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Blockade of inhibitory receptors (IRs) is one of the most effective immunother-
apeutic approaches to treat cancer. Dysfunction of miRNAs is a major cause of
aberrant expression of IRs and contributes to the immune escape of cancer cells.
How miRNAs regulate immune checkpoint proteins in breast cancer remains
largely unknown. In this study, downregulation of miRNAs was observed
in PD-1-overexpressing CD8+ T cells using miRNA array analysis of mouse
breast cancer homografts. The data reveal that miR-149-3p was predicted to
bind the 3’UTRs of mRNAs encoding T-cell inhibitor receptors PD-1, TIM-3,
BTLA and Foxp1. Treatment of CD8+ T cells with an miR-149-3p mimic
reduced apoptosis, attenuated changes in mRNAmarkers of T-cell exhaustion
and downregulated mRNAs encoding PD-1, TIM-3, BTLA and Foxp1. On the
other hand, T-cell proliferation and secretion of effector cytokines indicative of
increased T-cell activation (IL-2, TNF-α, IFN-γ) were upregulated after miR-
149-3p mimic treatment. Moreover, the treatment with a miR-149-3p mimic
promoted the capacity of CD8+ T cells to kill targeted 4T1 mouse breast
tumour cells. Collectively, these data show that miR-149-3p can reverse CD8+

T-cell exhaustion and reveal it to be a potential antitumour immunotherapeutic
agent in breast cancer.
1. Introduction
T-cell exhaustion was first defined as a state of immune dysfunction in chronic
lymphocytic choriomeningitis virus infection [1]. Growing evidence reveals
that exhausted T cells are widely distributed in virus-infected tissues and the
tumour microenvironment (TME) [2,3]. During the process of exhaustion,
T cells chronically exposed to tumour antigens or viral antigens gradually lose
their ability to kill cancer cells or virus-infected cells expressing those antigens.
Exhaustion is characterized by elevated levels of inhibitory receptors (IRs) such
as programmed death-1 (PD1), cytotoxic T-lymphocyte antigen 4 (CTLA4),
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T-cell immunoglobulin domain and mucin domain 3 (TIM3),
B- and T-lymphocyte attenuator (BTLA), and lymphocyte acti-
vation gene 3 (LAG3), CD244 (2B4) [4–9]; diminished levels of
effector cytokines, such as interlekin-2 (IL-2), tumour necrosis
factor-α (TNF-α) and interferon-γ (IFN-γ); and impaired
CD8+ T-cell cytotoxicity [10]. Foxp1, a member of subfamily
P of the forkhead box (FOX) transcription factor family, plays
a pivotal role in modulating early B-cell development, T-cell
quiescence and monocyte differentiation, and in mediating
effective antitumour immune response [11–14]. Foxp1 is
highly expressed in oestrogen receptor-positive human breast
cancer cells and can inhibit themigration of tumour-infiltrating
T cells [15]. Moreover, Foxp1 is overexpressed in tumour-
infiltrating lymphocytes [16]. Targeting Foxp1 may improve
PD-1/PD-L1 pathway-associated antitumour immunity.

MicroRNAs (miRNAs) are a family of non-coding RNAs
(approx. 21 nucleotides in length) [17,18]. They are widely
expressed by plant, animal and viral genomes, and participate
in post-transcriptional regulation ofmany genes by binding the
3’ untranslated regions (3’UTRs) of mRNAs to target them for
degradation and/or inhibition of translation [19,20]. Aberrant
expression of miRNAs is involved in the pathogenesis of
various diseases including cancer, cardiac hypertrophy,
respiratory diseases and others [21–24]. Depending on the cir-
cumstances, miRNAs can either promote or suppress tumour
formation by modulating cell proliferation, death, invasion,
metastasis and/or angiogenesis [25–27]. In immune cells
within the TME, miRNAs can stimulate or suppress antitu-
mour immunity by controlling immune regulatory molecules
in both tumours and immune cells [28]. Multiple miRNAs
have been identified as regulators of immune escape by
directly or indirectly modulating the expression of immune-
regulating molecules, especially immune checkpoint proteins
such asmembers of the CD28, B7, TNF and TNFR families [29].

Breast cancer is the most common cause of cancer death
in women [30]. Currently, the regulation of IRs is a promising
method to treat breast cancer [31]. Aberrant miRNA
expression, leading to post-transcriptional induction of patho-
logical IR expression and activity, may lead to cancer cell
escape from immune surveillance. Recently, we and other
researchers have reported that miR-28, miR-138, miR-4717
and miR374b can regulate the expression of PD-1 and influ-
ence the immune status of T cells in some cancers [32–35],
revealing the modulatory roles of miRNAs in either reducing
or enhancing T-cell function. However, to date, studies
have focused primarily on how miRNAs regulate CD4+ T
cells or cytokine-induced killer (CIK) cells. In breast cancer,
it is not clear how miRNAs regulate IRs and PD-1-associated
transcriptional factor Foxp1 in CD8+ T cells. Therefore, we
have focused on miRNAs targeting iR and Foxp1 gene
expression in CD8+ T cells in murine 4T1 breast cancer cells
in vitro; our data reveal that an miRNA has the capacity
to enhance antitumour immunity by reversing CD8+ T-cell
exhaustion.
2. Results
2.1. Overexpression of IRs in spleen CD8+ T cells from

4T1 tumour-bearing mice
To evaluate CD8+ T-cell exhaustion in 4T1 breast tumour-
bearing mice, we examined the level of IR mRNAs, including
PD-1, TIM-3, BTLA and exhausted T-cell-associated transcrip-
tional factor Foxp1 using reverse transcription quantitative
polymerase chain reaction (RT–qPCR). Compared to those of
naive mice spleen CD8+ T cells, the levels of PD-1, TIM-3,
BTLA and Foxp1 were upregulated in tumour-bearing mice
(figure 1a). We next evaluated the levels of T-cell-exhausted
phenotype markers on CD8+ T cells by flow cytometry. Popu-
lation of CD8+ T cells was decreased in tumour-bearing mice
(electronic supplementary material, figure S1A,B). Compared
to that of controls, the percentage of PD-1+ cells among CD8+

T cell was increased from 14.6 to 21.6% (p = 0.019) in 4T1
tumour-bearing mice. Furthermore, the percentage of TIM-3+
cells among CD8+ T cells was increased from 12.6 to 22%
(p = 0.011). There was no apparent difference in the ratio of
BTLA+ cells to CD8+ T cells between the two groups (figure 1b).

2.2. Downregulation of cytokine secretion in CD8+ T
cells isolated from spleens of tumour-bearing mice

To assess the cytotoxicity of CD8+ T cells from spleens of
4T1-bearing mice, mixed lymphocyte reactions (MLRs) were
performed. Lymphocytes from 4T1 tumour-bearing mice
and naive mouse spleens were co-cultured with C57BL/6
bone marrow-derived dendritic cells (DCs) for 48 h. Cytokine
receptor levels were then assessed by flow cytometry.
The fraction of CD8+ T cells (IL-2+, TNFα+ or IFN-γ+)
decreased in CD8+ T cells from 4T1-bearing mouse spleens
compared with CD8+ T cells from spleens of tumour-naive
mice (figure 2a–f ).

2.3. Decreased CD8+ T-cell response in tumour-bearing
mice

To determine the homeostatic proliferation/differentiation of
CD8+ T cells, a CFSE dye dilution assay of proliferation was
conducted. The proliferation of CD8+ T cells declined in
tumour-bearing mice on day 3 (figure 3a).

To detect the survival of CD8+ T cells, we examined the
ratio of apoptosis in lymphocytes from naive mice to apopto-
sis in CD8+ T cells from spleens of tumour-bearing mice (the
apoptosis ratio). Annexin V and PI staining showed that
the apoptosis ratio increased from 19.9 to 27.7% ( p = 0.042)
in CD8+ T cells from tumour-bearing mice (figure 3b).

2.4. Global miRNA level profile and miRNAs which can
target IRs and Foxp1

CD8+PD-1+ and CD8+PD-1− T cells were isolated from
spleens of 4T1 breast tumour-bearing mice by flow cytometric
cell sorting. Affymetrix GeneChip 3.0 miRNA array analysis
was performed on RNAs extracted from each of the two
groups. Probe-level data were generated using Affymetrix
Command Console v. 3.2.4. Probes were summarized to the
miRNA level using RMA. Partek was used to determine
ANOVA p-values and fold changes for miRNAs. miRNAs
with a fold change of ±1.5 (PD-1+ versus PD-1−, p < 0.05)
that were screened are shown in a heat map as candidate
miRNAs (figure 4a). Multiple databases, including miRWalk,
Targetscan, miRanda and others, were used to predict the
binding sites of candidate miRNAs. Among them, five
miRNAs (miR-149-3p, miR-146a-3p, miR-122-5p, miR-211-5p
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Figure 1. Exhaustion marker upregulation in CD8+ T cells from spleens of 4T1 tumour-bearing mice. (a) Detection of mRNAs encoding PD-1, TIM-3, BTLA by
RT–qPCR. Spleen cells were collected from naive mice and from tumour-bearing mice on days 16–18 after tumour cell injection. CD8+ T cells were purified
from the collected splenocytes using Miltenyi magnetically labelled beads (Miltenyi Biotec). RT–qPCR was performed to detect PD-1, TIM-3, BTLA and Foxp1
mRNA levels in CD8+ T cells. (b) Detection of IRs on CD8+ T cells by flow cytometry. Spleen cells were collected from naive mice and from tumour-bearing
mice. Flow cytometry was performed to detect PD-1, TIM-3 and BTLA expression level. Data are representative of three independent experiments. Unpaired Student’s
t-tests were performed to determine statistical significance (*p < 0.05, **p < 0.01).
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and miR-721) with sequences predicted to bind the 30UTR of
IRs and/or TF genes were further examined (figure 4b).
miR-149-3p, complementary to the 30UTRs of mRNAs
encoding PD-1, TIM-3, BTLA and Foxp1, was further con-
firmed to be downregulated in tumour-bearing mouse
spleens (figure 4c).
2.5. miR-149-3p downregulated exhausted T-cell
phenotype in vitro

When CD8+ T cells from spleens of 4T1 breast tumour-
bearing mice were transfected with miR-149-3p mimic for
48 h, the level of miR-149-3p in CD8+ T cells was upregulated
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Figure 2. Downregulation of cytokine secretion in CD8+ T cells isolated from spleens of mice-bearing 4T1 tumours. (a–f ) The fraction of IL-2+, TNF-α+ and
IFN-γ+ CD8+ T cells was measured by flow cytometry. Spleen cells were collected from naive mice and tumour-bearing mice and co-cultured with C57BL/6
bone marrow-derived DCs for 48 h. Flow cytometry was performed to detect IL-2, TNF-α and IFN-γ expression level. Unpaired Student t-test analysis was performed
to determine statistical significance (*p < 0.05, **p < 0.01).
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after miR-149-3p mimic transfection (electronic supplemen-
tary material, figure S2). The levels of mRNAs encoding
PD-1, TIM-3, BTLA and Foxp1 decreased (figure 5a). Conver-
sely, the level of mRNAs encoding these genes was increased
when inhibitors of miR-149-3p were used (figure 5a).

The function of miR-149-3p in regulating the exhausted
T-cell phenotypewas also assessed by a flow cytometric analy-
sis. Forty-eight hours after miR-149-3p mimic transfection of
CD8+ T cells isolated from spleens of 4T1 tumour-bearing
mice, the population of PD-1+ CD8+ T cells decreased from
34.7% to 26.8% ( p = 0.005). Moreover, the population of TIM-
3+ CD8+ T cells declined from 27.5% to 23.7% ( p = 0.031)
and the population of BTLA+ CD8+ T cells was downregu-
lated from 13.8% to 9.0% ( p = 0.006) (figure 5b). Conversely,
when miR-149-3p inhibitors were used, the population of
BTLA+ CD8+ T cells increased from 13.8% to 16.8% ( p =
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0.045). There was no significant change in the population of
PD-1+ and TIM-3+ CD8+ T cells (figure 5b).

2.6. miR-149-3p restored activity-associated cytokine
levels in exhausted CD8+ T cells

We further examined the effect of miR-149-3p on the level of
activity-associated cytokines and proliferation of CD8+ T cells
isolated from spleens of 4T1 tumour-bearing mice. After
transfection with miR-149-3p mimic or inhibitor, T cells
were co-cultured with C57BL/6 bone marrow-derived DCs.
After treatment with miR-149-3p mimic, the population of
CD8+/IL-2+ T cells among all CD8+ T cells increased from
15.7% to 28.3% ( p = 0.001) (figure 6a,b). Similarly, the popu-
lation of CD8+/TNF-α+ among all CD8+ T cells increased
from 24.1% to 33.5% ( p = 0.010) (figure 6c,d). In addition,
the population of CD8+/INF-γ+ T cells among all CD8+ T
cells increased from 31.8% to 36.7% ( p = 0.022) (figure 6e,f ).
CD8+/IL-2+ T cells decreased from 15.7% to 10.1% ( p =
0.043) (figure 6a,b) and CD8+/TNF-α+ T cells decreased
from 24.1% to 17% ( p = 0.030) (figure 6c,d) after treatment
with a miR-149-3p inhibitor. To further verify changes in
cytokine levels, we repeated our experiments and detected
cytokine mRNA levels by qPCR. After treatment with an
miR-149-3p mimic, IL-2, TNF-α and IFN-γ mRNA levels
were upregulated, whereas IL-2, TNF-α and IFN-γ mRNAs
were downregulated after treatment with a miR-149-3p
inhibitor (electronic supplementary material, figure S3).
2.7. miR-149-3p mimic transfection increased
proliferation and decreased apoptosis in
exhausted CD8+ T cells

After transfection with miR-149-3p mimic or inhibitor, spleen
CD8+ T cells from 4T1 tumour-bearing mice were co-cultured
with C57BL/6 bone marrow-derived DCs from mice without
4T1 tumour homografts. CD8+ T cells treated withmiR-149-3p
mimic displayed increased proliferation, while proliferation
decreased when CD8+ T cells were transfected with miR-
149-3p inhibitor (figure 7a).

In addition, the percentage of apoptotic CD8+ T cells
decreased from 50.7% to 45.2% ( p = 0.008) after the cells
were transfected with miR-149-3p mimic for 48 h (figure 7b).
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The fraction of apoptotic CD8+ T cells was not altered by
treatment with miR-149-3p inhibitor.

2.8. miR-149-3p mimic treatment promotes cytotoxic
CD8+ T-cell killing of mouse 4T1 tumour cells
in vitro

To examine whether miR-149-3p could affect the capacity of T
cells to kill mouse 4T1 breast tumour cells, the capacity of
cytotoxic CD8+ T cells to induce the death of 4T1 in co-culture
was assessed. Tumour cytotoxicity of CD8+ T cells improved
when CD8+ T cells were treated with miR-149-3p mimic
(figure 8).
3. Discussion
Immune checkpoint blockade,which enhances T-cell activation
and/or T-cell survival, has resulted in remarkable outcomes in
anti-cancer immunotherapy. However, specific monoclonal
antibodies directed against specific inhibitor receptors suppress
single molecules rather than multiple targets included within
regulons (collections of molecules mediating whole regulatory
pathways and complex physiological events). The use of
monoclonal antibodies therefore limits the potential for
combinatorial expansion for therapeutic targeting of whole
physiological pathways a challenge in the clinic [36]. One
specific miRNA can modulate the expression of several genes,
making miRNA-based immunotherapeutics a potential new
and effective approach in combinatorial anti-cancer therapy.
A growing number of studies have confirmed that miRNA-IR
regulatory axes play a critical role in immune escape and
immune checkpoint therapy [29]. Our current study finds that
miRNA-149-3p, identified by screening and assessing multiple
miRNA profiles, potentially interacts with inhibitory T-cell
receptors PD-1, Tim3, BTLA and PD-1-associated transcrip-
tional factor Foxp1, and exerts potentially anti-cancer efficacy
by reversing CD8+ T-cell exhaustion. Reversal of T-cell
exhaustion is critical in promoting cytotoxic T-cell-mediated
antitumour immunity, and these data support the possibility
of miRNA-based immunotherapy of breast cancers.

In previous studies, T-cell exhaustion, leading to dysfunc-
tion and reduced antitumour immune response, was observed
in clinical human breast cancers and mouse models [37,38].
However, the regulatory processes mediating CD8+ T-cell
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exhaustion remain largely unknown. Consistent with the
overexpression of IRs in human melanoma, lymphoma, hepa-
tocellular carcinoma and gastric cancer [39–41], our results
show that mRNAs encoding PD-1, TIM-3, BTLA and Foxp1
are also upregulated in CD8+ T cells isolated from spleens of
mice-bearing mouse 4T1 breast tumours. In addition, T-cell-
exhausted phenotypes of the above IRs reveal a similar upre-
gulating model (with the exception of BTLA) compared with
that from naive mice. Reduced levels of activation-associated
cytokines (IL-2, TNF-α, IFN-γ) are an important characteristic
of exhausted T cells [42,43], and we report that the levels
of these cytokines in CD8+ T cells isolated from spleens of
mice-bearing mouse 4T1 breast tumours are, as expected,
similarly reduced. Thus, markers of T-cell exhaustion in sple-
nic CD8+ T cells from mice-bearing 4T1 tumour homografts
follow a pattern, indicating that this is a useful model of
T-cell exhaustion and resulting dysfunction relevant to
antitumour immune surveillance.
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Co-culture of spleen CD8+ T cells from mice-bearing 4T1
tumour homografts with bone marrow-derived DCs from
naive mice without tumour homografts decreased CD8+ T-cell
proliferation in 4T1 breast tumour-bearing mice spleen CD8+ T
cells, compared with naive mice. Apoptosis was increased in
CD8+ T cells from tumour-bearing mouse spleens. Both these
observations reveal decreased immune response manifested
by decreased effector cytokine levels and increased T-cell
apoptosis in the presence of 4T1 breast tumour homografts.

Blocking IRs has been recognized as an important poten-
tial strategy to improve antitumour immune response [44]. To
determine which miRNAs are possible targets for therapeutic
targeting, we compared miRNA levels from CD8+PD1+
(exhausted) and CD8+PD-1− (non-exhausted) T cells isolated
from mice-bearing 4T1 breast tumours. According to miRNA
array data and RT–qPCR verification, the level of miR-149-3p
was confirmed to be decreased in CD8+PD-1− T cells.
Multiple databases further predicted that miR-149-3p had
binding sites which target to 3’UTRs of mRNAs encoding
PD-1, TIM-3, BTLA and TF Foxp1. miR-149-3p, therefore,
has a potential to restore activity to exhausted T cells by
reducing IR levels in CD8+ T cells.

Previous reportsbyusandothers showthatmiR-28,miR-138,
miR-4717 and miR374b can directly target PD-1 and partly
restore the function of exhausted T cells in cancers [32–35]. In
this study, the application of an miR-149-3p mimic reduced the
levels of IRs associated with T-cell exhaustion (PD-1, TIM-3,
BTLA and Foxp1) in CD8+ T cells, and reduced proliferation
and apoptosis: phenotypic markers of T-cell exhaustion. These
data suggest that the use of the miR-149-3p mimic restored T-
cell function by reducing T-cell markers of exhaustion and
increasing T-cell markers of activation. Furthermore, the percen-
tage of PD-1+ CD8+ T cells, TIM-3+ CD8+ T cells and BTLA+
CD8+ T cells among the total population of all CD8+ T cells was
decreased in T cells treated with a miR-149-3p mimic. Thus,
miR-149-3pcan reduce the levelsof IRs inCD8+exhaustedTcells.
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Downregulated levels of cytokines associated with T-cell
activation are another characteristic of exhausted T cells in
the presence of tumours. Therefore, promoting the pro-
duction of cytokines can effectively elevate CD8+ T-cell
immunity response against tumours [45]. In this study, IL-2,
TNF-α and IFN-γ levels were increased in exhausted CD8+

T cells after miR-149-3p mimic transfection, indicating
that miR-149-3p can upregulate cytokine level secretion to
potentially reverse CD8+ T-cell exhaustion.

Furthermore, after an miR-149-3p mimic was transfected
into CD8+ T cells, proliferation was increased and
apoptosis was decreased. These data suggest that miR-149-3p
restored exhausted T-cell immune function in the presence of
exhaustion-promoting tumours. In addition, we evaluated
whether miR-149-3p could modulate CD8+ T-cell cytotoxicity
against 4T1 breast tumour cells. The cytotoxicity of CD8+ T cells
from tumour-bearing mice was upregulated after transfection
with the miR-149-3p mimic, suggesting that miR-149-3p has the
potential to enhance CD8+ T-cell antitumour immunity.
4. Conclusion
Our results show that miR-149-3p has the potential to target the
IRs PD-1, TIM-3 andBTLA. It canpromoteCD8+T-cell-mediated
immune response and reverse T-cell exhaustion byenhancing the
level of T-cell cytokines associatedwith andmediatingT-cell acti-
vation, enhancing T-cell proliferation and reducing T-cell
apoptosis and downregulating Foxp1. Our study expands the
role of miR-149-3p in directly and indirectly modulating T-cell
exhaustion and regulating antitumour immunity.
5. Methods and materials
5.1. Mouse breast tumour cells
4T1 mouse breast cancer cells were obtained from ATCC
(Manassas, VA, USA) and cultured in RPMI-1640 full
medium (Gibco, Life Technologies, Burlington, Ontario,
Canada) with 10% fetal bovine serum (FBS, Gibco),
100 U ml−1 of penicillin (Gibco) and 100 µg ml−1 streptomycin
(Gibco) at 37°C in 5% CO2. A total of 5 × 105 4T1 cells were
resuspended in 100 µl PBS (Gibco) and injected subcutaneously
into the right flank of 6- to 8-week-old female BALB/c mice
(Charles River, Saint-Constant, Canada). All tumour-bearing
mice were humanely euthanized by CO2 inhalation 16–18
days after tumour cell injection (and before tumours reached
2 cm3) and spleens were collected.

5.2. CD8+ T-cell isolation and CD8+PD-1+ and
CD8+PD-1− cell sorting

The collected tumour-bearing mice spleens were disaggre-
gated with the flat end of a syringe in 5 ml of RPMI 1640
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medium in a 100 mm tissue culture dish. Dispersed cells were
filtered through a 40 µm Falcon Cell Strainer (VWR, Missis-
sauga, Ontario, Canada) and CD8+ T cells were purified
from the collected splenocytes using Miltenyi magnetically
labelled beads (Miltenyi Biotec, USA) according to the man-
ufacturer’s protocol. CD8+PD-1+ and CD8+PD-1− cells were
separated by fluorescence-activated cell sorting using a
Becton Dickinson Aria III FACS (BD Biosciences, Missis-
sauga, Ontario, Canada). For sorting purposes, CD8+ T cells
were stained with 0.2 µg FITC anti-mouse CD8−, PerCP-
eFluor 710 anti-mouse PD1, PerCP-eFluor 710 rat IgG2b Iso-
type Control or 0.1 µg of Fixable Viability Dye eFluor 506
(eBioscience).
5.3. RNA extraction and miRNA cDNA synthesis
An miRNeasy Mini Kit (Qiagen, Toronto, Ontario, Canada)
was used to extract RNA from CD8+ T cells. The RNA con-
centration and purity were measured using a NanoDrop
ND1000 (Thermo Scientific, Ottawa, Ontario, Canada).
Reverse transcription of 500 ng RNA, to generate cDNA,
was performed using a miScript II Reverse Transcription kit
(Qiagen) according to the manufacturer’s instructions.
5.4. miRNA geneChip analysis
A total of 100 ngmiRNA from each aliquot of CD8+PD-1+ and
CD8+PD-1− T cells were used for Affymetrix GeneChip 3.0
miRNA Array analysis (Affymetrix, Santa Clara, CA, USA).
All sample labelling and GeneChip processing was performed
at the London Regional Genomics Centre (Robarts Research
Institute, London, Ontario, Canada). For analysis, miRNAs
were labelled with biotin using a FlashTag Biotin HSR RNA
Labeling Kit (Genisphere) according to the manufacturer’s
instructions. Array data were scanned with the GeneChip
Scanner 3000 7G (Affymetrix) and analysed using Affymetrix
GeneChip Command Console software (Affymetrix) by the
Partek Genomics Suite (Partek, St Louis, MO, USA).

5.5. miRNA reverse transcription–qPCR
miRNA RT–qPCR was performed to verify miRNA levels
estimated by expression array analysis. Primer for PCR of
selected miR-149-3p was purchased from Qiagen (Qiagen,
MS00069222). Snord 6.1 (small nucleolar RNA, C/D box
61) (Qiagen, MS00033705) for mouse was used as a reference
miRNA. The qPCR reaction was conducted according to the
manufacturer’s instructions.

5.6. Prediction of miRNA-targeting IRs
miRWalk 2.0 (http://zmf.umm.uni-heidelberg.de/apps/
zmf/mirwalk2/generetsys-self.html), as a comprehensive
archive gathering 13 prediction datasets including miRWalk,
Targetscan, miRanda and others, was used to access the bind-
ing site of candidate miRNAs [46]. miRNAs with sequences
predicted to bind 3’UTRs of target mRNAs encoding
Foxp1, PD-1, TIM-3 and BTLA genes were selected.

5.7. Gene expression analysis of PD-1, TIM-3, BTLA
and Foxp1

A sensiFASTTMProbeNO-ROXKit (Bioline, USA)was used to
conduct RT–qPCR reactions. Primers of murine PD-1, TIM-3,
BTLA, Foxp1 and internal control gene β-actin were PD-1: 5’-
GGCCGCCTTCTGTAATGGTTTGA-3’ (forward) and 5’-AG
GGGCTGGGATATCTTGTTGAGG-3’ (reverse); TIM-3: 5’-AG
TGGGAGTCTCTGCTGGGTTGA-3’ (forward) and 5’-AGG
ATGGCTGCTGGCTGTTGA-3’ (reverse); BTLA: 5’-GTGAA
TAAAGAGGCCTTACT-3’ (forward) and 5’-CCTGAACAA
GCTTAACTAGA-3’ (reverse); Foxp1: 5’-GCTTCTGCTGACT
CTCCTGG-3’ (forward) and 5’-GGAGCCCTTTAGGCTAG
CAG-3’ (reverse); β-actin: 5’-AGGGAAATCGTGCGTGACAT-
3’ (forward) and5’-AACCGCTCGTTGCCAATAGT-3’ (reverse).
RT–PCR reaction conditionswere 95°C for 2 min, followed by 40
cycles at 95°C for 10 s, 58° C for 10 s, then 95°C for 10 s. The
qPCR results were analysed using the 2-ΔΔCt method [47].

5.8. Mixed lymphocyte reaction
MLRswere performed to detect the cytotoxicitymediated by T
cells. CD8+ T cells (Miltenyi Biotec) isolated from spleens
from BALB/c tumour-bearing mice were co-cultured with
C57BL/6 bone marrow-derived DCs. DCs were isolated
from tumour-naive 6- to 8-week-old C57BL/6 mice fibulae
and tibiae cultured in RPMI-1640 medium containing 10%
FBS, 50 ng ml−1 recombinant mouse granulocyte-macrophage
colony-stimulating factor (Peprotech, USA) and 50 ng ml−1

recombinant mouse IL-4 (Peprotech, Rocky Hill, USA) for
6 days. CD8+ T cells and DCs (10 : 1 ratio, 5 × 105 T cells and
5 × 104 DCs per well) were co-cultured in 12-well plates for
48 h and then CD8+ T cells were analysed for IR expression,
cytokine production and proliferation by flow cytometry.

5.9. Flow cytometric analysis
Flow cytometry of CD8+ T cells was performed using a Cyto-
FLEXS FACS (Beckman Coulter Life Sciences, Mississauga,

http://zmf.umm.uni-heidelberg.de/apps/zmf/mirwalk2/generetsys-self.html
http://zmf.umm.uni-heidelberg.de/apps/zmf/mirwalk2/generetsys-self.html
http://zmf.umm.uni-heidelberg.de/apps/zmf/mirwalk2/generetsys-self.html
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Ontario, Canada) to detect IRs, cytokine levels and prolifer-
ation. Lymphocytes were stained with 0.2 µg of each of the
following MAbs: FITC anti-mouse CD8, PerCP-eFluor 710
anti-mouse PD-1, PE-CY7 anti-mouse TIM-3, APC anti-
mouse BTLA, PerCP-eFluor 710 Rat IgG2b Isotype Control,
PE Mouse IgG2a κ Isotype Control, FITC Mouse IgG2a κ Iso-
type Control, PE-CY7 Mouse IgG2a κ Isotype Control, APC
Mouse IgG1 κ Isotype Control, PE anti-mouse IL-2 PE anti-
mouse TNF-α and PE anti-mouse IFN-γ- (eBioscience, San
Diego, CA, USA). A Fixation/Permeabilization Solution Kit
(BD Biosciences, USA) was used for intracellular staining
where required for different experiments.

5.10. T-cell transfection with miR-149-3p mimics
or inhibitors

Lymphocytes from 4T1-bearing BALB/c mice spleens were
plated with 5 × 106 cells per well in a 12-well-plate with 900 µl
RPMI1640 culture medium plus 10% FBS. A total of 100 µl
transfection reagent, containing miR-149-3p mimic (Qiagen,
no. MSY0016990) or miR-149-3p inhibitor (Qiagen, no.
MIN0016990; controls, no. SI03650318 and no. 1027281, respect-
ively) in 50 µl Opti-MEM and 1 µl Endofectin Max
(GeneCopoeia, USA) in 50 µl Opti-MEM,were added after incu-
bation for 30 min. CD8+ T cells were isolated using CD8 MACS
Microbeads (Miltenyi Biotec) after transfection for 48 h andwere
used to further investigate the function ofmiR-149-3p in regulat-
ing PD-1, TIM-3, BTLA and Foxp1 expression. RT–qPCR was
performed to assess the expression of PD-1, TIM-3, BTLA and
Foxp1.

5.11. T-cell apoptosis assays
CD8+ T cells were isolated (Miltenyi Biotec) and washed
twice with PBS, and centrifuged at 1500 r.p.m. for 5 min to
remove supernatant. The apoptotic cell population was exam-
ined using a FITC Annexin V Apoptosis Detection Kit I (BD
Pharmingen, CA, USA). T cells were suspended in 200 µl
binding buffer and stained with 5 µl Annexin V and PI at
room temperature for 15 min in the dark. The T-cell popu-
lation was analysed by CytoFLEXS flow cytometry
according to the instructions governing the use of the BD
Apoptosis Detection Kit. CD8+ T cells were isolated (Miltenyi
Biotec) and washed twice with PBS, and centrifuged at
1500 r.p.m. for 5 min to remove supernatant. The apoptotic
cell population was examined using a FITC Annexin VApop-
tosis Detection Kit I (BD Pharmingen, CA). T cells were
suspended in the 200 µl binding buffer and stained with
5 µl Annexin V and PI at room temperature for 15 min in
the dark. The T-cell population was analysed by CytoFLEXS
flow cytometry according to the instructions governing the
use of the BD Apoptosis Detection Kit.

5.12. CD8+ T-cell proliferation
CD8+ T cells were labelled with CFSE dye (carboxyfluorescein
succinimidyl ester, 1 µl ml−1, eBioscience, CA, USA) at 37°C for
15 min and RPMI-1640 with 10% FBS (5 min) was added to ter-
minate the reaction.Antigens (freeze–thawed4T1 tumour lysate)
were then added at a concentration of 50 µg ml−1 to simulate
T-cell proliferation. CD8+ T cells were collected on day 3 follow-
ing the addition of lysate and the proliferation rate was assessed
by the progressive dilution of CFSE dye. CD8 and IgG2a K on
CFSE-labelled T cells were stained using PE anti-mouse CD8
(BioLegend, CA, USA) and PE Mouse IgG2a K Isotype Control
antibodies before flow cytometry using CytoFLEXS.

5.13. Specific cytotoxic T-lymphocyte response assay
CD8+ T cells from tumour-bearing mice spleens were co-cul-
tured for 4 h with 4T1 cells at a ratio of 1 : 50, 1 : 100 and 1 :
200. Supernatants were then collected to detect lactate dehy-
drogenase released from T-cell-killed 4T1 tumour cells (CTL
response) using a CytoTox 96 Non-Radioactive Cytotoxicity
Assay (Promega, CA, USA). The wavelength was set to
450 nm and the absorbance value was measured in different
reactions according to the manufacturer’s instructions. The
percentage of specific cytotoxicity was calculated as follows:
% cytotoxicity ¼ experimental� effector spontaneous� target spontaneous
targetmaximum� target spontaneous

� 100%:
5.14. Statistical analysis
Two-tailed unpaired Student t-tests, one-way ANOVA or
two-way ANOVA were applied to determine statistical
significance. Significance values are indicated as *( p < 0.05),
**( p < 0.01).
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