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Abstract: Nature has inspired the fabrication of intelligent devices to meet the needs of
the advanced community and better understand the imitation of biology. As a biomimetic
nanodevice, nanochannels/nanopores aroused increasing interest because of their potential
applications in nanofluidic fields. In this review, we have summarized some recent results
mainly focused on the design and fabrication of one-dimensional nanochannels, which can
be made of many materials, including polymers, inorganics, biotic materials, and composite
materials. These nanochannels have some properties similar to biological channels, such
as selectivity, voltage-dependent current fluctuations, ionic rectification current and ionic
gating, etc. Therefore, they show great potential for the fields of biosensing, filtration, and
energy conversions. These advances can not only help people to understand the living
processes in nature, but also inspire scientists to develop novel nanodevices with better
performance for mankind.

Keywords: 1D nanochannels; biomimetic nanodevices; ionic rectification; biotic
materials; nanopore
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1. Introduction

In today’s industrial production and human life, manipulating nanostructure has become increasingly
important because it has great significance for many chemical, electronic, and biological advances [1–5].
In the field of chemistry, the reaction rate of nanostructured catalysts increases by several times
compared to that of conventional catalysts [6–8], due to the improved number of surface active centers
of the nanostructures. In the field of electronics [9–11], new types of solar cells can be prepared
with high photoelectric conversion efficiency using semiconductor nanostructures. In the field of
biology, proteins [12–14], DNA [15–17], and RNA viruses [18,19] are all on the nanoscale. Clearly,
nanostructures play important roles in both materials and life.

Nanochannel materials play a very important role. Compared to other structures, the channel shape
has a large surface area, high porosity, low density, high permeability, and high adsorption properties, etc.
It has been widely used for the separation and adsorption of hazardous gases, separation of materials,
treatment of environmental pollution, and as a catalytic material and carrier; meanwhile, it is equally
important in biological systems. In short, nanochannel materials and nanochannel-based devices have
become a focus of current academic research [20–29].

Nowadays, in order to build smart devices for various applications, artificial nanochannel membranes
fabricated from organic or inorganic materials have been well studied [30–46]. However, the fabricating
of nanochannel materials is still complicated [47–57]. Based on the advantages of nanochannels and
the difficulty of preparing them, we have investigated some general methods for preparing nanochannel
membranes and we suggest four types of materials for the preparation of various artificial nanochannels:
polymers, inorganics, biotic materials, and composite materials.

2. Fabrication of Nanochannels

2.1. Polymers

2.1.1. Ion Track-Etching Method

Origin of latent tracks and fabrication of nanochannels: The shape of the latent ion tracks
can be maintained for a long time, formed by the energetic ions passing through insulating solids
(Figure 1a) [58]. The passing ion transfers its energy to the bound electrons of the solid and releases a
blast of secondary electrons, streaming radially along the ion path. With the distance from the ion path,
the stored effect decreases rapidly [59]. Also, the track etch rate can be increased greatly by stockpiling
the irradiated polymers in air.

The device for preparing the ion track polymer membranes is shown in Figure 1b [60]. During the
etching process, the damaged area of a latent track is removed and converted into a concave channel. The
etching rate, with which the latent track is dissolved, is marked as the track etch rate (νtrack), while the
etching rate of undamaged bulk material is referred to as the bulk etch rate (νbulk). In the etching process,
the track etch rate is obviously higher than the bulk etch rate. Therefore, the geometry of the fabricated
nanochannel mainly relies on the ratio of track to bulk etch rate (νtrack/νbulk), which is further affected by
the following four factors, (a) the etchant concentration; (b) the additives to the etchant; (c) temperature;
and (d) the external applied voltage. Figure 1c schematically shows the correlation of νbulk and νtrack.
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For better visibility, the scaling of the etch cone and the latent track is biased [61]. The etching of bulk
material leads to a reduction of the foil thickness and a widening of the nanochannel perpendicular to
the surface of the “etch-cone.” The removal of the track material with speed νtrack is responsible for the
breakthrough of the membrane. The cone angle θ can be considered as a function of νbulk and νtrack,
where sin θ = νbulk/νtrack. When the track etch rate is high enough, νtrack >> νbulk, the cone angle is
almost zero and results in cylindrical-shaped nanochannels.
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Figure 1. Schematic illustration of a nanochannel fabrication. (a) Origin of ion tracks.
Reprinted with permission from reference [58]. Copyright 2008 American Chemical Society.
(b) Cross-section of the electrolytic cell used for etching of ion track membranes. (c) An
etched ion track. Reprinted with permission from reference [61]. Copyright 2012 the PCCP
Owner Societies.

2.1.2. Fabrication of Nanochannels in Different Polymer Membranes

Polyethylene terephthalate (PET): A 12 µm thick PET film (Hostaphan RN12, Hoechst) is
used where the film samples (circular in shape, diameter 30 mm) were irradiated with individual
single-ions [60]. Before starting the etching process, the irradiated films were further subjected to
ultra violet (UV) irradiation (exposure to each side for 60 min at the wavelength of 365 nm). A
computer-controlled hermetically sealed electrolytic cell was used to etch the ion tracks and monitor
their electrical properties. During the etching process, a selected constant voltage was applied to the cell
while monitoring the electrical current through a picoammeter.

The etching procedure was carried out at room temperature by filling one compartment of the cell
with 9 M NaOH. The other compartment of the cell was filled with 1 M KCl or with a mixture of 2 M
KCl and 2 M HCOOH (1:1 by volume) that served as a neutralizing agent [61]. This leads to a narrow
cone of several degrees opening angle. After reaching a preset value of the electric current, the etching
was interrupted by adding the stopping medium. Inert Pt-electrodes were used during etching.

Polyimide (PI): We used 12.5 µm thick polyimide (PI) films (Kapton 50 HN, DuPont). Unlike the
PET etching process, track etching of the PI foil was performed in sodium hypochlorite (NaClO) at
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50 ˝C [62]. Previous studies on PI film demonstrated that a strongly basic pH value of the etchant and a
high content of active chlorine can guarantee the formation of conical pores with large opening angles.
Thus a NaClO solution of initially high pH value (12.6) with an active chlorine content of 13% was
selected to conduct the etching process. The irradiated PI film is settled between two compartments of
a conductivity cell and etched from one side. The other half of the cell was filled with 1 M potassium
iodide (KI) solution as a stopping medium for the ClO´ ions of the etchant [61]. As soon as the etchant
completely penetrated the film, the iodide ions reduced ClO´ to Cl´ ions:

ClO-
` 2H+

` 2I-
Ñ I2 ` Cl- ` H2O

Through this reaction, the etching process stopped instantly after the breakthrough, allowing the
preparation of highly narrow pores. During etching, a voltage of 1 V was applied across the cell to
monitor the electric current with inert Pt electrodes. This allowed fast determination of the breakthrough
moment, indicating that the etching of the membrane was completed. To obtain nanopores, the etching
was interrupted shortly after the breakthrough moment by washing out the etchant with water and KI.
Longer etching led to a gradual increase of the pore opening, monitored by an increase in the current [63].

Polycarbonate (PC): To obtain a PC membrane with cylindrical pores, an irradiated sample with
tracks was etched by 6 M sodium hydroxide solution (NaOH) at 60 ˝C for 16 min. The samples
were treated in parallel with 6 M NaOH solution containing surfactant. The surfactant was sodium
dodecylbenzene sulfonate (SDBS) (Chameleon, Osaka, Japan) with a concentration of 0.01 wt %. To
study the rate of etching PC membrane, an experiment has been done. A part of the PC film sample
was etched chemically without irradiation by accelerated ions (6 M NaOH, 60 ˝C, 60 or 120 min). This
procedure induced the removal of the surface layer (about 1 or 2 µm thick from both sides), depending
on the treatment time [61,64].

The results obtained from the polymer films (Table 1) are illustrated by the scanning electron
microscopy (SEM) images in Figure 2 [61,65,66].
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Figure 2. Scanning electron microscopy (SEM) images of the wide opening side on the
polymer films. (a) The base side of nanochannels in polyethylene terephthalate (PET)
membrane; the diameter was ~350 nm. Reprinted with permission from reference [61].
Copyright 2012 PCCP Owner Societies. (b) The base side of a nanochannel in track-etch
polyimide (PI) membrane. Reprinted with permission from reference [65]. Copyright 2013
Royal Society of Chemistry. (c) Scanning electron micrographs of the base opening of track
etched polycarbonate (PC) film. Reprinted with permission from reference [66]. Copyright
2006 John Wiley and Sons.
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Table 1. Conditions of etching polymer membrane.

Polymer Etchant Stopping Solution Temperature Reference

PET (Conical shape) 9 M NaOH
1 M KCl or mixture of 2 M KCl and

2 M HCOOH (1:1 by volume)
~23 ˝C [60,61]

PI (Conical shape)
NaClO solution of initially high
pH value (12.6) with an active

chlorine content of 13%
1 M KI 50 ˝C [61–63]

PC (Cylindrical shape) 6 M NaOH (both sides) - 60 ˝C [61,64]

PET: Polyethylene terephthalate. PI: polyimide. PC: Polycarbonate.

Shapes of the nanochannel in polymer membranes: Diverse shaped nanochannels could be
obtained by selectively etching the membrane under different conditions. There are five types of
nanochannels: cylindrical, hourglass, cigar-like, bullet-like, and conical (Figure 3). Take the PET
membranes, for instance; detailed etching conditions are listed below (Table 2).
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Figure 3. Artificial symmetric and asymmetric 1D nanochannels. Reprinted with permission
from reference [67]. Copyright 2012 John Wiley and Sons.

Table 2. Conditions for obtaining nanochannels (PET) in shapes.

Shapes Etchant Stopping Solution Temperature Time Ref.

Cylindrical 2 NaOH (Both sides) - 50 ˝C 4 min [68–70]
Hour-Glass 9 NaOH (Both sides) - ~23 ˝C - [52,71–73]
Cigar-Like 6 M NaOH + 0.025% SDDD a (Both sides) - 60 ˝C 16 min [74–76]
Bullet-Like 6 M NaOH + 0.05% (w/w) Dowfax 2A1 b 6 M NaOH 60 ˝C - [77–79]

Conical 9 M NaOH
1 M KCl + 1 M

HCOOH
~23 ˝C - [60,80,81]

a SDDD = Sodium Dodecyl Diphenyloxide Disulfonate; b Dowfax 2A1 = concentrated (approximately 45%)
aqueous solution of sodium dodecyl diphenyloxide disulfonate (Dow Chemicals).

2.1.3. Block Copolymer Self-Assembly Method Based on Phase Separation Processes

The nanochannel membranes are prepared by controlling the phase separation of block polymer
solutions into two phases, one with a high polymer concentration and the other with a low polymer
concentration. After phase separation, the phase with high polymer concentration solidifies shortly and
forms the membrane. The performance of this membrane strongly depends on the formed morphology
during phase separation and subsequent solidification [82].
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2.1.4. Fabrication of Nanochannels Using Different Block Copolymers

Poly(ethylene oxide)-block-poly(methacrylate) bearing stilbene mesogens in the side chains
(PEO114-b-PMA(Stb)52): Fabrication of the block copolymer membrane based on the phase separation
process [83–87] is shown in Figure 4 [88]. After spin-coating PEO114-b-PMA(Stb)52 (orange;
4 wt % CHCl3 solution, 2000 rpm, 30 s) onto a sacrificial cellulose acetate (CA) layer, we put
the sample into an oven. Under a vacuum, it was annealed at 190 ˝C for 2 h, after which it
finishes the phase separation process. According to the characterized results, even on the CA
layer, PEO114-b-PMA(Stb)52 shows a highly ordered microphase-separated structure with hexagonally
arranged cylinders. Remarkably, it is not necessary to regulate the surface energy to induce the
microphase separation, such as precoating a random copolymer with an identical composition [89].

However, the prepared free-standing membrane is so brittle that, when dissolving the CA layer in
acetone, it might be broken into many tiny fragments. Therefore, a new improvement is required to
prepare more flexible free-standing membranes. As stilbene is a photofunctional moiety that undergoes
two photochemical processes as follows: trans-to-cis photoisomerization followed by oxidative
cyclization to afford a phenanthrene structure; and photodimerization by [2 + 2] photocycloaddition
to form a cyclobutane ring [90]. When limited in organized assemblies, the stilbene moieties go through
the latter predominantly because of the preferable configuration of neighboring stilbene moieties for
the reaction [91].
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Figure 4. (a) Fabrication processes for the free-standing PEO114-b-PMA(Stb)52 membrane;
(b) photograph of the free-standing membrane floating at the air-water interface. Si denotes
a silicon wafer substrate. The scale bar represents 2 cm. (c) Illustration of the free-standing
block copolymer membrane with the hexagonally arranged and perpendicularly aligned
polyethylene oxide (PEO) transport channels. (d) Atomic force microscopy (AFM) phase
image and its fast Fourier transform (FFT) pattern of the PEO114-b-PMA(Stb)52 film on a
bare silicon wafer substrate. Reprinted with permission from reference [88]. Copyright
2011 John Wiley and Sons.
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poly(styrene-block-4-vinylpyridine) (PS-P4VP): As a fundamental method for obtaining block
copolymer films, dip-coating is an important industrial technique [92–95] that is based on the phase
separation process [96–100]. A method of preparing poly(styrene-b-4-vinylpyridine) films with
dip-coating has been reported [101].

To prepare the dip-coating solution, dissolve 25 mg of PS-P4VP in 5 mL of tetrahydrofuran (THF),
so the concentration of the dip-coating solutions is 5 mg/ml. It is noteworthy that a required amount
of small molecule (SM) for the desired SM/VP molar ratio needs to be added into the solution, too.
The solution was stirred in closed vials on a heating plate at ca. 40 ˝C for several hours, followed
by letting it stand until it cooled down to ambient temperature. Then it was filtered through 0.45 and
0.2 µm polytetrafluoroethylene (PTFE) filters. The whole dip-coating process should be implemented
at a temperature of 21 ˝C, and no significant differences were found under different ambient humidity
conditions. Silicon substrates were immersed vertically in the solution at a rate of 5 mm/min, paused
for 30 s, and then seceded vertically from the solution at a controlled rate using a KSV 3000 Langmuir
film balance. Finally, the films were dried in covered containers. The atomic force microscopy (AFM)
topographic images of the PS–P4VP diblock copolymer films are shown in Figure 5.
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Figure 5. AFM images (2 ˆ 2 µm2, z = 10 nm) of poly(styrene-block-4-vinylpyridine)
(PS-P4VP) diblock copolymer films dip-coated at the rates indicated from tetrahydrofuran
(THF) solutions containing SM = NOH or NCOOH at equimolar SM/VP ratios. Reprinted
with permission from reference [101]. Copyright 2012 American Chemical Society.

2.2. Inorganics

2.2.1. Particle Beam Sputtering Method

Ion-beam sputtering method (Si3N4): A way of fabricating devices at the micro/nano scale is
reported by using low energy ion beams. Stein et al. [102] first reported a novel way for fabricating
Si3N4 single nanopore by utilizing ion beam sculpting. This work plays a fundamental guiding role
in the preparation of a solid molecular-scale hole or nanopore. Nanopores or nanochannels exist in
living systems, where they serve as electric signal responsive components that regulate electric potential,
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ion flow, and molecular transport across cellular membranes. These nano-scale pores provide a great
platform for localizing molecular-scale electrical junctions and switches. Furthermore, they could serve
as a mask to prepare other tiny devices.

As shown in Figure 6, sputtering is a procedure in which massive ions with energies of several
thousand electron-volts strike the sample surface and drive the sample atom to leave, resulting in
atomic-scale erosion. A cavity containing flat Si3N4 surface endured Ar+ beam irradiating, forming
a nanopore when the bottom of the bowl-shaped cavity was finally intercepted (Figure 6a, bottom).
The details are as follows: A bowl-shaped cavity was produced at a Si3N4 membrane surface, which
was held by a silicon frame (Figure 6b). Then a 3 keV Ar+ ion beam was applied at the back of
the Si3N4 membrane until a nanometer-sized pore formed. Thus the transmembrane ionic current was
proportional to the nanopore sizes, and the sculpting procedure can be monitored by applied current. The
minimal size of as-prepared nanopore is evaluated as 2 nm. At room temperature, however, unexpected
results occurred when the sculpture was applied. The pore remains closed even after lengthy ion beam
irradiation. According to the transmission electron microscopy (TEM) images (Figure 6c,d), as the
membrane thickness grew, the diameter of the hole reduced from 60 nm to 1.8 nm after the ion beam
irradiation. Ziegler and Biersack [103] suggested that the ion beam energy could be deposited within
5 nm depth beneath the sample surface. Moreover, the modification of the Si3N4 nanopore would largely
extend the application of the solid state nanochannel, such as regulating the transport of DNA by coating
self-assembled monolayer (SAM) functional compounds [104].

Materials 2015, 8 8 

 

 

flow, and molecular transport across cellular membranes. These nano-scale pores provide a great 

platform for localizing molecular-scale electrical junctions and switches. Furthermore, they could 

serve as a mask to prepare other tiny devices. 

As shown in Figure 6, sputtering is a procedure in which massive ions with energies of several 

thousand electron-volts strike the sample surface and drive the sample atom to leave, resulting in 

atomic-scale erosion. A cavity containing flat Si3N4 surface endured Ar+ beam irradiating, forming a 

nanopore when the bottom of the bowl-shaped cavity was finally intercepted (Figure 6a, bottom). The 

details are as follows: A bowl-shaped cavity was produced at a Si3N4 membrane surface, which was 

held by a silicon frame (Figure 6b). Then a 3 keV Ar+ ion beam was applied at the back of the Si3N4 

membrane until a nanometer-sized pore formed. Thus the transmembrane ionic current was 

proportional to the nanopore sizes, and the sculpting procedure can be monitored by applied current. 

The minimal size of as-prepared nanopore is evaluated as 2 nm. At room temperature, however, 

unexpected results occurred when the sculpture was applied. The pore remains closed even after 

lengthy ion beam irradiation. According to the transmission electron microscopy (TEM) images 

(Figure 6c,d), as the membrane thickness grew, the diameter of the hole reduced from 60 nm to 1.8 nm 

after the ion beam irradiation. Ziegler and Biersack [103] suggested that the ion beam energy could be 

deposited within 5 nm depth beneath the sample surface. Moreover, the modification of the Si3N4 

nanopore would largely extend the application of the solid state nanochannel, such as regulating the 

transport of DNA by coating self-assembled monolayer (SAM) functional compounds [104]. 

 

Figure 6. Strategy for making nanopores using argon ion-beam sputtering, and 

transmission electron microscopy (TEM) images of the nanopore in 500-nm Si3N4 

membranes. (a) Sputtering removes material from a free-standing Si3N4 membrane with a 

cavity. (b) Feedback-controlled ion-beam sculpting apparatus housed in a high-vacuum 

chamber. (c) Initial 61 nm diameter pore made by focused ion beam (FIB). (d) The same 

sample after Ar+ ion-beam exposure. Reprinted with permission from reference [102]. 

Copyright 2001 Nature Publishing Group. 

Figure 6. Strategy for making nanopores using argon ion-beam sputtering, and transmission
electron microscopy (TEM) images of the nanopore in 500-nm Si3N4 membranes.
(a) Sputtering removes material from a free-standing Si3N4 membrane with a cavity.
(b) Feedback-controlled ion-beam sculpting apparatus housed in a high-vacuum chamber.
(c) Initial 61 nm diameter pore made by focused ion beam (FIB). (d) The same sample after
Ar+ ion-beam exposure. Reprinted with permission from reference [102]. Copyright 2001
Nature Publishing Group.
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Electron beam etching method (Si/SiO2): In 2003, Storm and Dekker et al. [105] reported the
fabrication of solid-state nanopores with single-nanometer precision using electron-beam lithography
and reactive-ion etching. The fabrication of 20 to 200 nm pores in silicon oxide was built on Gribov’s
earlier work [106]. Micromachining techniques were used to fabricate 70ˆ 70 µm2 free-standing silicon
membranes in silicon-on-insulator (SOI) wafers with a top single-crystal silicon layer of 340 nm with
crystal orientation <100>. The membranes were thermally oxidized on both sides with a SiO2 layer of
40 nm thickness. The squares with dimensions up to 500 nm in the SiO2 mask layer at the top were
opened using electron-beam lithography and reactive-ion etching. Then, pyramid-shaped holes were
etched using anisotropic KOH wet etching to strip the 40 nm oxide in buffered hydrogen fluoride and
open up the pore in the silicon membrane (Figure 7a).The last processing step is a thermal oxidation
to form a SiO2 surface layer with a thickness of 40 nm. Figure 7b shows a top-view scanning electron
micrograph (from a Philips/FEI XL30S SEM) of the pore after the fabrication process. Each device used
in the experiments reported here contains a silicon membrane with up to 400 pyramid-shaped holes with
various dimensions from closed pores to pores of about 200 nm [107–110].
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Figure 7. Fabrication of silicon oxide nanometer-sized pores. (a) Cross-section of the
device. It consists of a 340 nm thick free-standing single-crystalline silicon membrane,
supported by a 52 µm thick wafer etched by KOH. The membrane contains one or more
submicrometer, pyramid-shaped pores, anisotropically etched with KOH from the top.
(b) Top-view scanning electron micrograph of a nanofabricated pore after thermal oxidation.
The pore is about 20 ˆ 20 nm2 and is surrounded by an SiO2 layer of about 40 nm
thickness. (c) Cross-section of the pore inside the electron microscope; (d–g) sequence
of micrographs obtained during imaging of a silicon oxide pore in a TEM microscope. The
electron irradiation causes the pore to shrink gradually to a size of about 3 nm. Reprinted
with permission from reference [105]. Copyright 2003 Nature Publishing Group.
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Furthermore, Dekker et al. [105] have reported a new technique to fine-tune the size of pores
with nanometer precision. They only used a commercial transmission electron microscope (Philips
CM-30UT), operated at an accelerating voltage of 300 kV in this experiment. Figure 7c shows a
cross-section of a nanofabricated pore in the microscope. They found that an electron beam of intensity
around 105 to 107 Am´2 caused pores to shrink if the initial diameter of the pore was about 50 nm or
lower. Figure 7d–g shows the sequence of micrographs obtained during imaging of a silicon oxide pore
in a TEM microscope. Remarkably, pores with initial dimensions of about 80 nm or higher had different
dynamics. These pores expanded in size instead of the shrinking dynamics observed for small pores. The
imaging mechanism of the microscope can be used to monitor the changes in pore diameter in real time.

Electron beam nanosculpting method (Graphene): As shown in Figure 8a, the Si-SiNx with
synthesized graphene was initially coated with methyl-methacrylate/methacrylic acid (MMA-MAA)
copolymer and then cut into 0.5 mm ˆ 0.5 mm square pieces [111]. (The fabrication process of a
graphene membrane can be found in [112,113].) To fabricate the single nanometer-sized pore through
the graphene membrane, a focused electron beam in a JEOL 2010 FEG TEM operated at 200 kV
accelerating voltage was used. After drilling the nanopore, the graphene nanopore chips were kept
under a clean vacuum of ~10´5 torr for further usage [114–118]. The diameter of the pore, observed
from TEM images, is 8 nm, as shown in Figure 8b,c. In addition, graphene-like two dimensional (2D)
materials such as BN and MoS2 were employed as the substrates for the nanopore fabrication [119–121].

Materials 2015, 8 10 

 

 

Furthermore, Dekker et al. [105] have reported a new technique to fine-tune the size of pores with 

nanometer precision. They only used a commercial transmission electron microscope (Philips CM-30UT), 

operated at an accelerating voltage of 300 kV in this experiment. Figure 7c shows a cross-section of a 

nanofabricated pore in the microscope. They found that an electron beam of intensity around 105 to  

107 Am−2 caused pores to shrink if the initial diameter of the pore was about 50 nm or lower. Figure 7d–g 

shows the sequence of micrographs obtained during imaging of a silicon oxide pore in a TEM 

microscope. Remarkably, pores with initial dimensions of about 80 nm or higher had different dynamics. 

These pores expanded in size instead of the shrinking dynamics observed for small pores. The imaging 

mechanism of the microscope can be used to monitor the changes in pore diameter in real time. 

Electron beam nanosculpting method (Graphene): As shown in Figure 8a, the Si-SiNx with 

synthesized graphene was initially coated with methyl-methacrylate/methacrylic acid (MMA-MAA) 

copolymer and then cut into 0.5 mm × 0.5 mm square pieces [111]. (The fabrication process of a 

graphene membrane can be found in [112,113].) To fabricate the single nanometer-sized pore through 

the graphene membrane, a focused electron beam in a JEOL 2010 FEG TEM operated at 200 kV 

accelerating voltage was used. After drilling the nanopore, the graphene nanopore chips were kept 

under a clean vacuum of ~10−5 torr for further usage [114–118]. The diameter of the pore, observed 

from TEM images, is 8 nm, as shown in Figure 8b,c. In addition, graphene-like two dimensional (2D) 

materials such as BN and MoS2 were employed as the substrates for the nanopore fabrication [119–121]. 

 

Figure 8. Diagram of the experiments and TEM images. (a) A graphene membrane was 

mounted over a 200 × 200 nm2 aperture in SiNx suspended across a Si frame. Bottom: (b) a 

mounted graphene membrane; (c) the 8-nm pore. Reprinted with permission from 

reference [111]. Copyright 2010 Nature Publishing Group. 

2.2.2. Focused Ion Beam Direct Writing Method (Si3N4) 

Similar single nanometer channels, and even channel arrays, can be prepared by using focused ion 

beam direct writing [122]. However, the diameter of the hole is slightly bigger than that of the method 

described earlier, and this diameter is from 150 nm to 400 nm. Lanyon et al. created a Si3N4 insulating 

layer deposit on the platinum electrode surface. Then they used the focus of 30 keV Ga ion beam to 

etch and obtained a single channel or nanopore array (Figure 9) [123]. As shown, a focused ion beam 

(FIB) system (FEI Vectra 200DE, 30 keV Ga ions, 10 nm nominal spot diameter, 10 pA beam current) 

Figure 8. Diagram of the experiments and TEM images. (a) A graphene membrane was
mounted over a 200 ˆ 200 nm2 aperture in SiNx suspended across a Si frame. Bottom:
(b) a mounted graphene membrane; (c) the 8-nm pore. Reprinted with permission from
reference [111]. Copyright 2010 Nature Publishing Group.

2.2.2. Focused Ion Beam Direct Writing Method (Si3N4)

Similar single nanometer channels, and even channel arrays, can be prepared by using focused
ion beam direct writing [122]. However, the diameter of the hole is slightly bigger than that of the
method described earlier, and this diameter is from 150 nm to 400 nm. Lanyon et al. created a Si3N4

insulating layer deposit on the platinum electrode surface. Then they used the focus of 30 keV Ga ion
beam to etch and obtained a single channel or nanopore array (Figure 9) [123]. As shown, a focused
ion beam (FIB) system (FEI Vectra 200DE, 30 keV Ga ions, 10 nm nominal spot diameter, 10 pA
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beam current) was employed for direct-writing nanoscale milling of the silicon nitride passivation layer.
By using sequential milling, single nanopore and nanopore arrays with controlled pore diameters and
pore-pore spacing were fabricated. The applications of this method had been reported in DNA analysis
fields. [124,125]. Nanopore electrodes (array) and their structure characteristics were obtained by using
field-emission SEM (6700 f SEM, Jeol Co., LTD.), which operated at a beam voltage between 3 and
10 kV (Figure 10) [123]. Also, the use of nanohole array could largely improve the response time in
flow-through plasmonic sensing [126].
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Figure 9. Schematic of the fabrication. Pt surface covered with silicon nitride is milled
by a focused ion beam to open up nanopores through the underlying Pt. PCB: printed
circuit board. Reprinted with permission from reference [123]. Copyright 2007 American
Chemical Society.
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Figure 10. SEM images of nanopore electrode arrays and single nanopore electrodes:
(a) 5 ˆ 5 array; (b) 3 ˆ 3 array; (c) single nanopore and (d) 10˝ tilted image of single
nanopore shown in (c). Reprinted with permission from reference [123]. Copyright 2007
American Chemical Society.

2.2.3. Anodic Oxidation Method

Masuda’s two-step anodization process method (Al2O3): The procedure to prepare a porous
alumina membrane is schematically shown in Figure 11 [127]. In the first step, a clean aluminum
sheet undergoes an anodic oxidization to form an alumina membrane (A) [128]. Then the preformed
membrane is removed completely with a phosphoric acid solution to form a concave substrate with
textured pattern (B) for the second anodic oxidation process. After another anodic oxidation, a
well-ordered porous anodic alumina (PAA) membrane (C) with ordered pores is formed. This final
film is then separated from the barrier layer by a voltage pulse of about 5 V for a short time to form a
freestanding PAA membrane (D) and an alumina barrier layer covered with aluminum substrate (E). The
SEM images of the anodic alumina layer are shown in Figure 12. The thickness of PAA membranes can
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be adjusted by the anodization time. For example, PAA membranes with nanochannel diameter of about
40 nm and 20 nm could be prepared by anodic oxidation of pure aluminum sheets in a 0.3 M oxalic acid
electrolyte at a constant voltage of 50 V at 20 ˝C, and in a 0.2 M sulfuric acid at a constant voltage of
20 V at 10 ˝C, respectively [129].
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Figure 12. SEM images of the anodic alumina layer: (A) Top surface; (B) bottom surface. 

(C) AFM image of the top view of the barrier layer on the Al base. Reprinted with 

permission from reference [127]. Copyright 2004 American Chemical Society. 

Branched alumina nanochannel: Besides the penetrated cylinder PAA, the branched PAA can 

also be fabricated [130,131]. The number of branches in the final opening end could be controlled by 

tuning anode voltages [132,133]. Firstly, aluminum foils were anodized under a voltage of 50 V for 4 h. 

Then the resulting porous-oxide layer was removed with a 0.5 M phosphoric acid/0.2 M chromic acid 

mixture at 60 °C for 15 min. Next, different anodizing voltages could be used to control the number of 

branched nanochannels. The pore diameter is proportional to the anodizing voltage. Reducing the 

voltage by a factor of n (where n represents the number of the branches split from the primary stem) 

Figure 11. Schematic representation of the fabrication procedure for the formation of
ordered and through-hole porous alumina membrane. (A) Formation of the porous alumina
layer after the first anodic oxidation process; (B) removal of the porous alumina layer;
(C) formation of the ordered porous alumina layer after the second anodic oxidation process;
(D) free-standing porous anodic alumina (PAA); (E) the barrier layer structure on aluminum
base after electrical detachment of the PAA. Reprinted with permission from reference [127].
Copyright 2004 American Chemical Society.
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Figure 12. SEM images of the anodic alumina layer: (A) Top surface; (B) bottom surface.
(C) AFM image of the top view of the barrier layer on the Al base. Reprinted with permission
from reference [127]. Copyright 2004 American Chemical Society.

Branched alumina nanochannel: Besides the penetrated cylinder PAA, the branched PAA can also
be fabricated [130,131]. The number of branches in the final opening end could be controlled by tuning
anode voltages [132,133]. Firstly, aluminum foils were anodized under a voltage of 50 V for 4 h. Then
the resulting porous-oxide layer was removed with a 0.5 M phosphoric acid/0.2 M chromic acid mixture
at 60 ˝C for 15 min. Next, different anodizing voltages could be used to control the number of branched
nanochannels. The pore diameter is proportional to the anodizing voltage. Reducing the voltage by
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a factor of n (where n represents the number of the branches split from the primary stem) results in
n times as many pores forming in the original total area of the oxide layer. In Figure 13, the anodized
voltage was gradually reduced to 35, 28, and 25 V and the final channel segments formed bi-, tri-, or
tetra-branched alumina nanochannels, respectively. The thickness of each nanochannel membrane was
controlled by the anodization time independently. To fabricate the tetra-branched alumina nanochannel,
a sulfuric acid electrolyte solution was used. Finally, the residual aluminum substrate was removed with
saturated copper dichloride solution. The fabricated alumina nanochannels with different geometrical
structures were characterized with a field-emission SEM (Figure 13, bottom).
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Figure 13. Equivalent circuit components, schematic diagrams, and SEM images of the
final opening end of the prepared nanochannels; the scale bar is 100 nm. (a) alumina single
nanochannel; (b) bi-branched alumina nanochannel; (c) tri-branched alumina nanochannel;
and (d) tetra-branched alumina nanochannel. With an increasing number of branches, the
pore diameters at the branch opening end decreased. Reprinted with permission from
reference [132]. Copyright 2013 American Chemical Society.

Electrochemical anodization method to fabricate TiO2 nanochannel membrane: The commonly
used method is a three-step electrochemical anodization in ethylene glycol electrolyte-containing
fluoride, from which people can prepare the self-standing asymmetric TiO2 nanotubes (Figure 14a) [134].
Here the Ti foil (Aldrich, purity = 99.7%) was used as a working electrode, while a Pt foil functioned
as a counter electrode. All reactions were conducted in a water bath at room temperature. In the
pretreatment for removing surface contaminations, the Ti foil was washed with ethanol, acetone, and
distilled water in sequence by ultra-sonication. The clean Ti foil was anodized at 60 V for 1 h in an
electrolyte consisting of 0.25 wt % ammonium fluoride, 2 vol % Milli-Q water, and ethylene glycol.
The processed Ti foil was anodized at 60 V for 6 h to grow a TiO2 nanotubular layer. To prevent the
TiO2 nanotubular layer from experiencing severe corrosion in the third-step (anodization), the layer was
rinsed with isopropyl alcohol and dried. Then it was annealed at 200 ˝C for 3h in ambient conditions.
Finally, the amorphous nanotubular layer was peeled off from the substrate with an electrolyte consisting
of 0.5 wt % ammonium fluoride, 0.5 vol % Milli-Q water, and ethylene glycol at 120 V. In the meantime,
it is to be crystallized to anatase phase under annealing at 450 ˝C for 3 h in ambient conditions with a
heating rate of 1 ˝C¨min´1 [135–137]. The images of the TiO2 membrane are shown in Figure 14b–f.
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2.2.4. Dielectric Breakdown Method 

Very recently, the dielectric breakdown method was developed for nanopore fabrication with  

sub-nanometer precision and controllable nanopore diameter. Yanagi and coworkers [138] demonstrated 

the sub-1 to 3 nm nanopore in 10 nm thick Si3N4 membranes by using the multilevel pulse-voltage 

injection (MPVI) technique. The dielectric breakdown is caused by the strong electric field produced by 

two conventional Ag/AgCl electrodes with pulsed voltage (Figure 15). Briggs et al. [139] demonstrated 

that a 2.0-nm and a 2.1-nm diameter nanopore fabricated by the dielectric breakdown method were capable 

of distinguishing single-stranded DNA versus double-stranded DNA, and that a 2.4-nm diameter 

nanopore could be used to investigate the overstretching transition in short dsDNA fragments. 

Moreover, the dielectric breakdown method was successfully applied in fabricating nanopores on graphene 

membranes [140], which showed its great potential in nanopore creation on different substrates. 

 

Figure 15. (a) Setup for multilevel pulse-voltage injection (MPVI). Cis and trans 

electrodes are immersed in both chambers and are connected to a voltage-pulse generator 

and an ammeter. (b) Pulse chart of MPVI, which uses three different voltages (VP1, VP2, 

and VR). VP1 is used to create a nanopore; VP2 is used to widen the nanopore to an intended 

size; and VR is used to measure the current between the electrodes. Reprinted with 

permission from reference [138]. Copyright 2014 Nature Publishing Group. 

Figure 14. Fabrication of a TiO2 nanochannel membrane. (a) Schematic flow chart of
the fabrication of artificial TiO2 nanotubular channels; (b) photograph of asymmetric TiO2

nanotubes fabricated under a voltage of 120 V. (c–f) The corresponding SEM images of
(c) base side, (d) tip side, (e) cross section; (f) TEM image of TiO2 nanotubes. Reprinted
with permission from reference [134]. Copyright 2013 American Chemical Society.

2.2.4. Dielectric Breakdown Method

Very recently, the dielectric breakdown method was developed for nanopore fabrication with
sub-nanometer precision and controllable nanopore diameter. Yanagi and coworkers [138] demonstrated
the sub-1 to 3 nm nanopore in 10 nm thick Si3N4 membranes by using the multilevel pulse-voltage
injection (MPVI) technique. The dielectric breakdown is caused by the strong electric field produced by
two conventional Ag/AgCl electrodes with pulsed voltage (Figure 15). Briggs et al. [139] demonstrated
that a 2.0-nm and a 2.1-nm diameter nanopore fabricated by the dielectric breakdown method were
capable of distinguishing single-stranded DNA versus double-stranded DNA, and that a 2.4-nm diameter
nanopore could be used to investigate the overstretching transition in short dsDNA fragments. Moreover,
the dielectric breakdown method was successfully applied in fabricating nanopores on graphene
membranes [140], which showed its great potential in nanopore creation on different substrates.
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Figure 15. (a) Setup for multilevel pulse-voltage injection (MPVI). Cis and trans electrodes
are immersed in both chambers and are connected to a voltage-pulse generator and an
ammeter. (b) Pulse chart of MPVI, which uses three different voltages (VP1, VP2, and VR).
VP1 is used to create a nanopore; VP2 is used to widen the nanopore to an intended size; and
VR is used to measure the current between the electrodes. Reprinted with permission from
reference [138]. Copyright 2014 Nature Publishing Group.
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2.2.5. Electrochemical Etching Method (Glass)

With the development of the solid-state electrochemical etching method, White and coworkers
prepared a single nanopore electrode for the first time using platinum wire and a glass capillary [141].
The specific means were schematically presented in Figure 16: Firstly, sealing the pre-electrochemical
etched platinum wire (Figure 17) to the glass capillary tube; and then polishing the bottom of the glass
capillary until the diameter of the exposed platinum wire was in the range of 15–100 nm. After that,
put the electrodes into the CaCl2 solution and etched platinum electrodes with an ac voltage of 5 V
for a certain time. The diameter of the conical nanopore depends on the diameter of the unetched
platinum [142,143].
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As shown in Figure 18, a mica membrane with a nanopore was fabricated with a freshly cleaved 

bulk muscovite mica sheet [144]. Few-layer mica was prepared by repeatedly peeling off small flakes 

with other fresh pieces of tape at least four times. Next, the peeled flakes were transferred onto the top 
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processing. After transfer onto the Si/SiO2 substrate, the few-layer mica flakes were characterized with 

optical microscopy, followed by AFM measurements to determine the actual thickness. Silicon wafers 
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Figure 16. Fabrication of a nanopore electrode. Reprinted with permission from
reference [141]. Copyright 2004 American Chemical Society.
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Figure 17. SEM images of a sharpened Pt wire (a,b). Optical microscopy images of an
etched Pt tip before (c) and after (d) sealing it into glass. Reprinted with permission from
reference [141]. Copyright 2004 American Chemical Society.

2.2.6. Mechanical Loading Method (Mica)

As shown in Figure 18, a mica membrane with a nanopore was fabricated with a freshly cleaved bulk
muscovite mica sheet [144]. Few-layer mica was prepared by repeatedly peeling off small flakes with
other fresh pieces of tape at least four times. Next, the peeled flakes were transferred onto the top of
either a solid silicon substrate (route 1) or a silicon window (route 2) for further characterization and
processing. After transfer onto the Si/SiO2 substrate, the few-layer mica flakes were characterized with
optical microscopy, followed by AFM measurements to determine the actual thickness. Silicon wafers
with a capping oxidized layer 0 nm, 250 nm, 300 nm or 500 nm thick were used as substrates for optical
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characterization. In optical characterization, the red green blue (RGB) values of five neighboring pixels
were averaged. The mechanical load for AFM imaging was about 80 nN. Nanopores could be fabricated
in both solid and suspended few-layer mica membranes by AFM processing with a certain mechanical
load. The load on the AFM tip was 3863 nN. The obtained nanopores were geometrically asymmetric,
like an inverted quadrangular frustum pyramid [145]. The optical and AFM images of the fabricated
nanopore are shown in Figure 19.

In brief, diverse nanochannels were obtained in inorganic materials by utilizing particular
nanofabrication technologies. The detailed methods and comments on the fabrication of nanochannels
in inorganic membranes are listed in Table 3.

Table 3. Comments on various typical fabrication methods for nanochannels in inorganics.

Method Materials Comments Ref.

Ion-beam
sputtering method Si3N4

The method could be useful for fabricating a variety of
nanoscale semiconductor devices, as similar sculpting
phenomena have been observed for geometries such as thin
slits, trenches, and crosses, in several materials like SiO2,
Si, and Al.

[74,75]

Electron beam
etched method Si/SiO2

Using the SOI-based process, it is straightforward to obtain
this requirement with electron-beam lithography, and
should be attainable even with optical lithography alone.

[43,46]

Electron beam
nanosculpting method Graphene

Nanometer-scale pores in the graphene were
electron-beam-drilled in a 200-keV JEOL 2010
transmission electron microscope. The atomic thinness,
stability, and electrical sensitivity of graphene motivate
scientists to investigate the potential use of
graphene membranes.

[51]

Focused ion beam
direct writing method Si3N4

FIB milling has great practical relevance for the fabrication
of prototypes and their subsequent experimental evaluation
prior to using more prolonged approaches to fabricate the
engineered devices. The milling method creates a truncated
cone-shaped pore, rather than a cylinder. Thus a model for
diffusion-controlled current at a disk electrode at the base
of such a truncated cone was developed.

[59]

Masuda’s
two step anodization

process method
Al2O3

A two-step oxidation process is enough for preparation of
well-ordered pores. The present pore-opening process
using short electrical oxidation for detaching the porous
anodic alumina (PAA) film was used to improve the
fabrication of anodic alumina with an array of nanopores.

[64]

Electrochemical
anodization method TiO2

Compared with previous artificial nanochannels, the new
type of artificial nanochannel is more facile to fabricate and
behaves as a diode that rectifies the ion transport, which
also shows some other potential applications such as sensor
and separation materials.

[67]

Electrochemical
etched method Glass

Electrodes with pore orifice radii less than 100 nm are
relatively straightforward to fabricate using equipment and
materials commonly found in the laboratory. This will be
the topic of a forthcoming publication.

[71]

Mechanical
loading method Mica

The fabricated nanopores are geometrically asymmetric,
which is like an inverted quadrangular frustum pyramid.
The nanopore geometry can be engineered by finely tuning
the mechanical load on the AFM tip and the scanning area.
It may find potential usage as functional components in
nanofluidic devices.

[52]
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Figure 19. Images of the fabricated nanopore. (a) AFM image of an asymmetric ultra-thin 

nanopore processed with 250 nm × 250 nm scanning area on a 9.50 nm mica layer. The 

geometrically asymmetric height image shows the profile of the nanopore; (b) the same 

area viewed by optical microscopy. Reprinted with permission from reference [144]. 

Copyright 2012 Springer. 

2.3. Biotic Materials 

Manual Assembly Method 

α-hemolysin: α-hemolysin is a monomeric, 33 kD, 293 residue protein that is secreted by the 

human pathogen Staphylococcus aureus. These monomers can self-assemble into a heptamer on 

synthetic lipid bilayers and form a 1.5 nm diameter aqueous channel across the membrane [146]. As 

shown in Figure 20, such single α-hemolysin channels could be introduced into lipid bilayer in the 

presented device with two chambers named cis and trans. The success of assembling could be 

monitored by measuring the transmembrane current. As soon as the current appeared, the chamber was 

flushed so that no further pores could insert [147]. If single-stranded DNA were to be introduced into 

the cis side of the bilayer, the ionic current would be blocked. Using this apparatus, we could further 

obtain the sequence of DNA molecules by measuring the transporting ionic current. Moreover, the 

bacteriophage phi29 DNA-packaging motor assembled into lipid bilayers performed similar functions as 

α-Hemolysin. The assembled platform showed potential application in microelectromechanical sensing, 

microreactors, gene delivery, drug loading, and DNA sequencing [148,149]. In the meantime, an  

α-Hemolysin analogue employing ultrashort single-walled carbon nanotubes (SWCNTs) was 

fabricated for the application in DNA sequencing [150]. 

Figure 18. Schematic illustration of few-layer mica cleavage and conical nanopore
fabrication. (i–iii) A freshly cleaved bulk muscovite mica sheet is attached to a sticky
tape. Few-layer mica is prepared by repeatedly peeling off small flakes with other fresh
pieces of tape.The peeled flakes can be transferred onto the top of either a solid silicon
substrate (route 1) or a silicon window (route 2) for further characterization and processing.
Nanopores can be fabricated in both solid (iv) and (v), and suspended (vi) and (vii) few-layer
mica membranes by AFM processing with a certain mechanical load. Reprinted with
permission from reference [144]. Copyright 2012 Springer.
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Figure 19. Images of the fabricated nanopore. (a) AFM image of an asymmetric ultra-thin
nanopore processed with 250 nm ˆ 250 nm scanning area on a 9.50 nm mica layer. The
geometrically asymmetric height image shows the profile of the nanopore; (b) the same area
viewed by optical microscopy. Reprinted with permission from reference [144]. Copyright
2012 Springer.

2.3. Biotic Materials

Manual Assembly Method

α-hemolysin: α-hemolysin is a monomeric, 33 kD, 293 residue protein that is secreted by the human
pathogen Staphylococcus aureus. These monomers can self-assemble into a heptamer on synthetic
lipid bilayers and form a 1.5 nm diameter aqueous channel across the membrane [146]. As shown in
Figure 20, such single α-hemolysin channels could be introduced into lipid bilayer in the presented
device with two chambers named cis and trans. The success of assembling could be monitored by
measuring the transmembrane current. As soon as the current appeared, the chamber was flushed so
that no further pores could insert [147]. If single-stranded DNA were to be introduced into the cis side
of the bilayer, the ionic current would be blocked. Using this apparatus, we could further obtain the
sequence of DNA molecules by measuring the transporting ionic current. Moreover, the bacteriophage
phi29 DNA-packaging motor assembled into lipid bilayers performed similar functions as α-Hemolysin.
The assembled platform showed potential application in microelectromechanical sensing, microreactors,
gene delivery, drug loading, and DNA sequencing [148,149]. In the meantime, an α-Hemolysin analogue
employing ultrashort single-walled carbon nanotubes (SWCNTs) was fabricated for the application in
DNA sequencing [150].
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Figure 20. (A) Nanopore support device, in which a U-tube supports a lipid bilayer 

membrane bathed in 1.0 M KCl; (B) The hemolysin nanopore is shown in cross section, 

based on the X-ray data of Song et al. [146]. An ionic current of KCl is driven by the 

applied voltage through the open pore on the left. Under these conditions, ionic polymers 

such as nucleic acids are captured by the standing electrical field and driven through the pore. 

A synthetic poly(dC) DNA strand traversing the pore is shown on the right; (C) When a 

single-stranded nucleic acid molecule traverses the pore, a transient blockade of ionic 

current results, during which the ionic current is reduced from 120 to 15 pA. Reprinted 

with permission from reference [147]. Copyright 2002 American Chemical Society. 

Bacteriorhodopsin: The purple membrane (PM) that contains bacteriorhodopsin is a biomaterial 

with great promise, and shows potential applications in many fields including optical and 

optoelectronic devices. For example, the cationic poly (dimethyldiallylammonium chloride) (PDAC) 

and PM fragments can be assembled by spontaneous alternating adsorption. Such an ultrathin 

composite membrane assembles schematically, as shown in Figure 21 [151]. Firstly, put a negatively 

charged solid support into the solution of PDAC for 5 min, and thus it can adsorb a monolayer of the 

polycation. Then rinse the solid support in Milli-Q water for 2 min and dry it with nitrogen. Secondly, 

the modified substrate is transferred into a 0.5 mg/mL PM suspension whose pH is 9.4 for 5 min, 

followed by rinsing with water (pH 9.4) for 2 min and drying by nitrogen again. This process is 

repeated until the needed number of bilayers of PDAC/PM is obtained [152,153]. The product’s AFM 

images of every process are shown in Figure 22. 

  

Figure 21. Schematic of poly (dimethyldiallylammonium chloride)/purple membrane 

(PDAC/PM) alternate assembly using a negatively charged solid support. Reprinted with 

permission from reference [151]. Copyright 1998 American Chemical Society. 

Figure 20. (A) Nanopore support device, in which a U-tube supports a lipid bilayer
membrane bathed in 1.0 M KCl; (B) The hemolysin nanopore is shown in cross section,
based on the X-ray data of Song et al. [146]. An ionic current of KCl is driven by the
applied voltage through the open pore on the left. Under these conditions, ionic polymers
such as nucleic acids are captured by the standing electrical field and driven through
the pore. A synthetic poly(dC) DNA strand traversing the pore is shown on the right;
(C) When a single-stranded nucleic acid molecule traverses the pore, a transient blockade of
ionic current results, during which the ionic current is reduced from 120 to 15 pA. Reprinted
with permission from reference [147]. Copyright 2002 American Chemical Society.

Bacteriorhodopsin: The purple membrane (PM) that contains bacteriorhodopsin is a biomaterial
with great promise, and shows potential applications in many fields including optical and optoelectronic
devices. For example, the cationic poly (dimethyldiallylammonium chloride) (PDAC) and PM fragments
can be assembled by spontaneous alternating adsorption. Such an ultrathin composite membrane
assembles schematically, as shown in Figure 21 [151]. Firstly, put a negatively charged solid support
into the solution of PDAC for 5 min, and thus it can adsorb a monolayer of the polycation. Then rinse
the solid support in Milli-Q water for 2 min and dry it with nitrogen. Secondly, the modified substrate is
transferred into a 0.5 mg/mL PM suspension whose pH is 9.4 for 5 min, followed by rinsing with water
(pH 9.4) for 2 min and drying by nitrogen again. This process is repeated until the needed number of
bilayers of PDAC/PM is obtained [152,153]. The product’s AFM images of every process are shown
in Figure 22.
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Figure 21. Schematic of poly (dimethyldiallylammonium chloride)/purple membrane
(PDAC/PM) alternate assembly using a negatively charged solid support. Reprinted with
permission from reference [151]. Copyright 1998 American Chemical Society.
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2.4. Composite Materials

2.4.1. Deposition Etching Method

SiN-SiO2-SiN-Si: The schematic diagram of fabricating nanopores on composite material is exhibited
in Figure 23a, which shows the essential components of the experimental configuration. The nanopores
are mounted onto a home-built inverted microscope with a water immersion objective. A collimated
infrared laser overfills the back aperture of the objective and the nanopore position relative to the
diffraction-limited focus. Low-stress silicon nitride (SiN) membranes with thickness of 20 nm are
applied to prepare nanopores whose diameters are smaller than 10 nm (Figure 23b). Before fabrication,
a sandwich layer composed of a 20 nm thin SiN layer, 200 nm of SiO2, and 500 nm of SiN on silicon
is prepared using the low-pressure chemical vapor deposition technique [154]. In order to remove the
top two layers, the sandwich membrane is immersed in reactive ion etching and hydrofluoric acid at
the center region with a diameter of 5 µm. The SiN membrane with thickness of 20 nm is irritated by
electron beam to get a nanopore by using TEM. Optical microscopy image of the membrane in solution
in Figure 23c was obtained with a CCD camera. A TEM image of a typical nanopore of 4 nm, which
equals 1/1000 of the membrane diameter, is illustrated in Figure 23d. A single pixel in Figure 23c
amounts to 100 times the area of the TEM image in Figure 23d [106,155].
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Figure 22. AFM images of (a) PDAC layer on a silicon wafer before PM adsorption;  

(b) one layer of PM adsorbed to the PDAC layer; and (c) two bilayers of PDAC/PM film. 

Reprinted with permission from reference [151]. Copyright 1998 American Chemical Society. 

Figure 22. AFM images of (a) PDAC layer on a silicon wafer before PM adsorption; (b) one
layer of PM adsorbed to the PDAC layer; and (c) two bilayers of PDAC/PM film. Reprinted
with permission from reference [151]. Copyright 1998 American Chemical Society.
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Figure 23. (a) Schematic image of the setup. The microscope objective focuses a laser into 

a diffraction-limited spot and the nanopore is scanned through the laser beam. The laser 

beam locally heats the liquid by absorption. (b) Section sketch of the layer structure of the 

completed samples with the nanopore; (c) optical top-view image of a SiN membrane with 

a diameter of 5 μm. The scale bar is 5 μm. (d) TEM image of a typical nanopore with a 

diameter of 4 nm. The scale bar is 4 nm. Reprinted with permission from reference [154]. 

Copyright 2005 American Chemical Society. 

2.4.2. Reactive Ion Etching (RIE) Method 

TiO2-TiN-Si3N4: According to Figure 24, fabrication of sub-10 nm multiple-nanopore structures is 

described as follows [156]: Nanopores of molecular-level size were prepared by using E-beam 

lithography and atomic layer deposition (ALD) methods [157,158]. A 30 nm TiN layer was placed 

between two 20-nm dielectric Si3N4 films to form a sandwich structure. E-beam lithography and 

reactive ion etching (RIE) processes were used to form small nanopores less than 10 nm. The 

resolution of the top-down drilling method depends on many factors, such as beam scattering [159], 
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Figure 23. (a) Schematic image of the setup. The microscope objective focuses a laser into
a diffraction-limited spot and the nanopore is scanned through the laser beam. The laser
beam locally heats the liquid by absorption. (b) Section sketch of the layer structure of the
completed samples with the nanopore; (c) optical top-view image of a SiN membrane with
a diameter of 5 µm. The scale bar is 5 µm. (d) TEM image of a typical nanopore with a
diameter of 4 nm. The scale bar is 4 nm. Reprinted with permission from reference [154].
Copyright 2005 American Chemical Society.
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TiO2-TiN-Si3N4: According to Figure 24, fabrication of sub-10 nm multiple-nanopore structures
is described as follows [156]: Nanopores of molecular-level size were prepared by using E-beam
lithography and atomic layer deposition (ALD) methods [157,158]. A 30 nm TiN layer was placed
between two 20-nm dielectric Si3N4 films to form a sandwich structure. E-beam lithography and reactive
ion etching (RIE) processes were used to form small nanopores less than 10 nm. The resolution of the
top-down drilling method depends on many factors, such as beam scattering [159], resist chemistry [160],
and critical dimension loss during pattern transfer [161], which is adverse for fabricating sub-10 nm
nanopores. The ALD method was used to shrink the pore size by depositing controllable film on the
nanometer scale [157,162]. Furthermore, the self-limiting process of the precursor molecules makes it
unsuitable for preparing uniform nanochannel structures.
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3. Conclusions and Outlook

The increase in relevant publications in this field clearly demonstrates that the design and development
of 1D nanochannel materials provide an indispensable platform on which to construct a diverse
biomimetic intelligent apparatus. It is an emerging field in many respects, but is still in the early stages.
Inspired by the biological nanochannel in nature, researchers have selectively chosen different fabrication
methods in various functional materials to obtain the artificial 1D nanochannels, such as polymers,
inorganics, biotics, and complexes. In addition, our scientific community has commenced the preparation
of biomimetic 1D nanochannels with various shapes. The ability to tune and control the structure of
the 1D nanochannel materials offers a burgeoning platform for exploiting them in nanotechnology and
materials science. However, there still exist many limitations of current fabrication methods from the
biological nanochannels, such as the fabricated nanochannel showing less precision control of its states
or configuration, it not being as smart as its natural counterparts in responding to external stimuli, and
the fact that it does not stand as a module to be integrated into a system.

In order to pursue the controllable nanostructure of a 1D nanochannel, further properties need
to be taken into account, such as the accurate nanochannel morphology characterization of various
nanochannels, and analysis and interpretation of the peculiar features from different materials.
Furthermre, the functionalization of the fabricated nanochannels, which has already been worked on
by a number of groups, would definitely accelerate the development of this field. Therefore, utilizing the
nano-size structure could lead to exceptional performance exhibited in various nanochannel materials.
Additionally, it is still a prerequisite for successful implementation of ideal nanofluidics to make the
nanochannel structure stable and controllable. An exciting development in the near future may be
anticipated based on the design and preparation processes and experimental results summarized in
this review. In future development, it will be vital to further advance the nanofabrication technology
for various shapes of the 1D nanochannel and, more importantly, to amplify the efforts to build more
functional 1D nanochannels with diverse membrane materials.
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