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MOTIVATION Cancer is a genetic disease, typically marked by widespread somatic alterations (e.g., mu-
tations, copy-number alterations, and gene expression changes). However, not all changes are functionally
important—few genes can promote oncogenesis (also termed ‘‘cancer drivers’’), whereas other altered
genes have little effect on the phenotype (termed ‘‘passengers’’). Furthermore, many research questions
focus on particular genes and their activity (e.g., specific signaling pathways, drug targets, etc.). This mo-
tivates the need for a flexible method of comparing tumors with potential cell line models by using
researcher-selected properties. We present TumorComparer, a computational comparison method based
on weighted features to allow expert- and knowledge-driven comparison of tumors and experimental
models, such as cell lines or organoids. We apply TumorComparer to the comparison of �8,000 tumors
and �600 cell lines across 24 cancer types as an initial application to provide a general, pan-cancer
resource based on knowledge of oncogenic alterations gained from The Cancer Genome Atlas program
(TCGA). TumorComparer is a generally applicable method suitable for pre-clinical cancer research and
personalized medicine applications where sets of samples need to be assessed for similarity.
SUMMARY
Patient-derived cell lines are often used in pre-clinical cancer research, but some cell lines are too different
from tumors to be goodmodels. Comparison of genomic and expression profiles can guide the choice of pre-
clinical models, but typically not all features are equally relevant. We present TumorComparer, a computa-
tional method for comparing cellular profiles with higher weights on functional features of interest. In this
pan-cancer application, we compare �600 cell lines and �8,000 tumor samples of 24 cancer types, using
weights to emphasize known oncogenic alterations. We characterize the similarity of cell lines and tumors
within and across cancers by using multiple datum types and rank cell lines by their inferred quality as repre-
sentative models. Beyond the assessment of cell lines, the weighted similarity approach is adaptable to pa-
tient stratification in clinical trials and personalized medicine.
INTRODUCTION

Immortalized cancer cell lines, derived from patient tumors and

grown and maintained in vitro, are the most commonly used

experimental model in cancer research. Cell lines preserve

many properties of tumors and have been of immense value in

advancing our understanding of cancer biology and developing

novel therapies over the past decades (Masters, 2000; Wistuba
This is an open access article under the CC BY-N
et al., 1998, 1999). However, there are important differences,

both in general and in particular tumor types, between molecular

and genetic profiles of cell lines and tumors, which are the sub-

ject of this study.

Although cell lines retain many features of tumors, they also

typically acquire additional alterations during the process of

immortalization, and during growth and maintenance in culture.

Several studies have reported differences between cell lines
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C-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

mailto:tumorcells@gmail.com
https://doi.org/10.1016/j.crmeth.2021.100039
http://crossmark.crossref.org/dialog/?doi=10.1016/j.crmeth.2021.100039&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 1. TumorComparer workflow and available tumor samples and cell lines

(A) Weighted similarity between pairs of cancer material is computed using data type-specific datum matrices and weights for each molecular data point (e.g., a

mutation in a specific gene). Weights are either derived from data or provided by the user, reflecting an emphasis on particular genomic alterations. The weighted

similarities for each data type are then normalized and combined into a final weighted similarity score. To compare cell lines and tumors, we used mutations,

CNAs, and gene expression (mRNA) values, and chose weights for these features based on the recurrence of cancer type-specific (or pan-cancer) events in sets

of tumors samples, as a proxy for the likelihood of the feature to be functional (e.g., to be ‘‘drivers’’); for expression, we chose the log-fold change in expression in

relation to pooled normals. Top: mutated, green; wild type, white. Middle: gains, light and dark red; losses, light and dark blue; diploid, white. Bottom: over-

expressed, red; underexpressed, blue.

(legend continued on next page)
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and tumors with respect to gene expression (Ross et al., 2000;

Sandberg and Ernberg, 2005), DNA methylation (Hennessey

et al., 2011; Houshdaran et al., 2010; Smiraglia, 2001), and

copy-number alterations (CNAs) (Greshock et al., 2007; Tsuji

et al., 2010). Such differences are important for the cancer

research community to understand so we can assess the trans-

latability of findings from cell lines to patients.

Cell lines generally have more genomic alterations than pri-

mary tumors. There are several possible explanations for this.

First, there is a bias toward using cell lines derived frommetasta-

tic tumors, which tend to havemore genomic alterations than pri-

mary and especially early-stage tumors (Masters, 2000). Also,

cell lines typically do not represent all subtypes of cancers nor

do they reflect tumor heterogeneity. In particular, tumor sub-

types with the fewest genetic alterations tend to be under-repre-

sented (Kao et al., 2009; Klijn et al., 2015; van Staveren et al.,

2009). Finally, mutations and CNAs might be acquired during

the immortalization process, and subpopulations of cell lines

with more genomic alterations might be selected for during

long periods of growth and maintenance in vitro (Masters,

2000). Germline mutations are typically filtered out of primary tu-

mor data by using matched normal samples. Matched normal

samples are not available for most commercially available cell

lines, so it is only possible to filter out common germline variants.

Given these differences, selecting the most suitable cell line(s)

for a laboratory study becomes a technical challenge of practical

interest. In general, cell lines with molecular profiles similar to tu-

mor samples are more suitable for use than outlier cell lines that

differ significantly from the corresponding tissue of origin by ob-

servations in one ormoremolecular or genetic profiles. However,

in some cases, it might be important to consider particular fea-

tures that are required for cell lines to ‘‘phenocopy’’ aspects of

tumors, such as oncogenic mutations or alterations in signaling

pathways, and focusing on these features might provide a

more useful assessment of similarity (Elias et al., 2015). Thus,

beyond overall genetic similarity, the choice of an appropriate

cell line for a specific scientific project crucially depends on the

goal and context of the study and comparison algorithms should

take the investigator’s interest into account. For example, one

might want to choose a cell line that is most similar to a set of tu-

mors in terms of alterations in signaling pathways, such as pro-

tein phosphorylation cascades; or, in terms of mutations in

particular pathways; or, in terms of the overall level of alterations

in known oncogenic pathways.

We, therefore, developed a general method for identifying

appropriate cell lines that allows investigators to adapt the selec-

tion criteria to the specific biological question at hand. A simple

yet powerful approach is to incorporate feature weights into the

measure of similarity of molecular profiles. For example, alter-

ations in genes involved in a signaling process of particular rele-
(B) The number of TCGA tumors and CCLP cell lines for each cancer type incl

carcinoma; BRCA, breast invasive carcinoma; CESC, cervical squamous cell c

DLBC, lymphoid neoplasmdiffuse large B cell lymphoma; ESCA, esophageal aden

cell carcinoma; KIRC, kidney renal clear cell carcinoma; LAML, acute myeloid le

LUAD, lung adenocarcinoma; LUSC, lung squamous cell carcinoma; OV, ovar

prostate adenocarcinoma; READ, rectum adenocarcinoma; SKCM, skin cutaneo

Atlas; THCA, thyroid carcinoma; UCEC, uterine corpus endometrial carcinoma.
vance to drug actionmight get a higher weight in relation to other

genes.

A very simple choice of weights on molecular and genetic fea-

tures is 1.0 (chosen) and 0.0 (ignored), but a more refined choice

of weights is real numbers 0.0 % w % 1.0. Here, as a baseline

method for the selection of cell lines for experiments focused

on oncogenic processes, we use sets of real number weights

that emphasize potentially oncogenic genomic alterations

(‘‘driver’’ mutations), while de-emphasizing alterations that are

likely to be ‘‘passengers’’ in tumors. We fine-tuned such weights

by using The Cancer Genome Atlas (TCGA) tumor profiles, and

then applied them to compute the weighted similarity between

tumors and cell lines. We compared tumors from 24 different

cancer types from TCGA (Collins and Barker, 2007) to cell lines

from the Cancer COSMIC Cell Line Project (CCLP) (Iorio et al.,

2016), and identified good, moderate, and poor matches be-

tween cell lines and tumors, as well as outlier cell lines, to guide

cell line selection for laboratory experiments focused on onco-

genic processes.

RESULTS

TumorComparer: A weighted similarity framework for
comparing cancer samples by comparison of molecular
profiles
Given that the similarity of cell lines and tumors (and, in general,

any tumor-derived material) can vary by gene sets, data type,

and number of tumors compared, we developed TumorCom-

parer, a tool and framework for flexible comparison of tumor-

derived genomic profiles. The method uses a weighted similarity

to flexibly incorporate a variable emphasis on genomic features

and gene expression, according to data and/or investigator

knowledge and interest.

TumorComparer compares tumors and cell lines on the basis

of multiple datum types, such as mutations, DNA CNAs, and

mRNA gene expression, by using weights to emphasize events

relevant to the specific biological question at hand, e.g., the

more frequent and/or known oncogenic events (Figure 1A). The

method is publicly available as an R package (https://github.

com/sanderlab/tumorcomparer), and as an interactive web

application (http://projects.sanderlab.org/tumorcomparer). We

applied our method to compare cell lines and tumors for 24

different cancer types by using genomic data from 594 CCLP

cell lines and 7,975 TCGA tumor samples (Figure 1B) and by us-

ing weights emphasizing recurrent alterations or differential

expression in tumors. Weights are real numbers between

0 and 1, where a value closer to 1 indicates greater importance.

Here, we use a weighting scheme that emphasizes key alter-

ations and gene expression changes in each particular cancer

with a secondary emphasis on pan-cancer alterations (see the
uded in this study. CCLP, Cancer Cell Line Project; BLCA, bladder urothelial

arcinoma and endocervical adenocarcinoma; COAD, colon adenocarcinoma;

ocarcinoma; GBM, glioblastomamultiforme; HNSC, head and neck squamous

ukemia; LGG, brain lower grade glioma; LIHC, liver hepatocellular carcinoma;

ian serous cystadenocarcinoma; PAAD, pancreatic adenocarcinoma; PRAD,

us melanoma; STAD, stomach adenocarcinoma; TCGA, The Cancer Genome
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Figure 2. Average similarities between cell lines and tumor samples by cancer subtype and data type

(A) Top left: similarity of CCLP cell lines (rows) and TCGA tumors (columns) using the mean gene expression levels of the 5,000 most variable genes across the

tumors (correlation coefficient). The similarity is highest for matching cancer (sub)type in the vast majority (18 out of 24 = 75%; dark red or orange on the diagonal)

of cases.

(B) Top right: similarity of CCLP cell lines (rows) and TCGA tumors (columns) using the mean copy-number changes of the 5,000 most variable genes across the

tumors (correlation coefficient). Unlike for expression, only a minority (7 out of 24 = 29%) of the closest matches are for the same cancer (sub)type.

(C) Bottom left: similarity of CCLP cell lines (rows) and TCGA tumors (columns) using the mutation frequencies of the 299 most frequently mutated genes across

the tumors (correlation coefficient of average mutation frequencies). Similar to CNA, only aminority of closest matches are for the same cancer type (9 out of 24 =

37.5%). The low percentage in (B and C) indicate that CNAs and somatic mutations contain less tissue-specific information than gene expression.

(D) Bottom right: ranked similarity between CCLP cell lines (rows) and TCGA tumors of the same cancer type, based on the similarities in the rows of (A–C) above.

A top rank indicates the cell lines of a certain cancer (sub)type are on average well matched to the tumors of the same (sub)type. In several cases, when the same

tissue type does not provide the closest match, it might be among the top few matches, as might be expected in cases where other related tissues are present.

Although several cancer types have high similarity between cell lines and tumors when using various datum types, some only have high similarity when using one

or two of the three datum types.
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STAR Methods). We inspected the resultant landscape of tumor

model similarities and identified cell lines that best match tumors

of various types, as well as poor matches and outlier cell lines.

To gain an overall perspective on tumor cell line similarity

across cancer types, we first compared the average profiles of

cell lines and tumors across cancer types (Figure 2), by using

the 5,000 most variable genes for gene expression (Figure 2A)

and CNAs (Figure 2B), 299 significantly mutated genes across

the TCGA pan-cancer dataset for mutations (Figure 2C), and

the normalized rank, which was derived by converting the simi-

larity scores of each cancer type into ranks, and dividing by

the number of cancer types to obtain a score in the [0,1] range.

Although the majority of cancer types showed the highest simi-

larity of average cell line profiles to average tumor profiles
4 Cell Reports Methods 1, 100039, June 21, 2021
matching cancer types by using gene expression (Figure 2A),

this was often not the case for CNAs and mutations (Figures

2B and 2C). However, conversion of similarity scores into ranks

revealed that, even when the similarity between average profiles

of the matching cancer types was not the highest, it was often

the second or third highest (Figure 2D). This makes sense, espe-

cially when there are related cancer types present, e.g., lung

squamous cell carcinoma (LUSC) and cervical squamous cell

carcinoma and endocervical adenocarcinoma, LUSC and lung

adenocarcinoma (LUAD), high-grade serous ovarian cancer

(HGSOC), and a subset of uterine corpus endometrial carci-

noma, and so on. Furthermore, although several cancer types

have high similarity between cell lines and tumors when using

all three datum types, some only have high similarity when using
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one or two of the three datum types. In particular, the average

mutational profiles of acute myeloid leukemia (LAML) cell lines

and the average CNA profiles of thyroid carcinoma (THCA), brain

lower grade glioma (LGG), and mesothelioma (MESO) are not

more similar to the average profiles of their respective cancer

subtypes than to other cancer (sub)types.

The landscape of cell line-tumor similarity across 24
cancer types
TCGA studied 33 different cancer types and, using detailed

annotation available from the Cell Model Passports resource

(van der Meer et al., 2019), we report results on 594 cell lines cor-

responding to 24 cancer types studied in TCGA. As a first appli-

cation, we surveyed cell line-tumor similarity by using weights

emphasizing recurrent genomic alterations in tumors. For muta-

tions and CNAs, we gave the highest weight to genes that are

recurrently altered in the specific cancer type (MutSig SMGs,

i.e., significantly [by recurrence] mutated genes [Lawrence

et al., 2013]; and genes found in GISTIC peaks, i.e., recurrent

CNAs [Mermel et al., 2011]); an intermediate weight to genes

that are recurrently altered acrossmany cancer types (‘‘pan-can-

cer’’), but not in the specific cancer type; and a lower ‘‘back-

ground’’ weight all other alterations. For gene expression, a

gene was weighted by the log of the ratio of themean expression

level of a gene over samples of the specific cancer type in rela-

tion to the mean expression level over a pool of normal samples

(‘‘log-fold-change,’’ scaled to the interval 0.0–1.0; see the STAR

Methods).

Weights were chosen to emphasize features of importance in

tumors only (rather than tumors and cell lines), to avoid giving

high weights to features that are only recurrent in cell lines or giv-

ing lowweights to features that are recurrent in tumors, but not in

a combined set of tumors and cell lines. This is similar in spirit to

(Iorio et al., 2016), who published a comprehensive comparison

of cell lines and primary tumors at the sample population level

and looked at cancer cell lines under the lens of genomic fea-

tures derived from primary tumors only, thus discarding features

unlikely to be clinically relevant.

Exploratory analysis using all three datum types as well as

overall average weighted similarity allows us to identify cell lines

that have high or low similarity to tumors across datum types, as

well as those that have high similarity when using only one datum

type. For instance, ovarian cancer cell lines, such as OAW-28

and Kuramochi, have a high ranking across all three datum

types, whereas cell lines, such as PA-1 and TYK-nu, are poor

matches across multiple datum types, as assessed in terms of

similarity over the most varying or recurrently altered genes; in

contrast, Caov-4 has high similarity to tumors by gene expres-

sion, but not by mutations and CNAs (Figure 3). This demon-

strates the usefulness of using multiple datum types for a

broader perspective.

Similarly, the representativeness of a tumor model can vary by

gene set, i.e., the specific genes or genomic alterations that form

the basis of comparison with tumors. To illustrate this, we

compared melanoma and liver cancer cell lines from CCLP to

skin cutaneousmelanoma (SKCM) and liver hepatocellular carci-

noma (LIHC) tumors from TCGA, using two different gene sets—

the RTK-RAS pathway and the WNT pathway. We chose these
cancer types and pathways because SKCM tumors show

frequent alterations in the RTK-RAS pathway but not the WNT

pathway; whereas LIHC tumors show more frequent alterations

in theWNT pathway than the RTK-RAS pathway. Consistent with

that, we see that SKCM cell lines show similar or better similarity

scores when using the RTK-RAS pathway than with the WNT

pathway, whereas LIHC cell lines show lower scores with the

RTK-RAS pathway than with the WNT pathway (Figure 4).

SKCM, COAD, READ, GBM, and KIRC have the highest
proportion of good cell lines
Applying TumorComparer across 24 cancer types from TCGA

and CCLP, we compared tumors from each cancer type with

all cell lines and used ranks based on the similarities to compare

across cancer types (Figure 5). Most cancer types have a mix of

cell lines with low, intermediate, and high similarity, also called a

match, to tumors. A normalized rank of 0.9 means that a cell line

is more similar to the tumors of its parental type than 90% of

CCLP cell lines. Ideally, cell lines of the matching cancer type

should have ranks close to 1.0. For example, given 50 cell lines

of the matching type out of a total of 1,000 cell lines, one would

expect most of the matching cell lines to have a normalized

percentile rank larger than 0.95 = (1,000–50)/1,000.

In particular, given that none of the cancer types included in

this study had >56matching cell lines, we can reasonably expect

cell lines to have normalized ranks >0.9 when compared with

their parental tumor type. In reality, cell lines of most cancer

types have varying degrees of similarity to tumors, with good

and moderate matches as well as some poor matches or even

candidate outliers (Figure 5). Melanoma has the highest propor-

tion of cell lines with a normalized rank >0.9, at least partly driven

by the recurrent BRAF V600E mutation occurring in most mela-

noma cell lines. Other cancer types with a high proportion of

well-matching cell lines with high normalized ranks are colon

adenocarcinoma (COAD), esophageal adenocarcinoma

(ESCA), kidney renal clear cell carcinoma (KIRC), and glioblas-

toma multiforme. On the other hand, cancer types, such as

ovarian serous cystadenocarcinoma (OV), stomach adenocarci-

noma (STAD), LUAD, and THCA have a relatively low proportion

of highly ranked cell lines. We found 18 very well-matched cell

lines (out of 594 cell lines), belonging to 9 different cancer types

(out of 24 cancer types), with normalized ranks >0.9 for all three

datum types (7 cell lines SKCM, 3 rectum adenocarcinoma

[READ], 2 KIRC, and 1 each from breast invasive carcinoma

[BRCA], COAD, ESCA, LAML, LGG, and lymphoid neoplasm

diffuse large B cell lymphoma). On the other hand, we find 14

extreme outlier cell lines with normalized ranks <0.5 for all three

datum types (Figure 6; 3 each from BRCA, OV, and LUAD, 2

LIHC, and 1 each from prostate adenocarcinoma [PRAD],

STAD, and head and neck squamous cell carcinoma [HNSC]).

A cell line can be a good match when using one data
type, but a poor match when using others
To assess the usefulness of using multiple datum types, we

compared the normalized ranks of cell lines across datum types.

Several cell lines had a rank of >0.9 for one data type only—this

includes, for example, cell lines that have a high gene expres-

sion-based rank (indicating retention of tissue-specific
Cell Reports Methods 1, 100039, June 21, 2021 5



Figure 3. The distribution of feature-weighted similarities between ovarian cancer cell lines and ovarian (HGSOC) tumors

(A–D) (A) The overall similarity represents the average of the feature-weighted similarity over the three datum types: (B) mRNA expression (with higher weights on

genes with the largest expression changes); (C) mutations; and (D) copy-number alterations (with higher weights on the most recurrently altered genes in (C and

D)). The distributions of feature-weighted similarities using mutations reveal striking differences between cell lines, with low, high, and intermediate similarities to

tumors for three groups of cell lines. Cell lines, such as OAW-28 and Kuramochi have a high overall similarity to tumors ranking as they rank highly across all three

datum types, whereas cell lines, such as PA-1 and TYK-nu, are poor matches to tumors acrossmultiple datum types in terms of genomic similarity over the genes

used in the feature-weighted similarity measure.
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expression), but lack characteristic mutations and/or CNAs. In

particular, of cell lines that had a normalized rank >0.99 when us-

ing expression data, 30 cell lines had a normalized rank <0.5

when using mutation data, and 23 had a rank <0.5 when using

CNA data. This underscores the importance of considering mul-

tiple datum types when assessing cell line-tumor similarity.

Most cancer types have only a few outlier cell lines
We assessed outlier status in two different ways by comparing

the similarity values of a query cell line and tumors of the same

cancer type to (1) the similarity values of all cell lines and tumors

of the query cell line’s cancer type (‘‘within cancer type’’), and (2)

the similarity of all cell lines, including those of other cancer

types, to tumors of the query cell lines cancer type (‘‘across can-
6 Cell Reports Methods 1, 100039, June 21, 2021
cer types’’). In other words (for example) an OV cell line will be

evaluated by comparing its similarity with all OV tumors to (1)

the similarity of all OV cell lines to all OV tumors and (2) all cell

lines (OV as well as non-OV) to OV tumors.

We defined the threshold for being an outlier as a combined

score rank <0.5, i.e., an outlier is a cell line with a lower overall

similarity score than half of all cell lines when compared with

its parental tumor type. Overall, there are 69 outlier cell lines

(out of 594,�12%). The number of outlier cell lines varies by can-

cer type; most cancer types have 1–5 outlier cell lines. OV (11),

LUAD (11), and STAD (7) are the only cancer types with more

than 5 outlier cell lines. The high number of outlier cell lines for

OV is at least partially explained by the fact that the TCGA OV tu-

mors (Cancer Genome Atlas Research Network, 2011) are all of



Figure 4. The similarity of cell lines and tumors varies by gene set—the best matches might be quite different for different gene sets/

pathways

The top two panels show the similarity scores of SKCM tumors andmelanoma cell lines when using uniform weights on all features, and genes from (A) RTK-RAS

pathway and (B) WNT pathway. Similarly, the bottom two panels (C and D) show corresponding scores for liver cancer cell lines, compared with TCGA LIHC

tumors. SKCM cell lines show similar/better similarity scores when using the RTK-RAS pathway than the WNT pathway, whereas LIHC cell lines show lower

scores with the RTK-RAS pathway than with the WNT pathway—this is consistent with the frequency of alterations in the member genes of the RTK-RAS and

WNT pathways in these cancer types.
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one particular subtype of ovarian cancer (i.e., HGSOC), whereas

the CCLP OV cell lines are a mix of subtypes.

Several highly cited cell lines are genomic outliers
Even though most cancer types have only a few outlier cell lines,

it is important to be aware of outliers, especially if they are widely

used and might thus seriously impact scientific research. To

address this, we estimated citation counts for the cell lines

(see STAR Methods). The exact number of times a given cell

line has been cited can be challenging to determine because

of various factors, including the usage of several alternative

names for a given cell line (e.g., OVCAR5, OVCAR-5, OVCAR.5,

OV-CAR-5, OVCA5, or NIHOVCAR5), some cell lines being

named after a person (Kuramochi, Ishikawa, Becker, or Kelly),

some cell lines having names that match names or terms

commonly used otherwise (TEN, K2, or NY), and so on. Never-
theless, we can determine which cell lines are the most highly

cited ones. Using a threshold of R1,000 citations, we identified

31 highly cited cell lines that were outliers based on a low

normalized rank and a variety of atypical characteristics,

including lack of mutations and/ or CNAs typical of their cancer

type, presence of mutations/CNAs atypical of their cancer type

(and more common in other cancer types), unusually high or

low mutational or copy-number burden, low gene expression-

based similarity to the parental tumor type, and so on (Table 1

details such atypical characteristics for each highly cited outlier).

Some of these cell lines have also previously been identified as

outliers (Domcke et al., 2013).

At first glance, it might seem surprising that widely used cell

lines could be poor representatives of their tumor type. However,

it stands to reason that convenience is a factor in deciding which

cell lines are most widely used—and cell lines that are the most
Cell Reports Methods 1, 100039, June 21, 2021 7



Figure 5. Mean weighted similarity of CCLP cell lines to parental tumor types across 25 TCGA cancer (sub)types

Each dot is a cell line (depicting its mean similarity to matching tumors), each boxplot summarizes the mean similarity ranks of cell lines and tumors of a given

cancer type, and cancer types are ordered by increasing median average weighted similarity ranks. The overall similarity (A) is the average of the weighted

similarity by each data type (B–D) mRNA: expression, copy-number alterations, mutations. Feature weights were chosen to emphasize the most significant

recurrent mutations, copy-number alterations, and overexpression in relation to normal samples. Most tumor (sub)types have amix of good, moderate, and poor

matches to tumors among cell lines, as reflected by high, moderate, and low similarity scores, except for DLBC, THCA, PRAD, and UCEC, which have a high

proportion of poor matches (with PRAD, UCEC, and THCA also having relatively few cancer cell lines in CCLP).
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convenient to work with tend to be those which are commercially

or locally available, easy to manage, grow quickly, and so on.

Furthermore, there might be a ‘‘founder effect’’ of sorts, wherein

the cell lines that have already been used in many studies will

tend to be used by more and more researchers, to build upon

earlier findings. These will also tend to be more easily available,

and reinforcing effects will combine to create a relatively small

set of widely used and highly cited cell lines.

Another explanation for some outliers is that they are misla-

beled, and are actually of a different tissue type than what was

initially assumed (or is widely believed)—the issue of misidentifi-

cation of cell lines is an important and well-known challenge in

the field (Lorenzi et al., 2009). The widespread use of cell lines

with a low genomic resemblance to tumors is concerning,

although they could potentially still be good representatives for

certain purposes.

Comparison with related studies
We compared our findings with those reported by related studies

that evaluate cell lines as tumor models. Melanoma is the cancer

type with the highest proportion of cell lines with high genomic
8 Cell Reports Methods 1, 100039, June 21, 2021
similarity to tumors in our analysis. Vincent and Postovit (2017)

compared the transcriptomes of 42 melanoma cell lines with

TCGA tumors and single melanoma cell lines. Of the top well-

matching 5 cell lines reported by Vincent and Postovit, 2

(COLO-849 and 537MEL) are missing from our dataset—the re-

maining 3 have high normalized ranks by expression in our anal-

ysis (SKMEL30, 0.996; UACC257, 1; A375, 0.96), but A375, in

particular, has a very low normalized rank by CNAs, which are

not used by Vincent and Postovit. Jiang et al. (2016) evaluated

68 breast cancer cell lines by using mutations, CNAs, gene

expression, and protein expression, and nominated BT-483,

T47D, andMDA-MB-453 as the cell lines with the highest similar-

ity to tumors. In our analysis, all three cell lines indeed have

expression-based ranks of R 0.99, and MDA-MB-453 and BT-

483 also have overall ranksR 0.98; however, T47D has a slightly

lower overall rank of 0.84 because of lower mutation-based and

CNA-based ranks. Ronen et al. (2019) used deep learning on

CNAs, gene expression, and point mutations to evaluate colo-

rectal cancer subtypes and cell lines, and nominated CL-40,

SW1417, and CW-2 as the top matches between tumors and

cell lines. We also find all three to have high expression-based



Figure 6. Cell lines that consistently score high/low across all datum types

(A) Cell lines that rank in the top 10% for mutations, CNAs and gene expression. Thesemight be considered good representatives of their respective tumor types.

(B) Cell lines that rank in the bottom 50% for mutations, CNAs, and gene expression. These are poor representatives of their respective tumor types. Ranks were

based on weighted similarity computations when using the most variable (in tumors) genes for each data type, and feature weights emphasizing recurrent al-

terations (mutations, CNAs) or expression change in relation to a pool of normal samples. Circle sizes reflect the rank values.
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ranks but, although SW1417 and CL-40 have high overall ranks,

CW-2 is an outlier in the CNA-based comparison, with a normal-

ized rank of 0.01.

Yu et al. (2019) did a transcriptomic analysis of cell lines from

the Cancer Cell Line Encyclopedia (CCLE) (Ghandi et al., 2019)

across 22 tumor types. They proposed a new cancer cell line

panel, the ‘‘TCGA-110,’’ consisting of the top 5 cell lines from

each of the 22 cancer types, as a new panel for pan-cancer

studies. Our results on the subset of TCGA-110 present in

CCLP show that, although most have a high expression-based

normalized rank in our analysis, some are not highly ranked on

the basis of mutation, CNA, or both. In particular, of the 110

CCLE cell lines in TCGA-110, 71 are included in CCLP, and 62

have mutation, gene expression, and CNA data available. The

distribution of these 62 cell lines across the 22 cancer types is
uneven: BRCA and LAML are the only cancer types with all 5

cell lines from TCGA-110 present in our analysis, whereas

none of the 5 cell lines from STAD and HNSC are included—all

other cancer types have 1–4 cell lines in our dataset. Although

most of the TCGA-110 cell lines had a high expression-based

normalized rank in our analysis, surprisingly, two—ML-1

(LAML, expression rank 0.02) and DU-145 (PRAD, expression

rank 0.16)—were in fact outliers based on expression data.

This could be due to differences in the genes used for the com-

parison or the platform (TCGA-110 is based on CCLE RNA

sequencing data, we used microarray data from CCLP), or

possibly a difference in the actual cell lines used by CCLE and

CCLP. In our analysis, ML-1 does have a high rank by mutation

and CNA data. Overall, 25 of the TCGA-110 cell lines have a mu-

tation-based ranking of <0.5, 14 have a CNA rank <0.5, and 4
Cell Reports Methods 1, 100039, June 21, 2021 9



Table 1. Thirty-one highly cited outlier cell lines from 11 cancer types

Cancer type

or subtype Cell line Citation count

Alterations in the cell line

atypical of the parent cancer type TumorComparer score notes

LAML HL-60 �109,000 lacks cancer type-specific mutations and

CNAs, hasmutations in CDKN2A and NRAS

poor scores for mutations and CNAs

BRCA MDA-MB-231 �102,000 mutations in BRAF and NF2; deep deletions

in CDKN2B, CDKN2B-AS1, PTPRD

bottom 50% overall, as well as for all 3

datum types

CESC HELA �86,000 lacks cancer type-specific mutations and

amplifications

bottom 10% by mutations

PRAD DU145 �42,000 many mutations in pan-cancer genes, lacks

cancer-specific amplifications, has a KRAS

deep deletion

bottom 10% overall,

<0.5 for all 3 daum types

LAML KG1 �16,000 lacks cancer type-specific mutations and

CNAs

bottom 10% by mutations

LUAD NCI-H23 �11,000 high number ofmutations in cancer-specific

genes, pan-cancer mutations in DNMT3A

and EEF1A1

bottom 50% overall, as well as for all 3

datum types

PRAD 22Rv1 �7,700 many mutations in pan-cancer genes, lacks

cancer-specific CNAs

bottom 50% overall, as well as for

mutations and CNAs

OV SK-OV-3 �7,600 many mutations in pan-cancer genes bottom 10% by CNAs,

<0.5 for all 3 datum types

LUAD NCI-H522 �7,000 lacks cancer-specific CNAs bottom 50% overall as well as for

expression and CNAs

STAD MKN28 �6,600 lacks cancer-specific amplifications poor scores for mutations and CNAs

KIRC CAKI-1 �5,800 lacks cancer-specific mutations and

amplifications, has a CDKN2A deep

deletion

outlier by mutation

LIHC SK-HEP-1 �5,600 lack of cancer-specific amplifications, has

many pan-cancer deep deletions

bottom 50% overall,

<0.5 for all 3 daum types

OV IGROV-1 �5,000 excessive mutation count, many mutations

in pan-cancer genes

poor scores for mutations and CNAs

OV ES-2 �4,100 mutations in BRAF, KMT2D, and MAP2K1 poor score overall, and for all datum types

CESC C-33A �4,100 excessive mutation count, many mutations

in pan-cancer genes

poor score overall, and for all datum types

DLBC CRO-AP2 �3,500 lacks cancer-specific mutations and

amplifications

poor scores overall, as well as for mutations

and CNAs

LUAD NCI-H82 �3,500 poor score overall, and for all datum types

OV PA-1 �3,200 lacks a TP53 mutation and cancer-specific

amplifications

poor score overall, as well as for mutations

and CNAs

OV OVCAR-8 �3,000 lacks a TP53 mutation, has several pan-

cancer mutations and amplifications

poor score by mutation

OV OVCAR-5 �2,900 lacks a TP53 mutation, has a KRAS

mutation as well as deep deletion

poor score overall, as well as for expression

and CNAs

LAML CESS �2,900 lacks cancer-specific mutations and

amplifications

poor score overall, as well as for mutations

BLCA UM-UC-3 �2,800 has several pan-cancer deep deletions poor score overall, as well as for expression

and mutations

KIRC TK-10 �2,000 lacks cancer-specific mutations and CNAs poor score overall, as well as for mutations

and CNAs

KIRC U-031 �1,900 lacks cancer-specific mutations poor score for mutations

GBM LN-229 �1,900 lacks cancer-specific mutations poor score for mutations

STAD HGC-27 �1,720 mutations in CDK12 and SMARCA4 poor score overall, as well as for expression

and CNAs

LUAD SW1573 �1,500 poor score overall, as well as for expression

and mutations

(Continued on next page)
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Table 1. Continued

Cancer type

or subtype Cell line Citation count

Alterations in the cell line

atypical of the parent cancer type TumorComparer score notes

LUAD NCI-H1793 �1,400 poor score overall, as well as for mutations

and CNAs

MESO NCI-H28 �1,400 lacks cancer-specific mutations and

amplifications

poor score overall, as well as for expression

and mutations

LUAD A-427 �1,200 poor score for each data type

LUAD DU4475 �1,100 lacks cancer-specific mutations and

amplifications

poor score overall, as well as for expression

and mutations

The genomic profiles of these cell lines are not well matched to tumors from the annotated parent cancer type. These cell lines are probably not good

models for tumors. Details of alterations for each cell line are in Table S1. Poor score overall refers to all three data types. Citation numbers (>1,000

required) were estimated using Google Scholar as of June 2020, and have been binned next to the nearest multiple of 100 for those less than 1,000 and

to the nearest multiple of 1,000 for those greater than 10,000.

Abbreviations are as follows: BLCA, bladder urothelial carcinoma; BRCA, breast invasive carcinoma; CESC, cervical squamous cell carcinoma and

endocervical adenocarcinoma; DLBC, lymphoid neoplasm diffuse large B cell lymphoma; GBM, glioblastoma multiforme; KIRC, kidney renal clear

cell carcinoma; LAML, acute myeloid leukemia; LIHC, liver hepatocellular carcinoma; LUAD, lung adenocarcinoma; OV, ovarian serous cystadenocar-

cinoma; PRAD, prostate adenocarcinoma; STAD, stomach adenocarcinoma.
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have a rank of <0.5 for both datum types. Although we find over-

all agreement with the assessments reflected in TCGA-110, our

analysis provides a more refined ranking, as we not only use

transcript-based expression values, but also CNAs and muta-

tions. In particular, cell lines that are good matches to tumors

in terms of gene expression profiles might not be good matches

in terms of oncogenic mutations and/or copy-number changes.

Recently, while this manuscript was in preparation, Najgeba-

uer et al. (2020) published a complementary study using CEL-

Lector, an R package and R Shiny application that allows cell

line selection on the basis of genomic subtypes. CELLector iden-

tifies recurrent alterations across patient samples in mutation,

CNA, and methylation data, and divides patient samples into

subtypes on the basis of shared recurrent alterations. It then se-

lects representative cell lines for each subtype on the basis of

shared genomic alterations and ranks cell lines on the basis of

two factors—the length of a subtype-associated genomic signa-

ture present in the cell line, and the proportion of patient samples

represented by that cell line. Although this focus on recurrent al-

terations is a very reasonable choice, TumorComparer has a

flexible, more general mechanism for weighting different fea-

tures either in a data-driven or investigator-defined fashion (for

example, using pathway-oriented weights as in Figure 4).

As for coverage of tumor types and cell lines, Najgebauer et al.

(2020) applied CELLector to 16 tissue types, encompassing

4,550 tumors and 499 cell lines. TumorComparer includes all

of these cancer types, and an additional 7 cancer types (we

count COAD and READ as distinct tumor types, whereas Najge-

bauer et al. count them as one type, ‘‘COREAD’’). Furthermore,

although both CELLector and TumorComparer used mutations

and CNAs, only CELLector used methylation data, whereas

only TumorComparer used gene expression data. CELLector

and TumorComparer represent two complementary and inde-

pendently useful methods of genomics-guided cell line selec-

tion. The more general data-driven or investigator-defined

weighted similarity approach of TumorComparer has many po-

tential applications, with cell line evaluation being one use

case, as highlighted in this study.
DISCUSSION

By applying TumorComparer to pan-cancer data from TCGA

and CCLP, we have identified both good and poor genomic

matches between cell lines and tumors, as well as outliers

among the cell lines of the 24 cancer types. Several of the outliers

and poor matches were cell lines that lacked cancer-specific

recurrent alterations as reported by TCGA. Notably, although

we found 11 outlier cell lines for OV (5 widely used) and LUAD

(7 widely used), we found only 1–7 outliers in the other cancer

types. Overall, �12% of all cell lines were found to be poor

genomic matches to their tumor type. Thus the vast majority of

cell lines, including most of the widely used ones, bear at least

a moderate resemblance to tumors, in terms of sharing cancer

type-specific recurrent alterations, not having an unusually

high or low number of alterations, and matching the gene

expression patterns characteristic of the parental tumor type.

This study has generalized our previous work on evaluating

cell lines via comparison of genomic profiles in ovarian cancer

(Domcke et al., 2013), using weighted similarity with a set of

weights chosen to emphasize important genomic alterations

when computing pairwise similarity/distance. Although the

main conclusions of our previous study were reproduced by

this more general approach, the ranking of individual cell lines

(barring a few outliers) might be different in this work, depending

on the choice of similarity/distance measure, and the features

emphasized. In particular, the study on HGSOC tumors and

ovarian cell lines in the previous study used TP53 mutation sta-

tus, hyper-mutant status, and mutation status in seven ‘‘non-

HGSOC’’ genes, along with correlation with the mean CNA pro-

file of tumors. The weighted similarity approach introduced here

is more general and systematic in that all 24 cancer types and/or

subtypes were studied by using a consistent approach. We also

compared our results with other recent studies and, although our

results generally agreed with those reported by others, we found

cell lines, which matched tumors closely based on just a single

data type and were not a good match using other or several da-

tum types.
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Our method is widely applicable to comparisons of genomic

profiles, including, but not limited to tumor-tumor, tumor cell

line, and cell line-cell line comparisons. A particularly promising

application is assessing patient-patient similarity, which is a crit-

ical component in personalized cancer therapy. As we acquire

more molecular and clinical patient data along with treatment

outcomes, meaningful measures of similarity to previously

treated patients will be an invaluable guide for treatment strate-

gies. By emphasizing, via a choice of weights, determinants of

response, and resistance to anti-cancer drugs, our approach

can be adapted to patient-patient comparisons for use in prog-

nosis, assignment to clinical trials, and choice of therapy. If

such patient data are not available, one can exploit large drug

sensitivity screens conducted in cell line panels (Barretina

et al., 2012; Basu et al., 2013; Garnett et al., 2012; Iorio et al.,

2016; Klijn et al., 2015; Shoemaker, 2006) to draw inferences

regarding potential response to particular drug therapy based

on cell lines most similar to a particular patient’s tumor.

Limitations of the study
Although the results presented here provide a generally useful

resource for evaluation of a large number of widely available

cell lines, there are a few caveats. The TCGA project focused

on the genomics of primary surgical samples. Non-primary tu-

mors—including metastases and recurrences—are known to

have distinct characteristics not necessarily represented in this

study. Also, the CCLP collection does not include all commer-

cially available cell lines—e.g., some cancer (sub)types, such

as endometrial cancer (10 cell lines), are under-represented.

Therefore, summary conclusions based on a comparison of

TCGA tumor and CCLP cell line data might not be directly appli-

cable outside the datasets examined here. Furthermore, feature

weights based on the frequency of occurrence of somatic alter-

ations in tumor samples tend to emphasize major cancer sub-

types and might not be equally meaningful for subtypes with

only a few TCGA samples (e.g., for triple-negative breast cancer

tumors that comprise only �10% of TCGA breast cancer tu-

mors). In addition, tumors with substantial intra-tumor heteroge-

neity cannot be well represented by a single cell line, unless one

subpopulation of cells dominates. In cases where single-cell

alteration and expression information about a tumor is available,

we recommend that each tumor cell subpopulation be sepa-

rately compared with cell lines. Notwithstanding these caveats,

the weighted similarity approach can be applied to genomic

and molecular profiles to assess sample similarity beyond the

TCGA and CCLP datasets analyzed here, including non-primary

tumors, other collections of cell lines, and other types of tumor

models (e.g, xenografts, organoids, and tumor spheroids).

Future extensions of the method and tool might include ma-

chine learning optimization of the distribution of weights over

the feature set; addition of other molecular datum types, such

as DNA methylation, protein expression, and modifications, in

particular histone modifications and protein phosphorylation,

as well as metabolites. For patient-patient comparisons, clinical

parameters from electronic health records can be incorporated.

Future updates of the TumorComparer database of tumor and

cell line profiles are possible in crowdsourcing mode, engaging

the cancer genomics researcher community, similar to the
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CIViC, WikiPathways or BioFactoid/Pathway Commons projects

(Griffith et al., 2017; Kelder et al., 2012; Rodchenkov et al., 2020;

Wong et al., 2020).

In summary, our approach informs the comparison via the

incorporation of features and weights reflecting the features of

interest to a researcher or clinician. Such features might include

the expression of specific biomarkers, alterations in the mem-

bers of a particular pathway, or features indicative of proliferation

or response to particular therapies (Elias et al., 2015). The main

thrust of the weighted similarity approach is to improve the com-

parison of cancer samples, be they in vivo or in vitro, in a flexible

and data-driven manner.

The TumorComparer tool is publicly available as an

open-source R package at https://github.com/sanderlab/

tumorcomparer and as an interactive web application at http://

projects.sanderlab.org/tumorcomparer. Researchers with new

cell lines of interest with genomic and mRNA expression profiles

should contact the authors for normalization and format require-

ments for input data.
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ANNOVAR Wang et al., 2010 https://annovar.openbioinformatics.org/
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GISTIC2 Mermel et al., 2011 https://www.genepattern.org/

modules/docs/GISTIC_2.0
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Lead contact
Further information and requests for resources should be directed to and will be fulfilled by the Lead Contact, Chris Sander
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Materials availability
This study did not generate new unique reagents.

Data and software availability
The TumorComparer tool and data are publicly available as the TumorComparer R package at https://github.com/sanderlab/

tumorcomparer with package dependencies described in the DESCRIPTION file of the package. Additionally, TumorComparer is

available as an R Shiny web application at http://projects.sanderlab.org/tumorcomparer, and the datum matrices used in this study

are available via Zenodo (https://doi.org/10.5281/zenodo.4627644).

METHOD DETAILS

Data acquisition and pre-processing
Data were pre-processed using the R programming language (R Core Team, 2015). Tumor data were obtained from the TCGA (The

Cancer GenomeAtlas) via the TCGA pan-cancer data resource (synapse.org/#!Synapse:syn3241074, Data Freeze 1.3.1) and cell line

data werw obtained from the CCLP (COSMIC Cell Line Project) website (cancer.sanger.ac.uk/cell_lines) (Hoadley et al., 2018; Tate

et al., 2019). Detailed annotation of cell lines was obtained from the Cell Model Passports website (https://cellmodelpassports.

sanger.ac.uk). To focus on the mutations most likely to be functional, we excluded various categories of mutations. For TCGA, in

a first step mutations were removed in these categories: 30 Flank, 30 UTR, 50 Flank, 50 UTR, Intron, RNA, Silent, and for CCLP: ‘Com-

plex - compound substitution’, ‘Substitution - coding silent’, Unknown. Mutations were further flagged to enrich for putative func-

tional mutations, by the following criteria. A mutation was flagged as functional if one of three criteria was true: (1) The mutation

was considered deleterious; deleterious categories: TCGA: "Frame_Shift_Del", "Frame_Shift_Ins", "In_Frame_Del", "In_Frame_Ins",

"Nonsense_Mutation", "Nonstop_Mutation", "Splice_Site", and "Translation_Start_Site", CCLP: "Complex - deletion inframe",

"Complex - frameshift", "Complex - insertion inframe", "Deletion - Frameshift", "Deletion - In frame", "Insertion - Frameshift", "Inser-

tion - In frame", and "Nonstop extension", "Substitution - Nonsense"; (2) the mutation had at least 10 studies describing its impact in

cancer in the COSMIC database (v81); (3) the mutation received a high score for functional mutation impact from theMutationAsses-

sor algorithm (Reva et al., 2011) used via ANNOVAR (Wang et al., 2010); otherwise a mutation was excluded.
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Comparison of average genomic profiles across 24 cancer types
Gene expression data of tumors and cell lines was compared using the 2000most variable genes across TCGA tumor samples. Simi-

larly, for CNA data, we used the 2000 genes with themost variable copy number data across TCGA tumor samples. The variance was

computed over all TCGA samples across all tumor types. For mutations, we used the frequency of mutations of the 299 genes, which

are reported as significantly recurrently mutated across the TCGA pan-cancer cohort (Bailey et al., 2018).

GISTIC2 on CCLP copy number alteration (CNA) data
Then GISTIC2 (Mermel et al., 2011) method was run using the GenePattern (Reich et al., 2006) website, using the CCLP segmented

copy number data, with default parameters for filtering, except ‘‘confidence,’’ which was increased from 0.75 to 0.99. We used both

the continuous as well as the discretized 5-valued (-2,-1,0,1,2) gene-wise data produced by the GISTIC2 algorithm for copy-number

analysis.

Gene expression data
RNASeq data for TCGA (Hoadley et al., 2018; Sanchez-Vega et al., 2018) and microarray data for CCLP (Tate et al., 2019) were ob-

tained from the respective websites (see above). Quantile normalization (Bolstad et al., 2003) was applied to bring the expression

values of TCGA and CCLP samples on the same scale. We chose not to apply batch correction methods since batch correction

would also potentially remove real biological differences (Leek et al., 2010).

QUANTIFICATION AND STATISTICAL ANALYSIS

Assignment of weights to features
In general, feature weights are to be determined depending on the particular interest of the investigator and the question(s) being

asked. Here, we chose a particular set of weights focused on recurrent genomic alterations across many cancer samples. We as-

signed each of the features a weight between 0.0 and 1.0. Genes in the results from the recurrence analysis programs MUTSIG

or GISTIC, as given in the pan-cancer resource (synapse.org/#!Synapse:syn3241074, Data Freeze 1.3.1), for specific tumor types

were assigned weights as follows: (i) weight of 1.0 for each gene with a cancer-specific MUTSIG q-value % 0.1 (Lawrence et al.,

2013), and (ii) weight of 1/N for each gene in a GISTIC peak that spans N genes (Mermel et al., 2011). In addition, since alterations

in cancer genes that have no statistically significant recurrence in a particular cancer type may still be of biological interest, we gave

all known cancer genes (which were not recurrent in the given cancer type) from the TCGA pan-cancer studies a weight of 0.1.

Thus, all genes with significant recurrence of mutation events according to the MUTSIG method, and all genes in singleton peaks

according to the GISTIC method, have the maximum possible weight of 1. Other GISTIC peak genes have a weight inversely propor-

tional to the size of the peak. All remaining known cancer genes have a weight of 0.1, and the remaining alterations, assumed to be

passengers, have a weight of 0.01.

For gene expression, we used log2(expression ratio) relative to pooled normal samples from TCGA (sincemost TCGA cancer types

have gene expression data for only a small number of normal samples) - the expression ratios (‘fold changes’) were converted to a

range of 0-1 using a min-max transformation. This particular set of weights is meant to focus primarily on genes known to be likely

functional contributors. Users can use different sets of weights depending on their particular question of interest.

Weighted matching for discrete data
Most genes do not have functional alterations in most samples, since only a small fraction of genes are mutated (or have high-level

CNAs) in a typical tumor; therefore, 0-0 feature matches between two samples are the ‘‘default’’ or expected case, and not very infor-

mative. We, therefore, computed the weighted similarity of two samples after discarding the 0-0 matches.

Samples are represented by feature vectors

X = ðx1; x2;.; xnÞ and Y = ðy1; y2;.; ynÞ and a weight vector for feature weights W = ðw1;w2;.;wnÞ. Their weighted similarity is

calculated as

that is, 0-0 matches are discarded, and the similarity is calculated as the ratio of the sum of weights of features for which the two

samples have the same value, to the sum of weights of all features for which at least one of the samples has a non-zero value. This is

similar to the widely used Jaccard Index for binary data, in which 0-0 matches are discarded, and the similarity is calculated as the

ratio of the intersection to the union of the subsets of features for which at least one of the samples has non-zero values.

WEIGHTED CORRELATION FOR CONTINUOUS DATA

For weighted similarity using continuous data, we used a weighted correlation.

Weighted correlation incorporates weights into the computation of correlation coefficients by using weighted versions of the mean

and covariance. If we represent samples by feature vectors as above,

The weighted means are computed as
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x =

Xn

i =1
wixiXn

i = 1
wi

y =

Xn

i = 1
wiyiXn

i =1
wi

The weighted variances are given by

sx =

Xn

i = 1
wiðxi � xÞ2Xn

i = 1
wi

sy =

Xn

i = 1
wiðyi � yÞ2Xn

i = 1
wi

the weighted covariance is

sx;y =

Pn
i = 1wi

�
xi � xi

��
yi � yi

�
Pn

i = 1wi

and finally, the weighted correlation is computed as

Corrwðx; y;wÞ = sx;yffiffiffiffiffiffiffiffiffi
sxsy

p

COMPUTATION OF OVERALL WEIGHTED SIMILARITY SCORES

Since the different datum types (‘‘-omics’’) produce similarity scores with different numerical ranges and distributions, they should be

normalized in some manner before being combined. One approach is to convert them all to [0,1] using a min-max conversion.

Another is to use percentile ranks, where we rank the values, and then divide by the number of samples, N, to get scores in the

[1/N,1] range (or subtract 1 and divide by N-1 to get values in [0,1]); however, this assigns the same fixed values to any N similarity

values, regardless of their actual distribution. We preferred the min-max conversion for the analyses presented here. Lastly, the Tu-

morComparer tool allows different weighting for the different datum types; in this report, we have used identical weighting for mu-

tations, CNAs and mRNA expression.

RANKING OF CELL LINES USING MEAN SIMILARITY TO TUMORS

In order to compare cell line - tumor similarities acrossmultiple cancer types, we compared all cell lines to each tumor type in turn. For

each tumor type, we compared all cell lines to the tumors, which produced a baseline of cell line-tumor similarity scores for the given

tumor type. We then computed the mean of the pairwise similarity scores between the tumors and each cell line and used it to rank

the cell lines. By dividing this rank by the number of cell lines, we obtained a ‘‘normalized percentile rank’’ between 0 and 1 for each

cell line - this was done separately for each data type, and then the overall scores were computed as a weighted average of the data

type-specific ranks/scores, followed by a conversion to normalized ranks. Intuitively, cell lines of the matching cancer type should

have ranks close to 1 - given, say, 50 cell lines of the matching type out of a total of 1000 cell lines, wed expect most of them to

have a normalized percentile rank > (1000-50)/1000 = 0.95.

GENERATING CITATION ESTIMATES

Estimates of literature citation counts were produced using R code available at: https://github.com/cannin/cellline_citations. To find

literature about cell lines, one has to address the potential ambiguity in cell line names. CCLP cell line names were first mapped to

Cellosaurus synonyms (Bairoch, 2018) by examining cell line information for the ’Cosmic-CLP’ collection extracted fromCellosaurus.

CCLP cell line names not found programmatically in Cellosaurus were manually added to a list of cell line search terms that included

at least 1 entry for all cell lines used in the TumorComparer analysis.

Next, Google Scholar was searched iteratively for all cell line search terms. The Google Scholar resource for scientific articles was

chosen for its ability to identify search terms in the full-text of articles (when available). Each search contained flags to remove search

results related to dissertations, theses, and patents. The search pattern used was: "cancer cell line CELL_LINE_SEARCH_TERM

CANCER_TYPE" where CELL_LINE_SEARCH_TERM are terms from the list generated using Cellosaurus (along with manually

added terms) and CANCER_TYPE is derived from the cancer type information also provided from Cellosaurus. Additionally, terms

with fewer than 4 characters or where all the characters of the term were numbers were excluded. During the search, terms that

were identified as part of the author name string on Google Scholar were flagged for later filtering.

Next, Google Scholar search results were filtered for 1) synonyms to common names (e.g., "scott") and acronyms (e.g., "lcms") and

2) short synonyms composed of only numbers. Lastly, citation counts of synonymswere merged to produce a final estimate that was

binned into groups.
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