.

The majority of our knowledge on regulatory 
impact of butyrate on global gene expression is 
derived from in vitro studies and observations.6,31,32 
However, caution in interpretation of in vitro data 
and application of knowledge gained in vitro to in 
vivo models is warranted. SCFAs, such as butyrate, 
are known to promote rumen development and stim-
ulate the proliferation of rumen epithelial cells in 
vivo.33  However, butyrate inhibits the proliferation 
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of  epithelial cells of the large intestine, rumen and 
kidney by down- regulating genes controlling cell pro-
liferation in vitro.2,32 Butyrate also induces apoptosis 
and differentiation of tumor cells.34,35 Moreover, an 
in vitro study of epithelial cells of different origin (rat 
small intestine vs. human colon) has demonstrated that 
the cell type affects butyrate uptake characteristics.36 
In fact, opposite effects of butyrate are observed for 
many cellular processes, such as cell proliferation and 
division, between in vitro and in vivo models and are 
clearly reflected in transcriptome characteristics.33,37 
A number of genes related to cell proliferation and 
cell cycle progress were significantly down-regulated 
by a 24-h 10 mM butyrate incubation of established 
bovine rumen epithelial cells in long-term culturing 
(Wu et al 2012, personal communication). In contrast, 
expression of these same genes in the rumen epithe-
lium in the present data set was not altered despite a 
2-fold increase from 19.5 mM to 38.5 mM in intra-
ruminal butyrate concentration (Fig. 1). Interestingly, 
the abundance of a butyrate transporter, SLC5A8, in 
the rumen epithelial transcriptome was significantly 
reduced concomitant with intra-ruminal butyrate con-
centration increases. However, SLC5A8  expression 
at the mRNA level was significantly increased ∼21 
fold by butyrate exposure in vitro (Fig. 3). This 
apparent opposite effect of butyrate on the expression 
of its transporter is suggestive of alternative regula-
tory mechanisms relating to butyrate uptake control 
and transport by the intact rumen epithelium and cells 
in culture. Moreover, cellular butyrate metabolism 
may be different between in vivo and in vitro models 
due to changes in the rate of removal of end prod-
uct as well as changes between cell-cell interactions 
and micro-environments present in vivo, but dis-
rupted in vitro. To this point, epithelial metabolism of 
butyrate, especially the pathways leading to ketogen-
esis, helps to maintain a butyrate concentration gradi-
ent in vivo, which in turn facilitates butyrate uptake 
and affects butyrate intracellular concentrations.30 
Rate-limiting enzymes in the ruminal ketogenic pro-
cess, such as acetyl-CoA acetyl transferase (ACAT) 
and 3-hydroxy-3-methylglutaryl CoA synthases 
(HMGCS) 1 (cytoplasmic) and 2 (mitochondrial), 
play an important role in regulating butyrate metabo-
lism at the substrate level. As depicted in Table 4, key 
enzymes in butyrate metabolic pathways exhibited 
a different expression pattern between the cell line 
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Figure 1. Ruminal concentrations (mM) of short-chain fatty acids in 
response to butyrate infusion.
Notes: 0 h = baseline, immediately prior to initiation of continuous infusion 
with butyrate. 24 h, 72 h, and 168 h = 24, 72, and 168 h after continuous 
infusion, respectively. Post 24 h and post 168 h = 24 h and 168 h after 
infusion withdrawal, respectively. Red: acetate; Blue: butyrate; Green: 
propionate. error bars = standard deviation, N = 4.

Table 3. Gene Ontology (GO) terms significantly impacted in the rumen epithelium by butyrate. (A) At 24 h infusion. 
(B) collectively in all time points.

GO_id Status GO description Ratio P_unadjusted P_bonferroni FDR
(A)
GO:0009617 e Response to bacterium 4/67 4.85e-07 1.72e-04 0.0000
GO:0051707 e Response to other organism 4/137 8.52e-06 3.02e-03 0.0100
GO:0042742 e Defense response to bacterium 3/56 2.19e-05 7.77e-03 0.0270
GO:0051704 e Multi-organism process 4/208 4.41e-05 1.56e-02 0.0390
GO:0009607 e Response to biotic stimulus 4/219 5.39e-05 1.91e-02 0.0430
GO:0050729 e Positive regulation of inflammatory  

response
2/25 0.000278 9.85e-02 0.1220

(B)
GO:0043231 P intracellular membrane-bounded  

organelle
8/4872 3.47e-06 0.0029 0.0030

GO:0043227 P Membrane-bounded organelle 9/4877 1.89e-05 0.0158 0.0120
GO:0043229 P intracellular organelle 12/5577 2.07e-05 0.0174 0.0130
GO:0009617 e Response to bacterium 5/68 3.03e-05 0.0254 0.0550
GO:0043226 P Organelle 13/5583 6.13e-05 0.0514 0.0740
GO:0004252 e Serine-type endopeptidase activity 5/81 7.06e-05 0.0593 0.0780
GO:0051707 e Response to other organism 6/140 1.01e-04 0.0845 0.1540
Notes: *Ratio = the number of significantly regulated genes that can be assigned to this GO term/all genes assigned to this GO term [among 15,015 genes 
expressed in the rumen epithelium with a mean hit count $ 5.0]. Under the status, “e” (enriched) = GO term is significantly higher in the study group than 
those in the population while “P” (depleted) = GO terms significantly lower in the study group than in the population. The number of permutation = 1000.

and the rumen epithelium. As expected, HMGCS2 of 
mitochondrial origin was significantly up-regulated 
by butyrate in vitro, in response to increased butyrate 
 concentration.  However, expression of HMGCS2 
remained unchanged in vivo.

The biological interpretation of high-throughput 
expression data generated using microarrays or RNA-
seq technology requires both differential expression and 
differential network analyses.38 Many transcriptional 
regulators exert their impact on biological functions 
via post-transcriptional mechanisms with subtle or no 
apparent changes at mRNA expression level detect-
able by tools for assessing differential expression 
alone. However, differential network analysis relies 
on powerful computational tools to extract accurate 
regulatory gene networks reflecting causal interactions 
underlying biological processes or phenotypes. Of sev-
eral algorithms available, those based on information 
theory, including estimating mutual information values, 
such as ARACNE26,39 perform well in inferring global 
gene networks, especially for smaller sample sizes.40,41 
ARACNE is based on the assumptions that the expres-
sion level of a given gene is a random variable and the 
mutual relationships between them can be derived by 
statistical dependences.42 Our results provided further 
support for the utility of this approach in constructing 
regulatory gene networks that depict phenotypes and 
regulation of biological processes. An example from 
this current study is the regulatory network controlled 
by FBJ murine osteosarcoma viral oncogene homolog, 
or c-fos (FOS), which was significantly down-regulated 
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Figure 2. A regulatory gene network controlled by cReB binding protein (cReBBP).
Notes: The network was inferred using ARAcne at a combined stringent cutoff of an error tolerance ε = 0.10 and a P-value threshold of mutual information 
(Mi) at 5.0 × 10−11. CREBBP had 87 direct interactions (the first neighbors) and 4139 indirect interactions (the second neighbors, not shown). The 
expression of the CREBBP gene, a transcription factor, at the mRNA level was significantly regulated by butyrate. The color cycle with gene symbols 
represented genes significantly regulated by butyrate.
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Figure 3. Relative expression of a butyrate transporter, solute carrier family 5 (iodide transporter), member 8 (SLc5A8).
Notes: The number denotes the relative abundance of the transcript in both the bovine epithelial cell and in the bovine rumen epithelium. cT: control, cells 
treated with PBS; BT: cells treated with 10 mM butyrate for 24 h in vitro. *False discovery rate (FDR) , 0.05; ***FDR , 0.001.
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Table 4. expression levels of key enzymes involved in butyrate metabolism in the rumen epithelium detected by RnA-seq 
technology.

Gene_id Annotation Symbol In vitro 24 h 72 h 168 h Post 24 h Post 168 h
enSBTAG00000002827 Acetyl-coA acetyltransferase 2 AcAT2 0.32*** 0.95 0.76 0.76 1.11 1.24
enSBTAG00000011839 3-hydroxy-3-methylglutaryl- 

coA synthase 1
hMGcS1 0.63*** 0.91 0.67 0.67 1.49 1.69

enSBTAG00000003898 3-hydroxy-3-methylglutaryl- 
coA synthase 2

hMGcS2 1.30* 0.95 0.86 0.94 0.84 0.91

enSBTAG00000015107 Monocarboxylate transporter 1 McT1 0.52*** 0.98 0.84 0.95 0.90 0.84
Notes: The number denotes fold changes (treated/control). *FDR , 0.05; ***FDR , 0.001.

Figure 4. A regulatory gene network controlled by FOS.
Notes: The network was inferred using ARAcne at a combined stringent cutoff of an error tolerance ε = 0.10 and a P-value threshold of mutual information 
(Mi) at 5.0 × 10−11. FOS had 4 direct interactions (the first neighbors) and 32 indirect interactions. The expression of all genes in this network at the mRNA 
level was significantly regulated by butyrate. The green/yellow color with gene symbols represents transcription factors.

by butyrate in both in vitro and in vivo models. As a 
transcription factor, FOS dimerizes with another onco-
gene JUN to form the AP-1 complex, which regulates 
transcription of a diverse range of genes and is implicated 
in many biological processes including cell proliferation 
and differentiation as well as tumor transformation and 
progression. In the current data set, ARACNE inferred 
a network of four direct interactions (1st neighbors) 
for FOS and 32 indirect interactions (Fig. 4). All four 
direct interactions, cingulin (CGN), heparin-binding 
epidermal growth factor-like growth factor (HBEGF), 
intermediate filament family orphan 2 (IFFO2), and jun 
proto-oncogene (JUN), were up-regulated by butyrate 
(at both P , 10−6 and FDR , 10−5). Moreover, of 
24 genes in the 2nd neighbors category, all were also 

regulated by butyrate, including three transcription 
factors, JUN, upstream transcription factor 2, c-fos 
interacting (USF2), and REST corepressor 1 (RCOR1). 
GO analysis identified GO terms significantly enriched 
in this network, including SMAD binding (GO:0046332 
and GO:0070412), SMAD protein signal transduc-
tion (GO:0060395), and transforming growth fac-
tor (TGF)-β receptor signaling (GO:0007179). FOS 
binding at the TGF-β1 promoter proximal AP-1 site is 
required for TGF-β1 production by colon carcinoma 
cells.43 Indeed, previous studies have shown that SMAD 
proteins cooperate with FOS/JUN complex to mediate 
TGF-β-induced transcription.44 Thus, ARACNE cor-
rectly inferred a direct interaction between FOS and 
JUN (Fig. 4) as well as interaction between JOS and 
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HBEGF. HBEGF plays a pivotal role in mediating the 
early cellular response to intestinal injury by serving as 
a potent cytoprotective factor.45 Other experimental evi-
dence also provides a strong support of a direct interac-
tion between FOS and HBEGF.45,46

Tight junctions between epithelial cells regu-
late the permeability of molecules via para-cellular 
pathways as well as bacterial translocation across 
the gut epithelial layer, thus having the potential 
to strengthen  intestinal barrier function and being 
involved in intestinal pathology.47 In addition to 
cingulin that was induced by butyrate, at least 16 
other tight junction related genes were regulated 
by butyrate in vitro. A strong up-regulation of the 
major macromolecular components, such as clau-
dins (CLDN1, CLDN3, CLDN4, CLDN7, CLDN12, 
and CLDN23), tight junction protein 3 (TJP3), and 
junctional adhesion molecules 2 and 3 (JAM2 and 
JAM3), by butyrate supports the contention that 
these genes may play an important role in main-
taining and/or restoring intestinal barrier function. 
Indeed, evidence indicates that probiotics, such as 
 Lactobacillus plantarum MB452, enhance intes-
tinal barrier function via increasing expression of 
genes encoding proteins involved in tight func-
tion  formation.48 It is known that elevated ruminal 
butyrate results in a profound change in the ruminal 
microbial composition, including a potential stimu-
lating effect on butyrate-producing bacteria.12 It is 
foreseeable that an elevated concentration of butyrate 
in the lumen of the gut could play a regulatory role 
in the maintenance of intestinal barrier function via 
the expression of genes involved in tight junctions. 
Our future work will include experimental verifica-
tion of the global regulatory gene networks inferred 
by computational tools.
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