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Abstract
Background  Low-grade gliomas (LGGs) occurring in children can result in many different neurologic complications, includ-
ing seizures. MEK inhibitors are increasingly being used to treat LGG, but their effect on associated neurologic symptoms 
has not been established.
Results  Here, we report a patient with neurofibromatosis type 1 (NF1), medically refractory epilepsy (MRE), and an extensive 
optic pathway glioma (OPG) who developed dose-dependent seizure control while being treated with selumetinib. Seizure 
frequency rebounded after dose reduction for cardiac toxicity, then improved, and finally ceased after restarting full dosing, 
allowing confidence in the cause of improvement.
Conclusion  Selumetinib may have promise in epilepsy management in other children with NF1 or LGG.
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Abbreviations
LGG	� Low-grade glioma
NF1	� Neurofibromatosis type 1
OPG	� Optic pathway glioma
EEG	� Electroencephalogram
MRI	� Magnetic resonance imaging
MRE	� Medically refractory epilepsy
AED	� Anti-epileptic drug
CBD	� Cannabidiol
MEKi	� MEK inhibitor
DEG	� Deep extensive glioma

Introduction

LGGs are common tumors in childhood and can result in 
neurologic complications, including seizures [1, 2]. In the 
following case, we describe a patient who achieved dose-
dependent seizure control while on MEK inhibition for his 

NF1-associated OPG, with re-emergence of seizures after 
dose reduction and subsequent resolution of seizures upon 
return to full dose.

Results

The patient was brought to medical attention at age 3 due to 
spells concerning for possible seizures. Physical examination 
was notable for café-au-lait macules, axillary freckling, and 
left-sided facial weakness. Routine awake EEG revealed focal 
epileptiform discharges and prominent localized slowing in the 
right temporal region. MRI of the brain revealed bilateral OPG 
with extension into the hypothalamus, basal ganglia, and subcor-
tical white matter (Fig. 1A), and mass effect on the right insular 
cortex and abnormal hippocampal signal intensity (Fig. 1B). He 
was diagnosed with NF1 and focal symptomatic epilepsy. He 
was started on oxcarbazepine and referred to Pediatric Neuro-
Oncology, who recommended treatment if he progressed.

He re-established care with Pediatric Neuro-Oncology at 
8 years old, while under consideration for vagal nerve stimu-
lator implantation for MRE. At that time, seizures occurred 
in clusters every 5–6 days, with seizure frequency rang-
ing between 1 and 10 seizures per day for 3–5 days during 
clusters, despite management with clobazam 0.3  mg/kg/
day, levetiracetam 58 mg/kg/day, and CBD oil. A 24-h EEG 
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captured three electroclinical seizures that lateralized to the 
right hemisphere but were poorly localized. Repeat brain 
MRI revealed slow progression of his glioma over the prior 
2 years with a new area of enhancement in his right frontal 
lobe (Fig. 1C, left). Examination was notable for dysarthria, 
left lower facial weakness, left upper extremity weakness, and 

mild circumduction of left lower extremity while walking. 
His mother also reported concerns regarding academic per-
formance despite having an individualized education plan in 
place. Family refused standard of care therapy with carboplatin 
and vincristine, but agreed to MEK inhibitor (MEKi) treat-
ment. The patient was started on 25 mg/m2 selumetinib BID.

Fig. 1   Imaging characteristics 
at initial MRI. A Axial images 
from the patient’s original MRI 
are shown, illustrating the T1 
hypointense (A, left panel) 
and T2 hyperintense (A, right 
panel) expansile lesions outside 
the optic pathway. B Coronal 
imaging of the mesial temporal 
lobe at diagnosis (T1, left panel; 
T2, right panel). C Post-contrast 
axial T1 sequences show 
enhancing nodule in right fron-
tal lobe prior to therapy initia-
tion (C, left panel) that resolved 
with treatment (C, right panel)
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After 12 weeks, the patient’s mother noted significantly 
decreased seizure frequency with improved academic per-
formance. Repeat brain MRI showed stable mass size but 
interval reduction in enhancement of the right frontal lesion 
(Fig. 1C, right), suggestive of treatment response. Unfor-
tunately, he displayed evidence of cardiac toxicity on rou-
tine evaluation at this time (asymptomatic decline in left 
ventricular ejection fraction, 63% to 47%). Selumetinib was 
held, then reinitiated at 50% dosing upon subsequent nor-
malization of echocardiogram findings.

On dose-reduced selumetinib, the patient’s mother 
reported that seizure frequency increased to pre-treatment 
baseline. Given the re-emergence of poorly controlled sei-
zures, the family and treatment team both aimed to resume 
100% dosing. He was started on afterload reduction with 
enalapril for cardioprotection and escalated back to 100% 
selumetinib dosing the following month.

Four weeks after restarting on full dose, the patient’s 
mother again reported a drastic improvement of both sei-
zure frequency and academic performance. Improvements 
in alertness, left-sided weakness, and gait were also noted 
on neurologic examination. Currently, the patient remains 
seizure-free on full-dose selumetinib with stable disease on 
brain MRI. A recent 24-h EEG captured no electrographic 
or clinical seizures.

Discussion

NF1 and epilepsy  In addition to the propensity to develop 
nervous system tumors, patients with NF1 have an increased 
risk of epilepsy, with 4–9.5% of patients developing seizures 
vs 1–2% in the general population [3, 4]. Focal sources — 
most commonly CNS tumors or mesial temporal sclerosis 
[4] — are frequently identified in NF1 patients with unpro-
voked seizures [3, 4], with 75% of patients demonstrating 
lateralizing epileptiform foci on EEG [3].

While children with NF1 are at increased risk of develop-
ing LGGs, these typically arise in the optic pathway [5] or 
brainstem [6], locations usually not associated with seizures. 
In contrast, this particular case may be more illustrative of 
the recently described “deep extensive gliomas” (DEGs) in 
children with NF1, which involve bilateral temporal lobes, 
basal ganglia, and thalami in addition to the optic pathway 
and may have a more severe clinical course [7]. Thirty-three 
percent of reported DEGs were associated with epilepsy [7]. 
It is unclear if standard treatment will improve seizure con-
trol in these cases, although decreased seizure frequency has 
been observed with treatment of some sporadic LGGs [8].

Importantly, not all patients with NF1-associated epilepsy 
have focal findings on imaging or EEG [3, 4], suggesting 

that genetic mutation alone may predispose to the devel-
opment of seizure. In support of this hypothesis, patients 
with other genetic syndromes resulting in increased MAPK 
pathway activation, such as Noonen’s [9], tuberous sclero-
sis (TSC) [10, 11], or SYNGAP1 deficiency [12], have an 
increased incidence of epilepsy [11, 13, 14]. MAPK sign-
aling has also been implicated in epilepsy outside of the 
context of germline mutation — microarray data from hip-
pocampi of temporal lobe epilepsy patients shows differ-
ential regulation of genes within the MAPK pathway [15], 
and increased ERK activation is observed in murine hip-
pocampal tissue at the time of spontaneous seizure [16]. 
In addition, BRAF V600E mutation in early brain develop-
ment (as hypothesized to occur in sporadic pediatric LGG) 
results in both mutant neurons and glia in murine models; 
mutation induces epileptogenic changes in the former [2]. 
Although this patient’s seizures were clearly focal in origin, 
it is possible that MAPK activation due to NF1 germline 
mutation in neuronal cells might contribute to the sever-
ity of his epilepsy and predict response to MEK inhibition. 
Notably, MEK inhibition has resulted in reduced seizure 
activity in mouse models of TSC [11] and in the Krushin-
sky–Molodkina rat [17], a genetic rat model of audiogenic 
seizures in which increased ERK activation is observed in 
glutamatergic neurons [18].

Potential mechanisms of action  While the mechanism by 
which MEK inhibition might decrease epileptogenic activ-
ity has not been established, abnormalities of both gluta-
matergic and GABAergic pathways have been identified in 
MAPK-activated murine models. For example, expression 
of a constitutively active MEK1 (caMEK1) mutant in the 
murine brain results in spontaneous seizures, a phenotype 
dependent on increased eIF4E-mediated translation of the 
NMDA glutamate receptor NR2B subunit downstream of 
activated ERK in neurons [19]. When specifically targeted 
to GABAergic-interneurons, caMEK1 leads to spontaneous 
epileptiform activity accompanied by reduced inhibitory 
synapses on excitatory glutamatergic neurons [20]. Together, 
this suggests that MEKi may decrease aberrant neuronal 
excitability in NF1 by reducing glutamatergic stimulation 
and/or increasing GABAergic signaling.

Biologically targeted agents for treatment for epilepsy  To 
our knowledge, this case is the first to describe the effective 
treatment of epilepsy with a MEKi in a human patient. This 
may be in part because therapeutic trials of MEKi efficacy 
in LGGs have thus far excluded patients with MRE [21, 22]. 
Frequent adjustments of AEDs may also make attribution of 
response difficult. Notably, in this case, a dose-dependent 
response to MEK inhibition was observed without concur-
rent changes in AEDs, allowing us to be more confident in 
the cause of improvement. Importantly, this patient’s tumor 
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was stable in size despite decreased enhancement with treat-
ment, suggesting that objective response by RANO criteria 
[23] is not necessary for improved seizure control.

Conclusion

In this case, our patient appeared to have dose-dependent 
seizure control while receiving MEK inhibition for his 
glioma. This suggests that MEKi may be beneficial in the 
treatment of seizures in other children with brain tumors or 
with genetic disorders affecting the RAS/MAPK pathway. 
Further data from multiple patients with confirmatory EEG 
and neuropsychosocial testing will be needed to confirm 
these findings.
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