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Estimation after subpopulation selection
in adaptive seamless trials
Peter K. Kimani,a*† Susan Toddb and Nigel Stallarda

During the development of new therapies, it is not uncommon to test whether a new treatment works better
than the existing treatment for all patients who suffer from a condition (full population) or for a subset of the
full population (subpopulation). One approach that may be used for this objective is to have two separate trials,
where in the first trial, data are collected to determine if the new treatment benefits the full population or the
subpopulation. The second trial is a confirmatory trial to test the new treatment in the population selected in
the first trial. In this paper, we consider the more efficient two-stage adaptive seamless designs (ASDs), where in
stage 1, data are collected to select the population to test in stage 2. In stage 2, additional data are collected to
perform confirmatory analysis for the selected population. Unlike the approach that uses two separate trials, for
ASDs, stage 1 data are also used in the confirmatory analysis. Although ASDs are efficient, using stage 1 data
both for selection and confirmatory analysis introduces selection bias and consequently statistical challenges in
making inference. We will focus on point estimation for such trials. In this paper, we describe the extent of bias
for estimators that ignore multiple hypotheses and selecting the population that is most likely to give positive
trial results based on observed stage 1 data. We then derive conditionally unbiased estimators and examine their
mean squared errors for different scenarios. © 2015 The Authors. Statistics in Medicine Published by John Wiley
& Sons Ltd.

Keywords: adaptive seamless designs; phase II/III clinical trials; multi-arm multi-stage trials; subpopulation;
subgroup analysis

1. Introduction

In drug development, it is not uncommon to have a hypothesis selection stage followed by a confirmatory
analysis stage. In the hypothesis selection stage, data are collected to test multiple hypotheses, with the
hypothesis that is most likely to give positive trial results selected to be tested in the confirmatory analysis
stage. In this paper, we will consider two-stage adaptive seamless designs (ASDs) in which the hypothesis
selection stage (stage 1) and the confirmatory analysis stage (stage 2) are two parts of a single trial, with
hypothesis selection performed at an interim analysis. An alternative to an ASD is to have two separate
trials, separate in the sense that stage 1 data are only used for hypothesis selection and the confirmatory
analysis uses stage 2 data only. However, an ASD is more efficient than having two separate trials because,
as data from both stages of an adaptive seamless trial are used in the final confirmatory analysis, for
the same power, fewer patients would be required in stage 2 of an adaptive seamless trial than in the
setting with two separate trials hence saving resources. The two-stage adaptive seamless trial can also be
designed so that it is more efficient than having a trial with a single stage, where a single analysis is used
to select and test the best hypothesis, for example using the Bonferroni test or the Dunnett test [1].

Much work has been undertaken on ASDs where the multiple hypotheses arise as a result of comparing
a control to several experimental treatments in stage 1. Based on stage 1 data, the most promising experi-
mental treatment is selected to continue to stage 2 together with the control. We refer to this as treatment
selection. In stage 1, available patients are randomly allocated to the control and all the experimental
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treatments while in stage 2, patients are randomly allocated to the control and the most promising exper-
imental treatment. The experimental treatments may be distinct treatments or different doses of a single
experimental treatment. Treatment selection in ASDs is described in more detail in [2–10] among others.
A challenge with such adaptive seamless trials is that selecting the most promising experimental treatment
in stage 1 introduces selection bias because the superiority of the selected experimental treatment may
be by chance. Consequently, appropriate confirmatory analysis needs to account for using biased stage 1
data. Hypothesis testing methods that control type I error rate have been developed or described in [2–8].
Point estimators that adjust for treatment selection have been developed in [11–15] while confidence
intervals that adjust for treatment selection have been considered in [7, 13, 16–19].

In this paper, we consider the case where multiple hypotheses arise because in stage 1, a control is
compared with a single experimental treatment in several subpopulations. Based on stage 1 data, the
subpopulation in which the experimental treatment shows most benefit over the control is selected to be
tested further in stage 2. We refer to this as subpopulation selection. In stage 1, patients are recruited
from all subpopulations while in stage 2, patients are recruited from the selected subpopulation only and
randomly allocated to the control and the experimental treatment. Subpopulation (subgroup) analysis has
been considered in many trials, encompassing many disease areas such as Alzheimer’s [20], epilepsy [21]
and cancer [22]. Most of these trials are single stage but investigators are beginning to design two-stage
adaptive seamless trials for subpopulation selection such as the trial described in [23]. The subpopulation
may be defined based on baseline disease severity [20, 21], age group [24] or a genetic biomarker [22]
among other criteria. As in [23], we will assume that the subpopulations are pre-specified. The case of
subpopulation selection in ASDs is described in more detail in [23, 25–28].

As in the case of treatment selection, subpopulation selection introduces selection bias because the
most promising subpopulation is selected to be tested in stage 2. Methods for hypothesis testing in
two-stage adaptive seamless trials with subpopulation selection that control type I error rate have been
developed [5, 23, 26]. Some of these methods were initially developed for hypothesis testing following
treatment selection. It has been possible to test hypotheses after subpopulation selection using some
hypothesis testing methods developed for treatment selection because these methods are not fully
parametric. For example, Brannath et al. [23] have shown that the method described in [5,8] can be used
for hypothesis testing in the case of subpopulation selection. Estimation after adaptive seamless trials
with subpopulation selection has not been considered. However, for confidence intervals, it is possible
to use the duality between hypothesis testing and confidence intervals as described for the case of treat-
ment selection in [7, 18, 19]. For point estimation, the methods proposed for treatment selection [11–15]
are based on explicit distributions and so their extension for use in subpopulation selection testing is not
straightforward.

In this paper, we will consider point estimation after two-stage ASDs where stage 1 data are used
to perform subpopulation selection. Spiessens and Debois [25] have described the possible scenarios
for subgroup analysis based on how the subpopulations are nested within each other and about which
subpopulations the investigators want to draw inference. We will consider the scenario where the effect is
considered in the full population and in a single subpopulation. This scenario seems to be of most practical
importance having been considered in methodological work related to actual trial designs [23, 26]. In
the discussion, we will describe how the estimators we develop can be extended to some of the other
scenarios in [25].

We organise the rest of the paper as follows. In Section 2, we first describe the setting of interest while
introducing notation and then define the naive estimator, which ignores subpopulation selection before
deriving a conditionally unbiased estimator. Section 3 gives an example that is used to demonstrate how
to compute the naive and unbiased estimators and compare the two estimators for specific cases. We
assess the mean squared error of the unbiased estimator in relation to the naive estimator in Section 4.
The findings in the paper are discussed in Section 5.

2. Estimation in adaptive seamless designs for subpopulation selection

2.1. Setting and notation

As described in Section 1, we will consider an ASD in which a control is compared with an experimental
treatment in a population of patients that consists of a subpopulation that may benefit from the experi-
mental treatment more than the full population. In stage 1, patients are recruited from the full population
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Figure 1. Partitioning of the full population.

Table I. Summary of notation.

Stage 1 Stage 2 Stages 1 and 2

Selected Sub- True parameter Sample Variance of Sample Variance of Naive Sufficient Unbiased
population population value mean sample mean mean sample mean estimator statistic estimator

S S 𝜃S X 𝜎2
X U 𝜏2

U DS,N ZS DS,U

Sc 𝜃Sc Y 𝜎2
Y — — — — —

F S 𝜃S X 𝜎2
X V 𝜏2

V DF
S,N ZF

S DF
S,U

Sc 𝜃Sc Y 𝜎2
Y W 𝜏2

W DF
Sc ,N ZSc DF

Sc ,U

S + Sc 𝜃F Z — — — DF,N — DF,U

but it is expected that a subpopulation may benefit more so that the focus at the end of the trial may be
in the subpopulation only. Figure 1 shows how the patients in stage 1 are partitioned. The subpopula-
tion, defined by some characteristics such as a biomarker and which we refer to as S, is part of the full
population. We refer to the full population as F and the part of F that is not part of S as Sc. We assume
S comprises a proportion pS of F. At first, we focus on the case of known pS before considering the case
of unknown pS in Section 2.4. We will use subscripts S, Sc and F to indicate notation that corresponds
to populations S, Sc and F, respectively. The patients are randomised to the control treatment and the
experimental treatment. We assume randomisation is stratified such that in each of S and Sc, the number
of patients randomised to the control is equal to the number of patients randomised to the experimental
treatment. Based on stage 1 data, the trial continues to stage 2 either with F or with S.

We assume outcomes from patients are normally distributed with unknown means and known common
variance 𝜎2. We are interested in the unknown treatment difference between means for the control and
the experimental treatment. Table I shows the key notation that we will use in this paper. We denote the
unknown true treatment differences in S and Sc by 𝜃S and 𝜃Sc , respectively. We denote stage 1 sample
mean differences for S and Sc by X and Y , respectively and the stage 1 sample mean difference for F by
Z, which can be expressed by Z = pSX + pSc Y , where pSc = 1 − pS. We assume that a total of n1 patients
are recruited in stage 1 so that SX = pSn1 patients are from S with SX∕2 randomly allocated each to the
control and the experimental treatment. The remaining

(
n1 − SX

)
patients are from Sc with

(
n1 − SX

)
∕2

randomly allocated each to the control and the experimental treatment. Note that X ∼ N
(
𝜃S, 𝜎

2
X

)
, where

𝜎2
X = 4𝜎2∕SX and Y ∼ N

(
𝜃Sc , 𝜎2

Y

)
, where 𝜎2

Y = 4𝜎2∕
(
n1 − SX

)
.

The observed values for X, Y and Z are denoted by x, y and z, respectively. The trial continues to stage
2 with S if x > (z + b), which is equivalent to x > y + b∕

(
1 − pS

)
, where b is a number chosen such that

the trial continues with S if the effect of the new treatment is sufficiently larger in S than in F. The trial
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continues to stage 2 with F if x ⩽ (z+ b), which is equivalent to x ⩽ y+ b∕
(
1 − pS

)
. In stage 2, a total of

n2 patients are recruited. If S is selected, all the n2 patients will be from S with n2∕2 patients randomly
allocated each to the control and the experimental treatment. If F is selected, SV = pSn2 patients will be
from S and (n2 − SV ) patients will be from Sc.

If S is selected to continue to stage 2, the objective is to estimate 𝜃S while if F is selected to continue
to stage 2, the objective is to estimate 𝜃F = pS𝜃S + pSc𝜃Sc . Therefore, the parameter of interest at the end
of the two-stage trial, which we denote by 𝜃, is random and is defined by

𝜃 =
{
𝜃S if S is selected
𝜃F if F is selected.

(1)

We will consider two estimators for 𝜃, namely, the naive and the unbiased estimators. As shown in Table I,
when S is selected, we denote the naive estimator for 𝜃S by DS,N . When F is selected, we denote the naive
estimators for 𝜃S, 𝜃Sc and 𝜃F by DF

F,N , DF
Sc,N and DF,N , respectively. We define the naive estimator for 𝜃 as

DN =
{

DS,N if S is selected
DF,N if F is selected.

(2)

We give the expressions for the naive estimators DS,N , DF
S,N , DF

Sc,N and DF,N and derive their bias functions
in Section 2.2. In the following, we derive uniformly minimum variance unbiased estimators (UMVUEs)
for 𝜃S and 𝜃Sc . As indicated in Table I, when S is selected, we denote the UMVUE for 𝜃S by DS,U . When
F is selected, we denote the UMVUEs for 𝜃S and 𝜃Sc by DF

S,U and DF
Sc,U , respectively. Note that DF, U =

pSDF
S,U + pSc DF

Sc,U is an unbiased estimator for 𝜃F. We define the unbiased estimator for 𝜃 as

DU =
{

DS,U if S is selected
DF,U if F is selected.

(3)

We derive the expressions for UMVUEs DS,U , DF
S,U and DF

Sc,U in Section 2.3.
We will compare the naive (DN) and the unbiased (DU) estimators for 𝜃 by evaluating the bias for DN

and the mean squared errors (MSEs) for DN and DU . We will evaluate biases and MSEs conditional on
the selection made and so for the naive estimator, we will derive expressions for biases for DS,N and DF,N
separately. Similarly, the MSEs for DN and DU will be evaluated conditional on the selection made. Note
that if an estimator is unbiased conditional on selection, it is also unconditionally unbiased.

2.2. The naive estimator

In this section, we describe the naive estimator for 𝜃 defined by equation (2) and derive simple expressions
for its bias function. When S is selected, a possible naive estimator for 𝜃S, which we denote by DS,N in
expression (2), is the two-stage sample mean given by

DS,N = tSX +
(
1 − tS

)
U, (4)

where U denotes the stage 2 sample mean for patients in S and tS = SX∕(SX + n2) is the propor-
tion of patients in S who are in stage 1. The expected value for DS,N can be expressed as E

(
DS,N

)
=

tSE(X|X > Y∗) +
(
1 − tS

)
𝜃S, where Y∗ = Y + b∕

(
1 − pS

)
so that the bias for DS,N is given by

Bias
(
DS,N

)
= E

(
DS,N

)
− 𝜃S = tS

{
E(X|X > Y∗) − 𝜃S

}
= tS

{
E
(
X𝟏[X>Y∗]

)
Pr (X > Y∗)

− 𝜃S

}
, (5)

where 𝟏[X>Y∗] denotes the indicator function for X > Y∗. Following the last expression in Appendix C.1
in [15], Pr (X > Y∗) can be expressed as follows

Pr (X > Y∗) = ∫
∞

−∞

1
𝜎X
𝜙

(
t − 𝜃S

𝜎X

)
Φ
( t − 𝜃∗Sc

𝜎Y

)
dt, (6)
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where 𝜎X and 𝜎Y are as defined in Section 2.1, 𝜃∗Sc = 𝜃Sc + b∕
(
1 − pS

)
and 𝜙 and Φ denote the density

and distribution functions of the standard normal, respectively. Also, following Appendix C.1 in [15],
E
(
X𝟏[X>Y∗]

)
can be expressed as

E
(
X𝟏[X>Y∗]

)
= ∫

∞

−∞

t
𝜎X
𝜙

(
t − 𝜃S

𝜎X

)
Φ
( t − 𝜃∗Sc

𝜎Y

)
dt. (7)

The expressions for Pr (X > Y∗) and E
(
X𝟏[X>Y∗]

)
are substituted in expression (5) to obtain the bias

function for DS,N .
If F is selected to continue to stage 2, we are seeking an estimator for 𝜃F. Let tF

S = SX∕(SX + SV )
and tF

Sc =
(
n1 − SX

)
∕(n1 + n2 − SX − SV ) denote the proportion of patients recruited in stage 1 from

S and Sc, respectively, and as indicated in Table I, let V and W denote the stage 2 sample means for
S and Sc, respectively. If F is selected to continue to stage 2, possible naive estimators for 𝜃S and 𝜃Sc ,
which we denote by DF

S,N and DF
Sc,N , respectively in Section 2.1, are the two-stage sample means DF

S,N =
tF
S X+

(
1 − tF

S

)
V and DF

Sc,N = tF
Sc Y+

(
1 − tF

Sc

)
W. Consequently, a naive estimator for 𝜃F, which we denote

by DF,N in expression (2), could be

DF,N = pSDF
S,N + pSc DF

Sc,N . (8)

The bias for DF,N can be expressed as

Bias(DF,N) = pS ⋅ Bias
(

DF
S,N

)
+ pSc ⋅ Bias

(
DF

Sc,N

)
, (9)

where Bias
(

DF
S,N

)
= E

(
DF

S,N

)
− 𝜃S and Bias

(
DF

Sc,N

)
= E

(
DF

Sc,N

)
− 𝜃Sc are given by

Bias
(

DF
S,N

)
= tF

S

{
E
(
X𝟏[X⩽Y∗]

)
Pr (X ⩽ Y∗)

− 𝜃S

}
and Bias

(
DF

Sc,N

)
= tF

Sc

{
E
(
Y𝟏[X⩽Y∗]

)
Pr (X ⩽ Y∗)

− 𝜃Sc

}
, (10)

where 𝟏[X⩽Y∗] denotes the indicator function for X ⩽ Y∗. As for the expressions for Pr(X > Y∗) and
E
(
X𝟏[X>Y∗]

)
, Pr (X ⩽ Y∗) and E

(
Y𝟏[X⩽Y∗]

)
in the earlier expressions can be respectively expressed as

Pr (X ⩽ Y∗) = ∫
∞

−∞

1
𝜎Y
𝜙

(
t − 𝜃Sc

𝜎Y

)
Φ
( t − 𝜃∗S

𝜎X

)
dt,

where 𝜃∗S = 𝜃S − b∕
(
1 − pS

)
and

E
(
Y𝟏[X⩽Y∗]

)
= ∫

∞

−∞

t
𝜎Y
𝜙

(
t − 𝜃Sc

𝜎Y

)
Φ
( t − 𝜃∗S

𝜎X

)
dt.

For the case we consider here where the population has two partitions, a simple expression for
E
(
X𝟏[X⩽Y∗]

)
is 𝜃S −E

(
X𝟏[X>Y∗]

)
. Appendix C.2 in [15] has expressions with a single integral that can be

modified when the partitioning of the population is more complex.
The aforementioned expressions for Pr (X ⩽ Y∗), E

(
Y𝟏[X⩽Y∗]

)
and E

(
X𝟏[X⩽Y∗]

)
are used to obtain

the bias functions for DF
S,N , DSc,N and DF,N . We will use the bias functions for DS,N , DF

S,N , DSc,N and
DF,N that we have derived in this section to show the extent of the bias for the naive estimator in
Section 4.1, which necessitates the need for an unbiased estimator for 𝜃 such as the one we derive in the
following section.

2.3. Conditionally unbiased estimator for 𝜃 when the prevalence of the subpopulation is known

In this section, we derive an estimator for 𝜃 that is unbiased conditional on the selection made. To do
this, we need the densities of the stage 2 means. The notation for the variances for the stage 2 sample
means is given in Table I. If S is selected to continue to stage 2, U is normally distributed with variance
𝜏2

U = 4𝜎2∕n2. If F is selected to continue to stage 2, V and W are normally distributed with variances
𝜏2

V = 4𝜎2∕SV and 𝜏2
W = 4𝜎2∕(n2 − SV ), respectively. Also, to derive the unbiased estimators, we need
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sufficient statistics and these will be vectors that include the weighted sums of stages 1 and 2 means. The
notation for the weighted means for the two alternative choices of population is given in the second last
column in Table I.

To obtain the unbiased estimator, we use the Rao–Blackwell theorem (for example, [29]). This states
that, to obtain the UMVUE for a parameter, one identifies an unbiased estimator for the parameter of
interest and then derives its expectation conditional on a complete and sufficient statistic. Let QS denote
the event X > Y + b∕

(
1 − pS

)
. Conditional on QS, U is an unbiased estimator for 𝜃S so that if we can

identify a sufficient and complete statistic for estimating 𝜃S, we can use the Rao–Blackwell theorem
to derive the UMVUE for 𝜃S. Define ZS =

(
𝜏U∕𝜎X

)
X +

(
𝜎X∕𝜏U

)
U. We describe in Appendix A that

conditional on QS,
(

Y ,ZS

)
is the sufficient and complete statistic for 𝜃S and that the UMVUE for 𝜃S,

E
[
U|Y ,ZS,QS

]
, which we denote by DS,U in Section 2.1, is given by

DS,U = DS,N −
𝜏2

U√
𝜎2

X + 𝜏2
U

𝜙{ fU(X,Y)}
Φ{ fU(X,Y)}

, (11)

where, after substituting pS with SX∕n1 in the expression for fU(x, y) given in Appendix A,

fU(X,Y) =
⎛⎜⎜⎜⎝
√
𝜎2

X + 𝜏2
U

𝜎2
X

⎞⎟⎟⎟⎠
{

DS,N −
(

Y + b
1 − SX∕n1

)}
.

We have substituted pS with SX∕n1 in the expression for fU(X,Y) and also in the expressions for fV (X,Y)
and fW(X,Y) defined in the following so that estimators in this section and corresponding estimators in
Section 2.4 have the same expressions.

Let QF denote the event X ⩽ Y + b∕
(
1 − pS

)
. Conditional on QF, V and W are unbiased estimators

for 𝜃S and 𝜃Sc , respectively so that if appropriate sufficient and complete statistics for 𝜃S and 𝜃Sc can be
identified, the UMVUEs for 𝜃S and 𝜃Sc can be obtained using the Rao–Blackwell theorem. Define ZF

S =(
𝜏V∕𝜎X

)
X +

(
𝜎X∕𝜏V

)
V and ZF

Sc =
(
𝜏W∕𝜎Y

)
Y +

(
𝜎Y∕𝜏W

)
W. We show in Appendix B that conditional

on QF,
(

Y ,ZF
S

)
and

(
X,ZF

Sc

)
are sufficient and complete statistics for 𝜃S and 𝜃Sc , respectively and that the

UMVUE for 𝜃S, E
[
V|Y ,ZF

S ,QF

]
, which we denote by DF

S,U in Section 2.1, is given by

DF
S,U = DF

S,N +
𝜏2

V√
𝜎2

X + 𝜏2
V

𝜙
{

fV (X,Y)
}

Φ
{

fV (X,Y)
} , (12)

where, after substituting pS with SX∕n1 in the expression for fV (x, y) given in Appendix B,

fV (X,Y) =
⎛⎜⎜⎜⎝
√
𝜎2

X + 𝜏2
V

𝜎2
X

⎞⎟⎟⎟⎠
{(

Y + b
1 − SX∕n1

)
− DF

S,N

}

and that the UMVUE for 𝜃Sc , E
[
W|X,ZF

Sc ,QF

]
, which we denote by DF

Sc,U in Section 2.1, is given by

DF
Sc,U = DF

Sc,N −
𝜏2

W√
𝜎2

Y + 𝜏2
W

𝜙
{

fW(X,Y)
}

Φ
{

fW (X,Y)
} , (13)

where, after substituting pS with SX∕n1 in the expression for fW (x, y) given in Appendix B,

fW (X,Y) =
⎛⎜⎜⎜⎝
√
𝜎2

Y + 𝜏2
W

𝜎2
Y

⎞⎟⎟⎟⎠
{

DF
Sc,N −

(
X − b

1 − SX∕n1

)}
.

Consequently, an unbiased estimator for 𝜃F is DF, U = pSDF
S,U + pSc DF

Sc,U , where DF
S,U and DF

Sc,U are given
by expressions (12) and (13), respectively.
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2.4. Conditionally unbiased estimator for 𝜃 when the prevalence of the subpopulation is unknown

In the previous sections, we have assumed that pS, the true proportion of patients in S, is known. In some
instances, this may not be a reasonable assumption. In this section, we derive conditionally unbiased
estimator for 𝜃 when pS is unknown. Unlike in Sections 2.2 and 2.3, for this case, SX and SV are random.
We will assume SX , the number of patients from S in stage 1, is Binomial(n1, pS) so that consequently
𝜎2

X and 𝜎2
Y are now random. Define p̂S = sX∕n1, where sX is the observed value for SX and z∗ = p̂Sx +(

1 − p̂S

)
y. We assume that the trial continues to stage 2 with S if x > (z∗ + b), which is equivalent to

x > y+b∕
(
1 − p̂S

)
and with F if x ⩽ (z∗ +b),which is equivalent to x ⩽ y+b∕

(
1 − p̂S

)
. Note that when

S is selected, if we derive an estimator for 𝜃S that is unbiased conditional on SX = sX , then the estimator is
unconditionally unbiased. We show in Appendix C that the UMVUE for 𝜃S when SX is random is given by
expression (11).

For the case where F is selected, we assume SV , the number of patients in S in stage 2, is
Binomial(n2, pS) so that consequently 𝜏2

V and 𝜏2
W are now random. We show in Appendix D that the

UMVUEs for 𝜃S and 𝜃Sc are given by expressions (12) and (13), respectively. Let

D∗
F,U = p̂SDF

S,U + (1 − p̂S)DF
Sc,U . (14)

As

E
(

p̂SDF
S,U

)
=
∑
sX

{
sX

n1
Prob(SX = sX)E(DS,U|SX = sX)

}
= 𝜃S

∑
sX

sX

n1
Prob(SX = sX) = pS𝜃S

and similarly E
[(

1 − p̂S

)
DF

Sc,U

]
=
(
1 − pS

)
𝜃Sc , D∗

F,U is an unbiased estimator for 𝜃F.

3. Worked example

In this section, we use an example to demonstrate how the various estimates described in Sections 2.2
and 2.3 are computed and how they compare. Computation of most estimates described in Section 2.4
would be similar to the computation of estimates in Section 2.3. Several trials for Alzheimer’s disease
(AD) consider continuous outcomes. In some AD trials, the primary outcome is continuous [30] so that
our methodology can be used. Also, subgroup analysis has been considered in AD trials [20]. Therefore,
to construct the example, we use the AD trial reported in [31]. This trial recruited patients with moderate
or severe AD, with subgroup analysis performed later for patients with severe AD [20]. We take the
full population to consist of the patients with moderate or severe AD and the subpopulation to be the
patients with severe AD that are thought to potentially benefit more from the new treatment. The primary
outcome in [31] is not continuous and so for our example, we imagine that the primary outcome is Severe
Impairment Battery (SIB) score, a 51-item scale with scores ranging from 0 to 100. This was a secondary
outcome in the original trial. For the AD trial in [31], the observed mean differences in SIB scores for
patients with severe AD and the full population are 7.42 [20] and 5.62 [31], respectively. Based on these
values, the observed mean difference for patients with moderate AD is approximately 3.82. Using the
results for the severe AD patients, we will assume 𝜎 = 13.2. The AD trial [20] is single stage with
approximately 290 patients. In the examples constructed here, we will assume a two-stage ASD with
n1 = n2 = 200.

Using the definitions of Section 2.1, patients with severe AD form subpopulation S. Therefore, we
denote the proportion and the true mean difference in SIB scores for patients with severe AD by pS
and 𝜃S, respectively. In stage 1, the observed mean difference in SIB scores for patients with severe AD
is denoted by x, and in stage 2, the observed mean difference in SIB scores for patients with severe
AD is denoted by u if testing is only conducted for patients with severe AD and by v if the full
population is tested. Also, from the definitions in Section 2.1, patients with moderate AD would form Sc

so that we denote the proportion and the true mean difference in SIB scores for patients with moderate
AD by pSc and 𝜃Sc , respectively. In stage 1, the observed mean difference in SIB scores for patients with
moderate AD is denoted by y, and in stage 2, if the full population is tested, we denote the observed mean
difference in SIB scores for patients with moderate AD by w.

The proportion of patients with severe AD in [31] is approximately 0.5 so that for the example we take
pS = pSc = 0.5. Because n1 = n2 = 200 and pS = 0.5 so that SX = pSn1 = 100 and SV = pSn2 = 100,
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2587



P. K. KIMANI, S. TODD AND N. STALLARD

using the definitions of Section 2.2, tS = SX∕(SX + n2) = 1∕3, tF
S = SX∕(SX + SV ) = 0.5 and tF

Sc =(
n1 − SX

)
∕(n1 + n2 − SX − SV ) = 0.5. We assume the trial continues with S if the effect for patients with

severe AD is greater than the effect for all patients so that b = 0 and b∕
(
1 − pS

)
= 0. To compute the

various unbiased estimates, we need 𝜎2
X = 4𝜎2∕SX = 6.97 and 𝜎2

Y = 4𝜎2∕
(
n1 − SX

)
= 6.97. If stage

2 data are only available for patients with severe AD, to compute an unbiased estimate for 𝜃S, we need
𝜏2

U = 4𝜎2∕n2 = 3.48. If the full population is tested in stage 2, to obtain the unbiased estimates for 𝜃S

and 𝜃Sc , we need 𝜏2
V = 4𝜎2∕SV = 6.97 and 𝜏2

W = 4𝜎2∕(n2 − SV ) = 6.97.
We will compute estimates for four scenarios. In the first two scenarios, S (patients with severe AD) is

selected to continue to stage 2. In both scenarios, we suppose that u = 7.42. For Scenario 1, we suppose
x = 6.5 and y = 5.6 and so the naive estimate for the mean difference for patients with severe AD,
dS,N = tSx+

(
1 − tS

)
u = 7.11. For the unbiased estimate, we use equation (11), with the unbiased estimate

dS,U = dS,N − 𝜏2
U√
𝜎2

X+𝜏
2
U

𝜙{ fU(x,y)}
Φ{ fU(x,y)}

. The values for 𝜎2
X and 𝜏2

U have been evaluated earlier and fU(x, y) =(√
𝜎2

X + 𝜏2
U

/
𝜎2

X

)
(dS,N − y) = 0.7 so that dS,U = 6.67. In the second scenario, we suppose x = 6.5 and

y = 3.8 and using similar computation, dS,N = 7.11 and dS,U = 6.97. The naive estimates for Scenarios
1 and 2 are equal while the unbiased estimates are not equal, with the unbiased estimate for Scenario 2
closer to the naive estimate. Scenarios 1 and 2 differ in the values for y only and this is why the naive
estimates are equal because, conditional on selecting S, the naive estimates depend on x and u only.
However, the unbiased estimates depend on y, and as can be deduced from the expression for fV (x, y),
acquire further from the naive estimate as the difference between the naive estimate and y decreases. This
is reasonable because when data suggest that treatment effects for patients with moderate and severe AD
are similar, selection bias is likely to be high. Same naive estimates and different unbiased estimates for
Scenarios 1 and 2 may indicate more variability for the unbiased estimator for 𝜃S (DS,U) developed in
Section 2.3 compared with the naive estimator DS,N .

The other two scenarios are for the case where the full population is tested in stage 2 and in both
scenarios, we suppose that v = 7.42 and w = 3.48. For the third scenario, we suppose that x = 5.4
and y = 6.0 so that the naive estimates for 𝜃S, 𝜃Sc and 𝜃F are dF

S,N = tF
S x +

(
1 − tF

S

)
v = 6.41, dF

Sc,N =
tF
Sc y +

(
1 − tF

Sc

)
w = 4.91 and dF,N = pSdS,N + pSc dF

Sc,N = 5.66, respectively. Using equations (12) and

(13), the unbiased estimates for 𝜃S and 𝜃SC are given by dF
S,U = dF

S,N + 𝜏2
V√
𝜎2

X+𝜏
2
V

𝜙{ fV (x,y)}
Φ{ fV (x,y)} and dF

Sc,U =

dF
Sc,N − 𝜏2

W√
𝜎2

Y+𝜏
2
W

𝜙{ fW (x,y)}
Φ{ fW (x,y)} , respectively, where fV (x, y) =

(√
𝜎2

X + 𝜏2
V

/
𝜎2

X

)(
y − dF

S,N

)
= −0.22 and

fW(x, y) =
(√

𝜎2
Y + 𝜏2

W

/
𝜎2

Y

)
(dF

Sc,N − x) = −0.26. Consequently, dF
S,U = 8.17, dF

Sc,U = 3.10 and the

unbiased estimate for 𝜃F, dF,U = pSdF
S,U + pSc,UdF

Sc,U = 5.63. The corresponding naive and unbiased
estimates are not equal. In the fourth scenario, we suppose x = 5.7 and y = 5.7 and using similar formulae
as in Scenario 3, dF

S,N = 6.56, dF
Sc,N = 4.76, dF,N = 5.66, dF

S,U = 8.64, dF
Sc,U = 2.62, dF,U = 5.63. In both

scenarios, the naive estimates for 𝜃F are equal. The unbiased estimates for 𝜃F in Scenarios 3 and 4 are also
equal. However, the corresponding naive estimates for 𝜃S and 𝜃Sc in Scenarios 3 and 4 are different. The
corresponding unbiased estimates for 𝜃S and 𝜃Sc in Scenarios 3 and 4 are also different. For both 𝜃S and
𝜃Sc , the difference between the naive estimates in Scenarios 3 and 4 is greater than the difference between
the unbiased estimates in Scenarios 3 and 4. This is because the unbiased estimators for 𝜃S and 𝜃Sc are
functions of all stage 1 data while the naive estimators for 𝜃S and 𝜃Sc only use data from populations S
and Sc, respectively. The larger differences between the unbiased estimates in Scenarios 3 and 4 than the
differences between the naive estimates, may indicate more variability for the unbiased estimator for 𝜃F

(DF,U) developed in Section 2.3 than the naive estimator DF,N . In Scenario 4, compared with Scenario 3,
dF

S,U and dF
Sc,U are further from dF

S,N and dF
Sc,N , respectively. This is reasonable because although in both

scenarios dF
Sc,N is smaller than dF

S,N so that the observed data suggest a correct decision for both scenarios
would be to continue to stage 2 with patients with severe AD only, in Scenario 4, dF

Sc,N is much smaller
than dF

S,N providing more evidence that the correct decision would have been to continue with patients
with severe AD only, and hence more adjustments to the naive estimates are required.
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4. Comparison of the estimators

In this section, we assess the bias of the naive estimator and use a simulation study to compare the mean
squared errors for the naive and unbiased estimators for several scenarios.

4.1. Characteristics of the calculated bias for the naive estimator

From the bias functions derived in Section 2.2, we note that the bias for the naive estimator depends on 𝜃S,
𝜃Sc and pS and so we will vary the values of these parameters. The bias also depends on tF = n1∕(n1 +n2)
but we will only present results for the scenario where n1 = n2 = 200 so that tF = 0.5. From the
expressions for biases, one can demonstrate that biases increase as one makes selection later in the trial,
that is, as tF increases. The other parameters that bias depends on are b, 𝜎2 and n1+n2. In this section, we
will take 𝜎2 = 1. For a given value of tF, to make the results approximately invariant of 𝜎2 and n1 + n2,

we will divide DS,N by
√

4∕
(

pSn1 + n2

)
, which is the approximate standard error (SE) for DS,N and we

will divide estimators DF
Sc,N , DF

S,N and DF,N by
√

4∕(n1 + n2), which is the approximate SE for DF,N . We
will comment how b influences bias after describing results in Figure 2 for which b = 0. The top row in
Figure 2 explores the bias for the naive estimator and how the naive estimators for treatment effects in S
and Sc contribute to the bias. From left to right, the plots correspond to pS = 0.3, pS = 0.5 and pS = 0.7.
The y-axes give the biases. The x-axes correspond to different values for 𝜃S and in all plots, 𝜃Sc = 0. We
have taken a fixed value for 𝜃Sc because bias depends on 𝜃S and 𝜃Sc only through

(
𝜃S − 𝜃Sc

)
. This can

B
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Figure 2. Plots showing bias (top row) and mean squared error (bottom row) for the case where n1 = n2 = 200,
𝜎2 = 1 and 𝜃Sc = 0. The x-axes correspond to the values for 𝜃S. Each column corresponds to a different value for

pS. MSE, mean squared error; SE, standard error.
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be observed by noting that if we add some value 𝛿 to 𝜃S and 𝜃Sc , the expressions for bias in Section 2.2
change by having t − 𝛿 − 𝜃S, t − 𝛿 − 𝜃Sc , t − 𝛿 − 𝜃∗S and t − 𝛿 − 𝜃∗Sc in place of t − 𝜃S, t − 𝜃Sc , t − 𝜃∗S and
t − 𝜃∗Sc , respectively. If we let r = t − 𝛿 and integrate with respect to r and use subscript 𝛿 for the new
expressions used to obtain bias, these can be expressed as Pr𝛿 (X > Y∗) = Pr (X > Y∗), Pr𝛿 (X ⩽ Y∗) =
Pr (X ⩽ Y∗), E𝛿

(
X𝟏[X>Y∗]

)
= E

(
X𝟏[X>Y∗]

)
+𝛿Pr (X > Y∗), E𝛿

(
Y𝟏[X⩽Y∗]

)
= E

(
Y𝟏[X⩽Y∗]

)
+𝛿Pr (X ⩽ Y∗)

and E𝛿
(
X𝟏[X⩽Y∗]

)
= E

(
X𝟏[X⩽Y∗]

)
+ 𝛿Pr (X ⩽ Y∗). Substituting the new expressions in equations (5) and

(10), we obtain the same forms for bias and hence the same bias when 𝛿 is added to both 𝜃S and 𝜃Sc .
In Figure 2, the legends at the bottom of the plots describe the line types for each estimator. In the

first legend, the continuous lines (—) correspond to the case where S is selected to continue to stage
2 and hence gives the bias for DS,N as an estimator for 𝜃S. The bias for DS,N decreases as

(
𝜃S − 𝜃Sc

)
increases. This is reasonable because as 𝜃S becomes larger than 𝜃Sc , Pr(X > Y∗) approaches 1 so that
the density of X conditional on X > Y∗ approaches the unconditional density of X and consequently the
bias for DS,N approaches zero. The decrease of bias for DS,N can also be explained by the expressions
for Pr(X > Y∗) and E

(
X𝟏[X>Y∗]

)
that are given by equations (6) and (7), respectively. As 𝜃S becomes

larger than 𝜃Sc , the density for the sample mean difference in S becomes stochastically larger than the
density for the sample mean difference in Sc and consequently, for the values of t, where the term with
𝜙 in Pr(X > Y∗) and E

(
X𝟏[X>Y∗]

)
is non-zero, the term with Φ approaches 1. Hence, Pr(X > Y∗) and

E
(
X𝟏[X>Y∗]

)
approach one and E(X), respectively so that the bias approaches zero. The dotted lines (⋅ ⋅ ⋅)

show the bias for DF
Sc,N , the naive estimator for 𝜃Sc when F is selected. The bias is positive and increases

as
(
𝜃S − 𝜃Sc

)
increases. The dashed lines (- - -) show the bias for DF

S,N , the naive estimator for 𝜃S when F
is selected. The bias is negative and increases as

(
𝜃S − 𝜃Sc

)
increases. The explanation for the behaviours

of the biases for DF
Sc,N and DF

S,N is similar to the explanation for the behaviour of the bias for DS,N . When
pS = 0.5 (middle panel), except for the sign, the bias for DF

S,N is equal to the bias for DF
Sc,N . For the other

values for pS (other panels in Figure 2), except for the sign, we note that Bias(DF
S,N) multiplied by pS is

equal to Bias(DF
Sc,N) multiplied by pSc . Therefore, if F is selected, although the naive components DF

S,N
and DF

Sc,N are biased, as can be seen from the short and long dashed lines (– - – - –), the naive estimator
DF,N is unbiased. The dashed and dotted line (⋅ − ⋅ − ⋅) shows the bias for DN , the naive estimator for 𝜃.
The bias is maximal when 𝜃S = 𝜃Sc . Based on results not presented here, for b ≠ 0, the lines in Figure 2
shift by b∕

(
1 − pS

)
so that bias is maximal when 𝜃S = 𝜃Sc + b∕

(
1 − pS

)
. Noting that the selection is

based on max{X,Y + b∕
(
1 − pS

)
}, the proof that the bias is maximal when 𝜃S = 𝜃Sc + b∕

(
1 − pS

)
is

given by Carreras and Brannath [32].
From the aforementioned assessment of the bias for the naive estimator, we note that, when S is

selected, the bias for the naive estimator for 𝜃S is substantial. If F is selected, the naive estimator for 𝜃F
is unbiased. However, the naive estimators for 𝜃S and 𝜃Sc are substantially biased. It is our view that we
need unbiased estimators for 𝜃S and 𝜃Sc such as those developed in Section 2.3 when F is selected because
we believe investigators would still want to learn about 𝜃S and 𝜃Sc .

4.2. Simulation of mean squared errors

In this section, we perform a simulation study to compare the MSEs for the naive and unbiased estimators.
In Section 4.1, for the case where F is selected, as well as exploring the bias for the naive estimator for
𝜃F, we have also explored the bias for the naive estimators for 𝜃S and 𝜃Sc , which are the components
for 𝜃F. In this section, we will only focus on the estimators that will be used for inference after stage 2.
Hence, when F is selected, we will only compare MSEs for the naive and unbiased estimators for 𝜃F,
and when S is selected, we will only compare MSEs for the naive and unbiased estimators for 𝜃S. For
each combination of 𝜃S, 𝜃Sc , tF and pS, we run 1,000,000 simulation runs. As in Section 4.1, we will only
present the MSE results for the case where b = 0. For simulations with b = 0, in each simulation run, we
simulate stage 1 data (x and y) and if x > y in which case S would be selected to continue to stage 2, we
simulate u and if x ⩽ y in which case F would be selected to continue to stage 2, we simulate v and w.

The bottom row in Figure 2 gives the square root of the MSEs divided by approximate SE. As indicated
earlier, these plots are for the cases where b = 0. Based on results not presented here, for b ≠ 0, the lines in

Figure 2 shift by b∕
(
1 − pS

)
. For both the naive and unbiased estimators, we take SE =

√
4∕
(

pSn1 + n2

)
when S is selected to continue to stage 2 and SE =

√
4∕
(
n1 + n2

)
when F is selected to continue to

stage 2. From left to right, pS = 0.3, pS = 0.5 and pS = 0.7, respectively. The second legend at the
bottom of the plots describes the line types for each estimator. The continuous lines (—) correspond to
DS,N , the naive estimator for 𝜃S when S is selected to continue to stage 2. The MSE for DS,N decreases
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as
(
𝜃S − 𝜃Sc

)
increases and varies with the values for pS but not monotonically. The thick continuous

lines (—) correspond to DS,U , the UMVUE for 𝜃S when S is selected to continue to stage 2. The MSE
for DS,U decreases as

(
𝜃S − 𝜃Sc

)
increases and seems to increase as the values for pS increase. For most

scenarios, the MSE for DS,U is larger than the MSE for DS,N . As for bias, the dashed and dotted lines
(⋅ − ⋅ − ⋅) correspond to DF,N , the naive estimator for 𝜃F when F is selected to continue to stage 2 and
for all scenarios, the

√
MSE(DF,N)∕SE is approximately 1. The thick dashed and dotted lines (- ⋅ - ⋅ -)

correspond to DF,U , the unbiased estimator for 𝜃F when F is selected to continue to stage 2. The MSE
for DF,U increases with

(
𝜃S − 𝜃Sc

)
and pS.

For the case where S is selected to continue to stage 2, comparing the biases and MSEs for DS,N and
DS,U , we would recommend using DS,U . This is because although for most scenarios in Figure 2, the
MSE for DS,U is greater than the MSE for DS,N , the gain achieved by DS,U being an unbiased estimator
outweighs the loss of precision by using DS,U . For example, from the results in the top left and bottom left
plots, when 𝜃S = 0, (Bias(DS,N))∕SE is 0.32 while

√
MSE(DS,N)∕SE is 0.07 less than

√
MSE(DS,U)∕SE

so that DS,U removes substantial bias at the expense of a slight loss of precision around the true treatment
effect. Similar results are observed in the other plots. For the case where F is selected to continue to stage
2, from the results in Figure 2, DF,N seems a better estimator for 𝜃F than the estimator DF,U because both
are mean unbiased but DF,N has smaller MSE.

The summary findings from the simulation study is that bias for the naive estimators can be substantial
but the naive estimators have lower MSEs than the unbiased estimators we derived in Section 2.3.
Balancing between the gain of having an unbiased estimator and the loss of precision, when S is selected,
we recommend using the unbiased estimator for 𝜃S given by expression (11). When F is selected, both
the naive estimator DF,N and the unbiased estimator DF,U are mean unbiased but DF,N has better preci-
sion than DF,U and so for the case when F is selected, we recommend using the naive estimator for 𝜃F
(DF,N) given by expression (8).

4.3. Properties of the estimators when the prevalence of the subpopulation is unknown

The results in Sections 4.1 and 4.2 are for the case of known pS. In this section, we assess the performance
of the various estimators when pS is unknown. To do this, we use the true value pS to simulate the number
of patients in S in stage 1 (sX) as Binomial

(
n1, pS

)
and calculate p̂S = sX∕n1. After simulating sX , we then

simulate stage 1 sample mean differences x and y for populations S and Sc, respectively. As in Sections 4.1
and 4.2, we only present results for the case where b = 0. For this case, because b∕

(
1 − p̂S

)
= 0, we

select S if x > y and select F if x ⩽ y. If S is selected, we simulate stage 2 sample mean difference u from a
sample consisting of n2∕2 patients in each of the control and experimental arms. The naive estimate for 𝜃S
is dS,N = (sXx+n2u)∕(sX+n2). The unbiased estimate for 𝜃S, dS,U , is obtained using expression (11). If F is
selected, we use the true value pS to simulate the number of patients in S in stage 2 (sV ) as Binomial(n2, pS).
For each of S and Sc, we assume the number of patients are equally allocated to the control and the
experimental treatments. Based on sV patients from S and (n2 − sV ) patients from Sc, we simulate stage
2 sample mean differences v and w for S and Sc, respectively. Let p̂∗S = (sX + sV )∕(n1 + n2), we compute
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Figure 3. Mean squared error for the case where n1 = n2 = 200, 𝜎2 = 1 and 𝜃Sc = 0. The x-axes correspond to the
values for 𝜃S. Each column corresponds to a different value for pS. MSE, mean squared error; SE, standard error.
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the naive estimates for 𝜃S, 𝜃Sc and 𝜃F as dF
S,N = tF

S x +
(
1 − tF

S

)
v, dF

Sc,N = tF
Sc y +

(
1 − tF

Sc

)
w and d∗

F,N =
p̂∗SdF

S,N +
(
1 − p̂∗S

)
dF

Sc,N , respectively. Note that when pS is known p̂∗S = pS so that the estimator D∗
F,N can

be reasonably compared with the estimator DF,N given by expression (8). The unbiased estimates for 𝜃S(
dF

S,U

)
and 𝜃Sc

(
dF

Sc,U

)
are obtained using expressions (12) and (13), respectively. The unbiased estimate

for 𝜃F is calculated as dF,U = p̂SdF
S,U +

(
1 − p̂S

)
dF

Sc,U .
Figure 3 gives the simulation results for the configurations considered in Figure 2. The form of the SEs

used in Figure 3 are the same as those used in Figure 2. We have not presented bias plots because the
estimators obtained assuming that pS is known, have very similar biases to the estimators obtained assum-
ing that pS is unknown. When S is selected, for the naive estimator for 𝜃S, there is no noticeable difference
in MSEs between the case when pS is assumed known and the case when pS is assumed unknown so that
SX is random. Similar results are observed for DS,U , the unbiased estimator for 𝜃S when S is selected. For
the case where F is selected, for both the naive estimator and the unbiased estimator for 𝜃F, the MSEs for
the case where pS is assumed known and the case where ps is estimated are approximately equal when
𝜃S = 𝜃Sc . When 𝜃S ≠ 𝜃Sc , the MSEs for D∗

F,N and D∗
F,U for the case where pS is estimated are slightly

higher than MSEs for DF,N and DF,U , respectively, which are the estimators for the case where pS is
assumed known. Based on results not presented here, when b ≠ 0 so that we select S if x > y+b∕

(
1 − p̂S

)
and select F if x ⩽ y + b∕

(
1 − p̂S

)
, as in the case where ps is assumed known, we noted that the lines in

Figure 3 shift by b∕
(
1 − pS

)
.

To summarise, the results obtained when pS is estimated are very similar to results when pS is assumed
known. The biases for the different estimators for 𝜃S and 𝜃F are almost identical and MSEs are only
slightly higher. The reason that the increases in MSEs are not substantial for the case when pS is estimated
may be as a result of adequate sample size in stage 1 and hence good precision for the estimator for pS.
An estimator for pS with good precision would not add a great deal of variability to the estimators for 𝜃S
and 𝜃F. Thus, if stage 1 data are adequate to estimate pS, the estimators developed in this paper perform
almost as good as when pS is known.

5. Discussion

In order to make testing of new interventions more efficient, ASDs have been proposed. Such designs have
been used for trials with subpopulation selection. This is the case we consider in this paper. Specifically,
we have considered a design that has two stages, with data collected from stage 1 used to select the
population to test in stage 2. In stage 2, additional data for a sample drawn from the selected population
are collected. The final confirmatory analysis uses data from both stages. Statistical methods that have
previously been developed to adjust for selection bias that arise from using stage 1 data have addressed
hypothesis testing without inflating type I error. In this work, we have focussed on point estimation.
We have derived formulae for obtaining unbiased point estimators. We have derived the formulae for
the case where the prevalence of the subpopulation is considered known and also for the case where the
prevalence of the subpopulation is unknown. To acquire unbiased estimators when the prevalence of the
subpopulation is unknown, we have derived formulae for unbiased estimators when the proportion of
patients from the subpopulation does not have to be equal to the prevalence of the subpopulation. This
means that the estimators we have derived can be used to obtain unbiased estimates for trials that use
enrichment designs, where proportion of the subpopulation in the trial is not equal to the prevalence of the
subpopulation. The rest of this discussion focusses on the case where the prevalence of the subpopulation
is assumed known but most points also hold for the case where the prevalence is unknown.

The unbiased estimators we have developed have higher MSEs compared with the naive estimators.
Balancing between unbiasedness and precision, when the subpopulation is selected, we recommend using
the unbiased estimator we have derived and when the full population is selected, we recommend using
the naive estimator. The unbiased estimator for 𝜃F that we derived conditional on continuing to stage
2 with the full population, although based on UMVUEs for 𝜃S and 𝜃Sc , may not be a UMVUE among
estimators for 𝜃F that are functions of unbiased estimators for 𝜃S and 𝜃Sc and so more research is required
to check whether it is an UMVUE and if not, seek an UMVUE.

The estimators we have developed in this paper are unbiased conditional on the selection made. For the
case where the full population is selected, we have derived separate unbiased estimators for the treatment
effects for the subpopulation and its complement. These estimators are unbiased only if we do not make
a selection after stage 2. That is, for the case where the full population continues to stage 2, if we use the
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observed separate estimates to make a claim that the treatment effect is larger in the subpopulation or in
the full population, then the estimators developed in this paper are no longer unbiased. In this case, the
same data are used both for selection and estimation, and Stallard et al. [33] have shown that there is no
unbiased estimator.

We have considered the case whether the selection rule is pre-defined and based on the efficacy
outcome. In terms of estimation, a pre-defined selection rule makes it possible to derive point estimators
and evaluate their biases because bias is an expectation, and it is not clear what all possible outcomes
are when the selection rule is not pre-defined. The Food and Drug Administration draft guidance also
acknowledges the difficulty in interpreting trial results when adaptation is not pre-defined [34]. A com-
promise between a pre-defined selection rule used in this paper and a setting where the selection rule is
not pre-defined is a pre-defined selection rule that includes additional aspects such as safety. More work
is required to develop point estimators for such settings.

The unbiased estimators we have developed are for the case where the subpopulations are pre-specified
and they cannot be assumed to be unbiased in trials where subpopulations are not pre-specified. It is
flexible not to pre-specify subpopulations but it is hard to evaluate bias of point estimators because bias
is an expectation, and it is not clear what all possible outcomes are when the subpopulations are not
pre-specified. Hence, it is not possible to quantify the bias of the estimators developed here when the
subpopulations are not pre-specified [35].

Depending on the number of subpopulations and how they are defined, there are several configura-
tions on how the subpopulations can be nested within each other [25]. We have focussed on a simple and
common configuration where a single subpopulation is thought to benefit more, so that based on stage 1
data, the investigators want to choose between continuing with the full population or the subpopulation.
By noting that to obtain unbiased estimators we have partitioned the full population into distinct parts,
the formulae we have developed for this configuration can be extended to other configurations. If the full
population is not of interest and the other subpopulations are not nested with each other, the subpopula-
tions already form distinct parts and the formulae derived for treatment selection such as in [15] can be
used directly. If the full population is of interest or some subpopulations are nested within each other,
it is possible to partition the full population into distinct parts and use our methodology to obtain unbi-
ased estimators for the distinct parts. However, following our findings that for some selections the naive
estimator is unbiased and has better precision than an estimator that combines unbiased estimators for the
distinct parts, in order to make a recommendation on the best estimator for the case where there is nesting
of subpopulations, we suggest comparing the characteristics of the naive estimators to the estimator that
combines unbiased estimators for the distinct parts in the population.

We have assumed that whether the subpopulation or the full population is selected, the total sample
size in stage 2 is fixed. The results also hold for the case where stage 2 sample sizes for continuing with
the subpopulation and the full population are different but prefixed for each selection made. The results
may not hold when the stage 2 sample size depends on the observed data in some other way.

Finally, if there is a futility rule that requires the trial to continue to stage 2 only if the mean
difference for the selected population exceeds some pre-specified value and as in [15] estimation
is conditional on continuing to stage 2, the unbiased estimators developed in Section 2.3 can be
extended to account for this. If we denote the pre-specified futility value by B so that the trial

stops if max{x, z} < B, the expression for fU(X,Y) in equation (11) becomes

(√
𝜎2

X + 𝜏2
U∕𝜎

2
X

)
[
DS,N − max

{
B,
(
Y + b∕

(
1 − pS

))}]
and the expression for fW(X,Y) in equation (13) becomes(√

𝜎2
Y + 𝜏2

W∕𝜎2
Y

)[
DF

Sc,N − max
{(

X − b∕
(
1 − pS

))
, (B − pSX)∕

(
1 − pS

) }]
. The expression given by

equation (12) changes to

DF
S,U = DF

S,N −
𝜏2

V√
𝜎2

X + 𝜏2
V

𝜙
{

fV (X,Y)
}
− 𝜙

{
fVB

(X,Y)
}

Φ
{

fV (X,Y)
}
− Φ

{
fVB

(X,Y)
} ,

where fV (X,Y) is as given before, and the expression for fVB
(X,Y) is

(√
𝜎2

X + 𝜏2
V∕𝜎

2
X

)
[
(B −

(
1 − pS

)
Y)∕pS − DF

S,N

]
. Note that with a futility rule, the naive estimator for 𝜃F defined in this

paper is no longer mean unbiased.
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Appendix A: Uniformly minimum variance unbiased estimator for 𝜃S when the
subpopulation is selected and pS is known

Here, we derive the UMVUE for 𝜃S conditional on selecting S. We will skip several steps that are similar
to the steps used in [11, 14, 15]. The notation used in [15] is very similar to the notation we have used.
Let QS denote the event X > Y+b∕

(
1 − pS

)
. Conditional on the event QS, the density f (u, x, y) is given by

1
𝜏U
𝜙

(
u − 𝜃S

𝜏U

)
1
𝜎X
𝜙

(
x − 𝜃S

𝜎X

)
1
𝜎Y
𝜙

(
y − 𝜃Sc

𝜎Y

)
𝟏QS

K−1
S (𝜃),

where 𝟏QS
denotes the indicator function for the event QS and KS(𝜃) the probability for event QS given

the true parameter vector 𝜃 =
(
𝜃S, 𝜃Sc

)
. The density f (u, x, y) can be re-expressed to

1
𝜏U
𝜙

⎛⎜⎜⎜⎝
𝜏U

𝜎X
x + 𝜎X

𝜏U
u − 𝜃S𝛼1√

𝜎2
X + 𝜏2

U

⎞⎟⎟⎟⎠
1
𝜎X
𝜙

⎛⎜⎜⎜⎝
x −

(
𝜏U

𝜎X
x + 𝜎X

𝜏U
u
)
∕𝛼1

𝜎2
X

𝜏2
U

𝛼2

⎞⎟⎟⎟⎠
1
𝜎Y
𝜙

(
y − 𝜃Sc

𝜎Y

)
𝟏QS

K−1
S (𝜃),

where

𝛼1 =
𝜎X

𝜏U
+
𝜏U

𝜎X
and 𝛼2 =

𝜏2
U√

𝜎2
X + 𝜏2

U

.

Let zs =
(
𝜏U∕𝜎X

)
x+

(
𝜎X∕𝜏U

)
u; from the preceding density, conditional on QS,

(
Y ,ZS

)
is sufficient and

complete statistic for estimating 𝜃S. Therefore, because conditional on QS, U is an unbiased estimator for
𝜃S, the UMVUE for 𝜃S is E

[
U|Y ,ZS,QS

]
. To obtain the expression for E

[
U|Y ,ZS,QS

]
, we derive the

density f
(
u|y, zS,QS

)
= f

(
u, y, zS|QS

)
∕f
(

y, zS|QS

)
.

The aforementioned density can be transformed to obtain the density f (x, y, zS|QS) given by

𝜙

⎛⎜⎜⎜⎝
zS − 𝜃S𝛼1√
𝜎2

X + 𝜏2
U

⎞⎟⎟⎟⎠
1

𝜎2
X

𝜙

⎛⎜⎜⎜⎝
x − zS∕𝛼1

𝜎2
X

𝜏2
U

𝛼2

⎞⎟⎟⎟⎠
1
𝜎Y
𝜙

(
y − 𝜃Sc

𝜎Y

)
𝟏QS

K−1
S (𝜃),

and to obtain the density f
(
u, y, zS|QS

)
given by

𝜙

⎛⎜⎜⎜⎝
zS − 𝜃S𝛼1√
𝜎2

X + 𝜏2
U

⎞⎟⎟⎟⎠
1

𝜏2
U

𝜙

(
u − zS∕𝛼1

𝛼2

)
1
𝜎Y
𝜙

(
y − 𝜃Sc

𝜎Y

)
𝟏QS

K−1
S (𝜃).

The density f ( y, zS|QS) is obtained from f (x, y, zS|QS) by integrating out x as follows

f ( y, zS|QS) =
1

𝜎2
X

𝜙

⎛⎜⎜⎜⎝
zS − 𝜃S𝛼1√
𝜎2

X + 𝜏2
U

⎞⎟⎟⎟⎠
1
𝜎Y
𝜙

(
y − 𝜃Sc

𝜎Y

)⎧⎪⎨⎪⎩∫
∞

y+b∕(1−pS)
𝜙

⎛⎜⎜⎜⎝
x − zS∕𝛼1

𝜎2
X

𝜏2
U

𝛼2

⎞⎟⎟⎟⎠ dx

⎫⎪⎬⎪⎭ 𝟏QS
K−1

S (𝜃)

=
𝛼2

𝜏2
U

𝜙

⎛⎜⎜⎜⎝
zS − 𝜃S𝛼1√
𝜎2

X + 𝜏2
U

⎞⎟⎟⎟⎠
1
𝜎Y
𝜙

(
y − 𝜃Sc

𝜎Y

)
[1 − Φ{−fU(x, y)}]𝟏QS

K−1
S (𝜃),

(A.1)

where

fU(x, y)=
(√

𝜎2
X + 𝜏2

U

/
𝜎2

X

){
𝜏2

Ux + 𝜎2
Xu

𝜎2
X + 𝜏2

U

−
(

y + b
1 − pS

)}
=
(√

𝜎2
X + 𝜏2

U

/
𝜎2

X

){
dS,N −

(
y + b

1 − pS

)}
,
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where dS,N denotes the observed value for DS,N . We are seeking f
(
u|y, zS,QS

)
, which is given by

f
(
u, y, zS|QS

)
f
(

y, zS|QS

) =

𝜙

(
zS−𝜃S𝛼1√
𝜎2

X+𝜏
2
U

)
1
𝜏2

U

𝜙

(
u−zS∕𝛼1

𝛼2

)
1
𝜎Y
𝜙

(
y−𝜃Sc

𝜎Y

)
𝟏QS

K−1
S (𝜃)

𝛼2

𝜏2
U

𝜙

(
zS−𝜃S𝛼1√
𝜎2

X+𝜏
2
U

)
1
𝜎Y
𝜙

(
y−𝜃Sc

𝜎Y

)
[1 − Φ{−fU(x, y)}]𝟏QS

K−1
S (𝜃)

=
1
𝛼2
𝜙

(
u−zS∕𝛼1

𝛼2

)
1 − Φ{−fU(x, y)}

𝟏
[

u <
𝜏U

𝜎X

{
zS −

𝜏U

𝜎X

(
y + b

1 − pS

)}]
.

(A.2)

We want to obtain the expression for E
[
U|Y ,ZS,QS

]
and so we derive ∫ uf

(
u|y, zS,QS

)
du. Using the

standard result that ∫ a
−∞(r∕𝜎)𝜙((r − 𝜇)∕𝜎)dr = −𝜎𝜙((a− 𝜇)∕𝜎) + 𝜇Φ((a− 𝜇)∕𝜎) [36] and steps in [15],

∫ uf
(
u|y, zS,QS

)
du =

𝜏2
Ux + 𝜎2

Xu

𝜎2
X + 𝜏2

U

−
𝜏2

U√
𝜎2

X + 𝜏2
U

𝜙{ fU(x, y)}
Φ{ fU(x, y)}

= dS,N −
𝜏2

U√
𝜎2

X + 𝜏2
U

𝜙{ fU(x, y)}
Φ{ fU(x, y)}

so that conditional on continuing to stage 2 with S, expression (11) gives the UMVUE for 𝜃S.

Appendix B: Uniformly minimum variance unbiased estimators for 𝜃S and 𝜃Sc when
the full population is selected and pS is known

Here we derive the UMVUEs for 𝜃S and 𝜃Sc conditional on continuing with F in stage 2. We derive the
UMVUEs for 𝜃S and 𝜃Sc separately. Let QF denote the event X ⩽ Y + b∕

(
1 − pS

)
. Conditional on QF,

the density f (v, x, y,w|QF) is given by

1
𝜏V
𝜙

(
v − 𝜃S

𝜏V

)
1
𝜎X
𝜙

(
x − 𝜃S

𝜎X

)
1
𝜎Y
𝜙

(
y − 𝜃Sc

𝜎Y

)
1
𝜏W
𝜙

(
w − 𝜃Sc

𝜏W

)
𝟏QF

K−1
F (𝜃), (B.1)

where 𝟏QF
denotes the indicator function for the event QF and KF(𝜃) the probability for event QF given

the true parameter vector 𝜃 = (𝜃S, 𝜃Sc). The aforementioned density can be re-expressed as

1
𝜏V
𝜙

⎛⎜⎜⎜⎝
𝜏V

𝜎X
x + 𝜎X

𝜏V
v − 𝜃S𝛾1√

𝜎2
X + 𝜏2

V

⎞⎟⎟⎟⎠
1
𝜎X
𝜙

⎛⎜⎜⎜⎝
x −

(
𝜏V

𝜎X
x + 𝜎X

𝜏V
v
)
∕𝛾1

𝜎2
X

𝜏2
V

𝛾2

⎞⎟⎟⎟⎠𝜓( y,w)𝟏QF
K−1

F (𝜃),

where

𝛾1 =
𝜎X

𝜏V
+
𝜏V

𝜎X
, 𝛾2 =

𝜏2
V√

𝜎2
X + 𝜏2

V

and 𝜓( y,w) = 1
𝜎Y
𝜙

(
y − 𝜃Sc

𝜎Y

)
1
𝜏W
𝜙

(
w − 𝜃Sc

𝜏W

)
.

Let zF
S =

(
𝜏V∕𝜎X

)
x+

(
𝜎X∕𝜏V

)
v; from the preceding density, conditional on QF,

(
ZF

S ,Y ,W
)

is sufficient
and complete statistic for estimating 𝜃S. Therefore, because conditional on QF, V is an unbiased estimator
for 𝜃S, the UMVUE for 𝜃S is E

[
V|ZF

S ,Y ,W,QF

]
. To obtain the expression for E

[
V|ZF

S ,Y ,W,QF

]
, we

derive the density f
(
v|zF

S , y,w,QF

)
= f

(
v, zF

S , y,w|QF

) /
f
(
zF

S , y,w|QF

)
.

The aforementioned density can be transformed to obtain the density f
(
x, zF

S , y,w|QF

)
, which is

given by

𝜙

⎛⎜⎜⎜⎝
zF

S − 𝜃S𝛾1√
𝜎2

X + 𝜏2
V

⎞⎟⎟⎟⎠
1

𝜎2
X

𝜙

⎛⎜⎜⎜⎝
x − zF

S∕𝛾1

𝜎2
X

𝜏2
V

𝛾2

⎞⎟⎟⎟⎠𝜓( y,w)𝟏QF
K−1

F (𝜃),
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and the density f
(
v, zF

S , y,w|QF

)
, which is given by

𝜙

⎛⎜⎜⎜⎝
zF

S − 𝜃S𝛾1√
𝜎2

X + 𝜏2
V

⎞⎟⎟⎟⎠
1

𝜏2
V

𝜙

(
v − zF

S∕𝛾1

𝛾2

)
𝜓( y,w)𝟏QF

K−1
F (𝜃).

As in Appendix A, the density f
(
zF

S , y,w|QF

)
is obtained by integrating out x in the f

(
x, zF

S , y,w|QF

)
as follows

f
(
zF

S , y,w|QF

)
= 1

𝜎2
X

𝜙

⎛⎜⎜⎜⎝
zF

S − 𝜃S𝛾1√
𝜎2

X + 𝜏2
V

⎞⎟⎟⎟⎠𝜓( y,w)
⎧⎪⎨⎪⎩∫

y+b∕(1−pS)

−∞
𝜙

⎛⎜⎜⎜⎝
x − zF

S∕𝛾1

𝜎2
X

𝜏2
V

𝛾2

⎞⎟⎟⎟⎠ dx

⎫⎪⎬⎪⎭ 𝟏QF
K−1

F (𝜃)

=
𝛾2

𝜏2
V

𝜙

⎛⎜⎜⎜⎝
zF

S − 𝜃S𝛾1√
𝜎2

X + 𝜏2
V

⎞⎟⎟⎟⎠𝜓( y,w)Φ{ fV (x, y)}𝟏QF
K−1

F (𝜃),

where

fV (x, y) =
(√

𝜎2
X + 𝜏2

V

/
𝜎2

X

)⎛⎜⎜⎜⎝ y + b
1 − pS

−
𝜏2

Vx + 𝜎2
Xv√

𝜎2
X + 𝜏2

V

⎞⎟⎟⎟⎠ =
(√

𝜎2
X + 𝜏2

V

/
𝜎2

X

)(
y + b

1 − pS
− dF

S,N

)
,

where dF
S,N is the observed value for DF

S,N . We are seeking the density f
(
v|zF

S , y,w,QF

)
f
(
v, zF

S , y,w|QF

)
f
(
zF

S , y,w|QF

) =
1
𝛾2
𝜙

(
v−zF

S ∕𝛾1

𝛾2

)
Φ{ fV (x, y)}

⋅ I

[
v >

𝜏V

𝜎X

{
zF

S −
𝜏V

𝜎X

(
y + b

1 − pS

)}]
.

We want to obtain the expression for E
[
V|ZF

S ,Y ,W,QF

]
and so we derive ∫ vf

(
v|zF

S , y,w,QF

)
dv. As in

Appendix A, using the standard result that ∫ a
−∞(r∕𝜎)𝜙((r−𝜇)∕𝜎)dr = −𝜎𝜙((a−𝜇)∕𝜎) +𝜇Φ((a−𝜇)∕𝜎)

and similar steps as in [15], we can show that

∫ vf
(
v|zF

S , y,w,QF

)
dv =

𝜏2
Vx + 𝜎2

Xv

𝜎2
X + 𝜏2

V

+
𝜏2

V√
𝜎2

X + 𝜏2
V

𝜙
{

fV (x, y)
}

Φ
{

fV (x, y)
} = dF

S,N +
𝜏2

V√
𝜎2

X + 𝜏2
V

𝜙
{

fV (x, y)
}

Φ
{

fV (x, y)
} ,

so that expression (12) gives the UMVUE for 𝜃S conditional on continuing with F.
To obtain the unbiased estimator for 𝜃Sc , we note that the density given by expression (B.1) can be

re-expressed as

1
𝜏W
𝜙

⎛⎜⎜⎜⎝
𝜏W

𝜎Y
y + 𝜎Y

𝜏W
w − 𝜃Sc𝛽1√

𝜎2
Y + 𝜏2

W

⎞⎟⎟⎟⎠
1
𝜎Y
𝜙

⎛⎜⎜⎜⎝
y −

(
𝜏W

𝜎Y
y + 𝜎Y

𝜏2
w
)
∕𝛽1

𝜎2
Y

𝜏2
W

𝛽2

⎞⎟⎟⎟⎠𝜓(x, v)𝟏QF
K−1

F (𝜃),

where

𝛽1 =
𝜎Y

𝜏W
+
𝜏W

𝜎Y
, 𝛽2 =

𝜏2
W√

𝜎2
Y + 𝜏2

W

and 𝜓(x, v) = 1
𝜎X
𝜙

(
x − 𝜃S

𝜎X

)
1
𝜏V
𝜙

(
v − 𝜃S

𝜏V

)
.
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Let zF
Sc =

(
𝜏W∕𝜎Y

)
y+

(
𝜎Y∕𝜏W

)
w; from the preceding density, conditional on QF,

(
ZF

Sc ,X,V
)

is sufficient
and complete statistic for estimating 𝜃Sc . Therefore, because conditional on QF, W is an unbiased estima-
tor for 𝜃Sc , the UMVUE for 𝜃Sc is E

[
W|ZF

Sc ,X,V ,QF

]
. To obtain the expression for E

[
W|ZF

Sc ,X,V ,QF

]
,

we derive the density f
(
w|zF

Sc , x, v,QF

)
= f

(
w, zF

Sc , x, v|QF

)
∕f
(
zF

Sc , x, v|QF

)
. The aforementioned density

can be transformed to obtain the density f
(

y, zF
Sc , x, v|QF

)
, which is given by

𝜙

⎛⎜⎜⎜⎝
zF

Sc − 𝜃Sc𝛽1√
𝜎2

Y + 𝜏2
W

⎞⎟⎟⎟⎠
1

𝜎2
Y

𝜙

⎛⎜⎜⎜⎝
y − zF

Sc∕𝛽1

𝜎2
Y

𝜏2
W

𝛽2

⎞⎟⎟⎟⎠𝜓(x, v)𝟏QF
K−1

F (𝜃),

and to obtain the density f
(
w, zF

Sc , x, v|QF

)
, which is given by

𝜙

⎛⎜⎜⎜⎝
zF

Sc − 𝜃Sc𝛽1√
𝜎2

Y + 𝜏2
W

⎞⎟⎟⎟⎠
1

𝜏2
W

𝜙

(
w − zF

Sc∕𝛽1

𝛽2

)
𝜓(x, v)𝟏QF

K−1
F (𝜃).

The density f
(
zF

Sc , x, v|QF

)
is obtained by integrating out y as follows

f
(
zF

Sc , x, v|QF

)
= 1

𝜎2
Y

𝜙

⎛⎜⎜⎜⎝
zF

Sc − 𝜃Sc𝛽1√
𝜎2

Y + 𝜏2
W

⎞⎟⎟⎟⎠𝜓(x, v)
⎧⎪⎨⎪⎩∫

∞

x−b∕(1−pS)
𝜙

⎛⎜⎜⎜⎝
y − zF

Sc∕𝛽1

𝜎2
Y

𝜏2
W

𝛽2

⎞⎟⎟⎟⎠ dy

⎫⎪⎬⎪⎭ 𝟏QF
K−1

F (𝜃)

=
𝛽2

𝜏2
W

𝜙

⎛⎜⎜⎜⎝
zF

Sc − 𝜃Sc𝛽1√
𝜎2

Y + 𝜏2
W

⎞⎟⎟⎟⎠𝜓(x, v)
[
1 − Φ

{
−fW(x, y)

}]
𝟏QF

K−1
F (𝜃),

where

fW(x, y) =
⎛⎜⎜⎜⎝
√
𝜎2

Y + 𝜏2
W

𝜎2
Y

⎞⎟⎟⎟⎠
{
𝜏2

Wy + 𝜎2
Yw

𝜎2
Y + 𝜏2

W

−
(

x − b
1 − pS

)}
=
⎛⎜⎜⎜⎝
√
𝜎2

Y + 𝜏2
W

𝜎2
Y

⎞⎟⎟⎟⎠
{

dF
Sc,N −

(
x − b

1 − pS

)}
,

where dF
Sc,N is the observed value for DF

Sc,N . We are seeking f
(
w|zF

Sc , x, v,QF

)
which, following previous

derivation, is given by

f
(
w, zF

Sc , x, v|QF

)
f
(
zF

Sc , x, v|QF

) =
1
𝛽2
𝜙

(
w−zF

Sc∕𝛽1

𝛽2

)
1 − Φ

{
−fW(x, y)

} ⋅ I

[
w <

𝜏W

𝜎Y

{
zF

Sc −
𝜏W

𝜎Y

(
x − b

1 − pS

)}]
.

We are seeking the expression for E
[
W|ZF

Sc ,X,V ,QF

]
and so we need to obtain ∫ wf

(
w|zF

Sc , x, v,QF

)
dw.

Obtaining this is similar to obtaining ∫ uf
(
u|y, zS,QS

)
du in Appendix A and so

∫ wf
(
w|zF

Sc , x, v,QF

)
dw =

𝜏2
Wy + 𝜎2

Yw

𝜎2
Y + 𝜏2

W

−
𝜏2

W√
𝜎2

Y + 𝜏2
W

𝜙
{

fW(x, y)
}

Φ
{

fW(x, y)
} = dF

Sc,N −
𝜏2

W√
𝜎2

Y + 𝜏2
W

𝜙
{

fW(x, y)
}

Φ
{

fW (x, y)
} ,

so that expression (13) gives the UMVUE for 𝜃Sc conditional on continuing with F in stage 2.
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Appendix C: Uniformly minimum variance unbiased estimator for 𝜃S when the
subpopulation is selected and pS is unknown

Here, we derive the UMVUE for 𝜃S when S is selected and pS is unknown. The derivation is similar
to that in Appendix A, and so we will skip some steps. Let Q∗

S denote the event that SX = sX and that
X > Y + b∕

(
1 − p̂S

)
. Conditional on Q∗

S, the density for f (u, x, y) is given by

1
𝜏U
𝜙

(
u − 𝜃S

𝜏U

)
1
𝜎X
𝜙

(
x − 𝜃S

𝜎X

)
1
𝜎Y
𝜙

(
y − 𝜃Sc

𝜎Y

)
𝟏Q∗

S
K−1

S

(
𝜃, pS

)
,

where 𝟏Q∗
S

denotes the indicator function for the event Q∗
S, 𝜃 =

(
𝜃, 𝜃Sc

)
and KS

(
𝜃, pS

)
the probability for

event Q∗
S given the true parameter vector

(
𝜃, pS

)
. The density f (u, x, y) can be re-expressed to

1
𝜏U
𝜙

⎛⎜⎜⎜⎝
𝜏U

𝜎X
x + 𝜎X

𝜏U
u − 𝜃S𝛼1√

𝜎2
X + 𝜏2

U

⎞⎟⎟⎟⎠
1
𝜎X
𝜙

⎛⎜⎜⎜⎝
x −

(
𝜏U

𝜎X
x + 𝜎X

𝜏U
u
)
∕𝛼1

𝜎2
X

𝜏2
U

𝛼2

⎞⎟⎟⎟⎠
1
𝜎Y
𝜙

(
y − 𝜃Sc

𝜎Y

)
𝟏Q∗

S
K−1

S

(
𝜃, pS

)
,

where 𝛼1 and 𝛼2 are as defined in Appendix A. Let zs =
(
𝜏U∕𝜎X

)
x+

(
𝜎X∕𝜏U

)
u; from the preceding den-

sity, conditional on Q∗
S,
(

Y ,ZS

)
is sufficient and complete statistic for estimating 𝜃S. Therefore, because

conditional on Q∗
S, U is an unbiased estimator for 𝜃S, the UMVUE for 𝜃S is E

[
U|Y ,ZS,Q

∗
S

]
. To obtain

the expression for E
[
U|Y ,ZS,Q

∗
S

]
, we derive the density f

(
u|y, zS,Q

∗
S

)
= f

(
u, y, zS|Q∗

S

)
∕f
(

y, zS|Q∗
S

)
.

The aforementioned density can be transformed to obtain the density f
(
x, y, zS|Q∗

S

)
given by

𝜙

⎛⎜⎜⎜⎝
zS − 𝜃S𝛼1√
𝜎2

X + 𝜏2
U

⎞⎟⎟⎟⎠
1

𝜎2
X

𝜙

⎛⎜⎜⎜⎝
x − zS∕𝛼1

𝜎2
X

𝜏2
U

𝛼2

⎞⎟⎟⎟⎠
1
𝜎Y
𝜙

(
y − 𝜃Sc

𝜎Y

)
𝟏Q∗

S
K−1

S

(
𝜃, pS

)
,

and to obtain the density f
(
u, y, zS|Q∗

S

)
given by

𝜙

⎛⎜⎜⎜⎝
zS − 𝜃S𝛼1√
𝜎2

X + 𝜏2
U

⎞⎟⎟⎟⎠
1

𝜏2
U

𝜙

(
u − zS∕𝛼1

𝛼2

)
1
𝜎Y
𝜙

(
y − 𝜃Sc

𝜎Y

)
𝟏Q∗

S
K−1

S

(
𝜃, pS

)
.

Similar to the integration performed to obtain the density given by expression (A.1), the density
f
(

y, zS|Q∗
S

)
is obtained from f

(
x, y, zS|Q∗

S

)
by integrating out x to obtain

f
(

y, zS|Q∗
S

)
=
𝛼2

𝜏2
U

𝜙

⎛⎜⎜⎜⎝
zS − 𝜃S𝛼1√
𝜎2

X + 𝜏2
U

⎞⎟⎟⎟⎠
1
𝜎Y
𝜙

(
y − 𝜃Sc

𝜎Y

)
[1 − Φ{−fU(x, y)}]𝟏Q∗

S
K−1

S

(
𝜃, pS

)
,

where fU(x, y) =
(√

𝜎2
X + 𝜏2

U

/
𝜎2

X

){
dS,N −

(
y + b

1−sX∕n1

)}
and dS,N is the observed value for DS,N .

We are seeking f
(
u|y, zS,Q

∗
S

)
. Using the property that 𝟏A∩B = 𝟏A𝟏B and noting that 𝟏Q∗

S
cannot be non-

zero if 𝟏[SX=sX ](⋅) = 0 and following the steps used to obtain the density given by expression (A.2), then
it can be shown that f

(
u|y, zS,Q

∗
S

)
is given by

f
(
u, y, zS|Q∗

S

)
f
(

y, zS|Q∗
S

) =
1
𝛼2
𝜙

(
u−zS∕𝛼1

𝛼2

)
1 − Φ{−fU(x, y)}

𝟏
[

u <
𝜏U

𝜎X

{
zS −

𝜏U

𝜎X

(
y + b

1 − p̂S

)}]
.

The aim is to obtain the expression for E
[
U|Y ,U,Q∗

S

]
, which requires derivation of ∫ uf

(
u|y, zS,Q

∗
S

)
du.

This can be carried out similar to how ∫ uf
(
u|y, zS,QS

)
du is derived in Appendix A, which leads to

expression (11) being a UMVUE for 𝜃S when pS is unknown and S is selected to continue to stage 2.
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Appendix D: Uniformly minimum variance unbiased estimators for 𝜃S and 𝜃Sc when
the full population is selected and pS is unknown

Here we derive the UMVUEs for 𝜃S and 𝜃Sc conditional on continuing with F in stage 2 for the case
where pS is unknown. The derivations are similar to those in Appendix B, and so we will skip several
steps. Let Q∗

F denote the event that SX = sX , X ⩽ Y + b∕
(
1 − p̂S

)
and SV = sV . Conditional on Q∗

F, the
density f

(
v, x, y,w|Q∗

F

)
is given by

1
𝜏V
𝜙

(
v − 𝜃S

𝜏V

)
1
𝜎X
𝜙

(
x − 𝜃S

𝜎X

)
1
𝜎Y
𝜙

(
y − 𝜃Sc

𝜎Y

)
1
𝜏W
𝜙

(
w − 𝜃Sc

𝜏W

)
𝟏Q∗

F
K−1

F

(
𝜃, pS

)
, (D.1)

where 𝟏Q∗
F

denotes the indicator function for the event Q∗
F, 𝜃 =

(
𝜃S, 𝜃Sc

)
and KF

(
𝜃, pS

)
the probability

for event Q∗
F given the true parameter vector

(
𝜃, pS

)
. The aforementioned density can be re-expressed as

1
𝜏V
𝜙

⎛⎜⎜⎜⎝
𝜏V

𝜎X
x + 𝜎X

𝜏V
v − 𝜃S𝛾1√

𝜎2
X + 𝜏2

V

⎞⎟⎟⎟⎠
1
𝜎X
𝜙

⎛⎜⎜⎜⎝
x −

(
𝜏V

𝜎X
x + 𝜎X

𝜏V
v
)
∕𝛾1

𝜎2
X

𝜏2
V

𝛾2

⎞⎟⎟⎟⎠𝜓( y,w)𝟏Q∗
F
K−1

F

(
𝜃, pS

)
,

where 𝛾1, 𝛾2 and 𝜓( y,w) are as defined in Appendix B. Let zF
S =

(
𝜏V∕𝜎X

)
x +

(
𝜎X∕𝜏V

)
v; from

the preceding density, conditional on Q∗
F,
(
ZF

S ,Y ,W
)

is sufficient and complete statistic for esti-
mating 𝜃S. Therefore, because conditional on Q∗

F, V is an unbiased estimator for 𝜃S, the UMVUE
for 𝜃S is E

[
V|ZF

S ,Y ,W,Q∗
F

]
. To obtain the expression for E

[
V|ZF

S ,Y ,W,Q∗
F

]
, we derive the density

f
(
v|zF

S , y,w,Q
∗
F

)
= f

(
v, zF

S , y,w|Q∗
F

)
∕f
(
zF

S , y,w|Q∗
F

)
.

The aforementioned density can be transformed to obtain the density f
(
x, zF

S , y,w|Q∗
F

)
, which is

given by

𝜙

⎛⎜⎜⎜⎝
zF

S − 𝜃S𝛾1√
𝜎2

X + 𝜏2
V

⎞⎟⎟⎟⎠
1

𝜎2
X

𝜙

⎛⎜⎜⎜⎝
x − zF

S∕𝛾1

𝜎2
X

𝜏2
V

𝛾2

⎞⎟⎟⎟⎠𝜓( y,w)𝟏Q∗
F
K−1

F

(
𝜃, pS

)
and the density f

(
v, zF

S , y,w|Q∗
F

)
, which is given by

𝜙

⎛⎜⎜⎜⎝
zF

S − 𝜃S𝛾1√
𝜎2

X + 𝜏2
V

⎞⎟⎟⎟⎠
1

𝜏2
V

𝜙

(
v − zF

S∕𝛾1

𝛾2

)
𝜓( y,w)𝟏Q∗

F
K−1

F

(
𝜃, pS

)
.

Similar to integration performed to obtain the density given by expression (A.1), the density
f
(
zF

S , y,w|Q∗
F

)
is obtained by integrating out x in f

(
x, zF

S , y,w|Q∗
F

)
to obtain

f
(
zF

S , y,w|Q∗
F

)
=
𝛾2

𝜏2
V

𝜙

⎛⎜⎜⎜⎝
zF

S − 𝜃S𝛾1√
𝜎2

X + 𝜏2
V

⎞⎟⎟⎟⎠𝜓( y,w)Φ{ fV (x, y)}𝟏Q∗
F
K−1

F

(
𝜃, pS

)
,

where fV (x, y) =
(√

𝜎2
X + 𝜏2

V

/
𝜎2

X

)(
y + b

1−sX∕n1
− dF

S,N

)
and dF

S,N is the observed value for DF
S,N . We

are seeking the density f
(
v|zF

S , y,w,Q
∗
F

)
. Using the property that 𝟏A∩B = 𝟏A𝟏B and noting that 𝟏Q∗

F
cannot

be non-zero if 𝟏[SX=sX ](⋅) = 0 or 𝟏[SV=sV ](⋅) = 0 and following steps used to obtain the density given by

expression (A.2), then it can be shown that f
(
v|zF

S , y,w,Q
∗
F

)
is given by

f
(
v, zF

S , y,w|Q∗
F

)
f
(
zF

S , y,w|Q∗
F

) =
1
𝛾2
𝜙

(
v−zF

S ∕𝛾1

𝛾2

)
Φ{ fV (x, y)}

⋅ I

[
v >

𝜏V

𝜎X

{
zF

S −
𝜏V

𝜎X

(
y + b

1 − p̂S

)}]
.
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We want to obtain the expression for E
[
V|ZF

S ,Y ,W,Q∗
F

]
, which requires derivation of ∫ vf

(
v|zF

S , y,

w,Q∗
F

)
dv. This can be carried out similar to how ∫ vf

(
v|zF

S , y,w,QF

)
dv is derived in Appendix B, which

leads to expression (12) giving a UMVUE for 𝜃S when pS is unknown and F is selected to continue to
stage 2.

Combining the derivation for the UMVUE for 𝜃Sc when pS is known and derivation for the UMVUE
for 𝜃S when pS is unknown, one can show that expression (13) is a UMVUE for 𝜃Sc when pS is unknown
and F is selected to continue to stage 2.
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