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Tertiary lymphoid structures (TLS), also known as ectopic lymphoid structures (ELS) or
tertiary lymphoid organs (TLO), represent a unique subset of lymphoid tissues noted for
their architectural similarity to lymph nodes, but which conditionally form in peripheral
tissues in a milieu of sustained inflammation. TLS serve as regional sites for induction and
expansion of the host B and T cell repertoires via an operational paradigm involving mature
dendritic cells (DC) and specialized endothelial cells (i.e. high endothelial venules; HEV) in a
process directed by TLS-associated cytokines and chemokines. Recent clinical
correlations have been reported for the presence of TLS within tumor biopsies with
overall patient survival and responsiveness to interventional immunotherapy. Hence,
therapeutic strategies to conditionally reinforce TLS formation within the tumor
microenvironment (TME) via the targeting of DC, vascular endothelial cells (VEC) and
local cytokine/chemokine profiles are actively being developed and tested in translational
tumor models and early phase clinical trials. In this regard, a subset of agents that promote
tumor vascular normalization (VN) have been observed to coordinately support the
development of a pro-inflammatory TME, maturation of DC and VEC, local production
of TLS-inducing cytokines and chemokines, and therapeutic TLS formation. This mini-
review will focus on STING agonists, which were originally developed as anti-angiogenic
agents, but which have recently been shown to be effective in promoting VN and TLS
formation within the therapeutic TME. Future application of these drugs in combination
immunotherapy approaches for greater therapeutic efficacy is further discussed.
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CHRONIC INFLAMMATION AND TLS
ORGANOGENESIS: GENERAL OVERVIEW
AND CANCER INDICATIONS

TLS are non-encapsulated aggregates of lymphoid cells that form
at sites of sustained inflammation, including tissues impacted by
autoimmune disease, chronic infection, and cancer (1, 2). Recent
findings suggest that the presence of TLS within tumor lesions
positively correlates with favorable prognosis in most forms of
solid cancer (1–4). TLS are associated with specialized vascular
structures (i.e. HEV) that differentiate from CD31+ VEC or
endothelial progenitor cells under pro-inflammatory, pro-
angiogenic conditions (5–7). HEV express the cell surface
marker peripheral node addressin (PNAd, a binding partner
for CD62L expressed on lymphocytes) and produce chemokines
(CCL19, CCL21, CXCL13), which facilitate the recruitment of
naïve/central memory CD62L+CCR7+ T cells , naïve
CD62L+CXCR5+ B cells, CXCR5+ T follicular helper (Tfh) cells
and mature CCR7+ DC into the TME (1). In this context, it is
believed that TLS serve as local sites for the de novo (cross)
priming, expansion, and differentiation of tumor-specific T and
B cells, leading to more efficient/effective anti-tumor responses
within sites of active disease (2, 8–13). TLS also appear to define
an operational site in which the T cell and B cell repertoires may
expand their specificity against a broadened range of tumor
antigenic targets, via the paradigms of epitope spreading or
determinant spreading (14). Notably, TLS exhibit heterogeneity
in their cellular composition and in the organization of their
integrated cell subsets, which is believed to be reflective of their
maturational status (2, 15). Classical (mature) TLS are
characterized by the presence of i.) PNAd+ HEV surrounded
by ii.) aggregates of T cells and mature DCs and iii.) distinct B
cell zones containing naïve B cells around germinal center (GC)-
like structures (1–3, 16, 17). Non-classical (immature) TLS
contain some but not all of these three characteristics (i.e.
typically lacking B cells/GC) (16). Strikingly, the presence of
either classical TLS or non-classical TLS in TME portends
superior prognoses in cancer patients (1–3, 10, 16–27).
TLS HOMEOSTATIC CYTOKINES/
CHEMOKINES ARE MODULATED BY
AGENTS THAT PROMOTE VASCULAR
NORMALIZATION (VN) IN TUMORS

An important component of TLS formation in peripheral tissues
is sustained local production of homeostatic chemokines that
recruit immune cells into affected tissue sites and serve as cues
for establishing organized interactions between infiltrating
lymphocytes and antigen presenting cells (APC). This topic
has been well-described in other publications (28, 29) and
elsewhere in the current volume and is therefore only briefly
discussed below.

One key homeostatic chemokine associated with TLS
development is CXCL13 (also known as B lymphocyte
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chemoattractant [BLC] or B cell-attracting chemokine 1 [BCA-1]),
the ligand for CXCR5 (28). The production of CXCL13 by
tumor-associated fibroblasts, Tfh cells, follicular dendritic cells
(FDC) and HEV is positively-correlated with the formation of
GC that contain CXCR5+ B cells (29, 30). While not yet
investigated in the tumor setting, forced expression of CXCL13
in normal pancreatic b cells leads to the formation of TLS
containing HEV, B cells and T cells via a process dependent
on the initial infiltration of B cells into tissue and the activation of
the lymphotoxin (LT)ab-LTbR signaling cascade (31). Two
additional major TLS-associated homeostatic chemokines
produced by mature DC and HEV are CCL19 and CCL21,
both of which serve as ligands for CCR7 (28). In normal
mouse pancreatic tissue, ectopic overexpression of CCL19 or
CCL21 induces the formation of TLS containing CD4+ T cells,
CD11c+ DCs, and B220+ B cells surrounding HEV via a process
dependent on CCL19/21-induced expression of LTa1b2
complexes on CD4+ T cells (32). Although TLS were not
formally evaluated in their endpoint analyses, several studies
have shown that treatment of murine tumors by injection with
recombinant CCL19, viruses encoding CCL19 or CCL21, or DC
engineered to express CCL21 results in robust tumor infiltration
by T cells and DC in association with slowed tumor growth and
extended overall survival (33–36).

In addition to these chemokines, tumor necrosis factor
(TNF), interferon (IFN) and interleukin (IL)-1 superfamily
cytokines also play major roles in TLS neogenesis.
Lymphotoxins (LTa/TNFSF1 and LTb/TNFSF3) and LIGHT/
TNFSF14 produced by immune cells play canonical roles in the
formation of TLS (29, 37). Lymphotoxins form bioactive
heterotrimers (LTa3, LTa1b2, LTa2b1) that bind to LTbR/
TNFRSF3, with LTa3 also binding and mediating signals
through the TNFR1/TNFRSF1A, TNFR2/TNFSF1B and
herpesvirus entry mediator (HVEM)/TNFRSF14 receptors
(38). LIGHT also binds to HVEM/TNFRSF14 (39). TNF
receptors represent important signaling receptors for
endothelial cell function and proliferation and they facilitate
TLS neogenesis. TNFR1/2 expression on endothelial cells has
been shown to be necessary for HEV formation and T cell
infiltration into murine melanoma (40). Mice lacking TNFR1/2
on the endothelium or LTa on CD8+ T cells have significantly
decreased PNAd expression, demonstrating that LTa3

engagement of TNFR1 induces PNAd expression on the tumor
vascular endothelium (40). In kidney and pancreatic tissues, the
forced overexpression of LTa promotes lymphoid aggregate
formation (containing T cells, B cells, and APCs) and tumor
vascular reprograming, as indicated by increased expression of
VCAM-1, ICAM-1, MAdCAM, and PNAd on VEC/HEV (41).
Additionally, combined overexpression of LTa and LTb further
enhances infiltration of naïve lymphocytes and expression of
homeostatic chemokines when compared to LTa overexpression
alone, suggesting the synergistic action of these cytokines in TLS
formation (42). In line with such findings, B16.F10 melanoma-
bearing mice treated with a tumor-targeted GD2 scFv-LTa
fusion protein demonstrate increased densities of intratumoral
HEV and develop a diverse T cell repertoire in association with
May 2021 | Volume 12 | Article 690105
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TLS neogenesis (43). Remarkably, recent reports in murine
transplantable and carcinogen-induced tumor models support
the operational dominance of TNFR- over LTbR-mediated
signaling for HEV/TLS neogenesis in the TME (40, 44),
findings which contrast with the canonical importance of
LTbR-mediated signaling for HEV/TLS formation in normal
tissues and in ontogenic secondary lymphoid organogenesis (1,
29, 30, 40, 44). Beyond lymphotoxins, LIGHT activation of VEC
has also been shown to play a role in TLS formation in cancer
models. C57BL/6 mice bearing intracranial NSCG glioblastomas
treated with a fusion protein encoding LIGHT and a vascular
targeting peptide (LIGHT-VTP) displayed VN and induction of
classical TLS within the TME (45). In murine fibrosarcoma
models, forced expression of LIGHT prompted naïve T cell
infiltration and local production of homeostatic chemokines,
leading to tumor rejection in the therapy setting (8, 46).

Type I IFNs have also been reported to drive TLS formation
in normal tissues (47, 48). In murine models, a subset of
PDGFRa+ lung fibroblasts produce CXCL13 in response to
infection with influenza virus or intranasal administration of
IFNb (48). IFN-I receptor (IFNAR) activation in these cells
results in increased recruitment of CXCR5+ B cells and ectopic
germinal center formation in the lungs, which in turn promotes
the development of a broadly neutralizing repertoire of antiviral
antibodies conferring cross-strain protection (48). In a
hydrocarbon (TMPD)-induced model of autoimmune SLE,
mice with intact IFN-I signaling had worse clinical scores and
increased lupus-specific autoantibody production compared to
IFNAR-deficient mice (49). It was shown that IFN-I produced by
activated DCs in this model was associated with the formation of
classical TLS containing B cells, CD4+ T cells, and DC along with
coordinate expression of TLS homeostatic chemokines (CCL19,
CCL21, CXCL13) and their receptors (CCR7, CXCR5) (50).
Sustained IFN-I/IFNAR signaling in tissues has similarly been
shown to promote TLS formation in additional studies via local
production of pro-inflammatory CXCR3 ligand chemokines
(CXCL10/11) and lymphotoxins (51, 52).

Furthermore, gene therapy delivering IL-1 family member IL-
F9/IL-36g induces HEV and TLS formation in mouse colon
carcinomas in association with the development of superior T
cell-mediated anti-tumor immunity and tumor growth
suppression (11). Notably, the activation of IL-36R on immune
and stromal cell populations has been shown to upregulate local
production of pro-inflammatory, pro-TLS factors including
CXCL10, LTa and IFNs (53). In humans, IL-36g is expressed
by the tumor vasculature in colorectal cancers and has been
correlated with an increased density of CD20+ B cells localized in
TLS in these tumors (54).
STING SIGNALING ENFORCES A
PRO-INFLAMMATORY, PRO-TLS TME

STING (STimulator of INterferon Genes) is a cytosolic DNA
sensing protein that is activated upon binding to cGAMP, a
catalyzed dsDNA product of cytosolic GMP/AMP synthase
Frontiers in Immunology | www.frontiersin.org 3
(cGAS) (55). Activation of STING leads to secondary
activation of transcription factor IRF3 by facilitating IRF3
interac t ion wi th Tank Binding Kinase 1 (TBK1) ,
phosphorylation of IRF3 (pIRF3), pIRF3 dimerization and
translocation into the nucleus where it transactivates IFNb and
other pro-inflammatory genes (55).

As a consequence of defects in the expression/functionality of
DNA repair proteins, tumors are commonly characterized by
genetic instability (56, 57) and contain high concentrations of
cytoplasmic DNA leading to intrinsic cGAS/STING activation
and secretion of proinflammatory mediators (58–60).
Progressively growing tumors have been reported to develop
defects in the STING signaling pathway to avoid STING-induced
apoptosis and immune surveillance (60–62). Nevertheless, dying
tumor cells still release dsDNA (and/or 2’3’ cGAMP, its cGAS
catalyzed product) into the TME, which may result in the
activation of STING+ cells in the tumor stroma, including DC
and VEC (63–65). This intrinsic inflammatory process may be
therapeutically enhanced by local or systemic delivery of
synthetic STING agonists (66, 67).

Activation of STING in tumor-associated VEC leads to VN
(67, 68) characterized by increased vascular perfusion and
upregulated expression of E-selectin/CD62E, VCAM-1 and
ICAM-1 which facilitates circulating immune cell adhesion
to the endothelium and consequent recruitment of tumor-
infiltrating lymphocytes into the TME (63, 67, 68). This
operating paradigm may underlie observations of cancers
with reduced DNA repair proficiency and high comparative
mutational burden presenting with brisk proinflammatory
immune cell infiltrates (i.e. “hot tumors”) that are more
prone to develop TLS (69, 70) and to be more responsive to
interventional immunotherapy (71, 72). Notably, provision of
low doses of STING agonists cGAMP and ADU-S100 (aka ML-
RR-S2-CDA, MIW815) coordinately promote VN and CD8+ T
cell-dependent control of tumor growth in murine models of
breast carcinoma, lung carcinoma and melanoma (67, 68, 73).
Yang et al. (68) further confirmed the importance of STING
agonist-induced Type-I IFN produced by tumor VEC with the
therapeutic benefits associated with this treatment approach.
Most recently (Figure 1), Chelvanambi et al. has demonstrated
that VN induced by intratumoral administration of low doses
of the STING agonist ADU-S100 results in sustained
inflammation within the TME of B16 melanomas and local
production of homeostatic cytokines/chemokines (LTa, LTb,
LIGHT, CCL19 and CCL21, but remarkably not CXCL13) and
pro-inflammatory/pro-TLS mediators (CXCL10, IL-36b,
IFNb) (67). These therapy-associated changes were
associated with coordinate neogenesis of non-classical TLS
and the development of a unique tumor-infiltrating T cell
receptor (TCR) repertoire in the TLS+ TME that was not
detectable in the peripheral immune cell compartment (67).
Parallel studies using STING-KO mice confirmed the strict
requirement for STING expression in host but not tumor cells
for therapeutic response to intratumoral administration of
ADU-S100, including TLS formation and slowed tumor
growth (67).
May 2021 | Volume 12 | Article 690105
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COMBINATION STING AGONIST
THERAPIES MAY BE REQUIRED TO
PROMOTE THE NEOGENESIS OF
CLASSICAL, MATURE TLS IN THE TME

The finding that STING agonists promote the formation of non-
classical/immature TLS is consistent with the inability of these
agents to augment production of CXCL13 within the treated
TME, a prerequisite for CXCR5+ B cell/Tfh cell recruitment and
the formation of GC within classical/mature TLS (67). While the
exact mechanism underlying this deficiency in CXCL13
production remains unclear, it could relate to the known
regulatory action of STING signaling in B cells. For instance,
the activation of STING in B cells via genetic engineering to
express a constitutively activated form of STING or by treatment
of B cells with STING agonists results in endoplasmic reticulum
(ER)-a s soc i a t ed degrada t ion of membrane-bound
immunoglobulin, muted BCR signaling via enhanced SHP1
Frontiers in Immunology | www.frontiersin.org 4
phosphatase activity and increased rates of B cell apoptosis
(74–76).

Since STING agonist-associated treatment benefits occur in
association with non-classical/immature TLS formation, with
seemingly minimal input from B cells, these findings also
reenergize discussions related to the operational importance of
B cells in therapeutic anti-tumor immune responses. Despite
several recent reports citing the association of B cells and
GC within tumor-associated TLS and positive clinical
prognosis and response to interventional immunotherapy (19,
77–80), the literature is balanced by observations for an
immunosuppressive influence for intratumoral B cells in
promoting tumor progression, poor patient prognosis and
immune-related adverse events (irAEs) in response to
immunotherapy (80–82). Translational modeling in murine
tumor models has similarly provided equivocal findings.
Hence, B cell deficiency (muMT) or B cell depletion (using
anti-CD20 mAbs) has resulted in either decreased (83–86) or
FIGURE 1 | Treatment of tumors with STING agonists induces vascular normalization (VN), increased inflammatory immune cell infiltration and TLS formation.
Untreated tumors exhibit dysfunctional blood vessels that limit immune cell entry into the tumor microenvironment (TME) in support of tumor progression (left).
Provision of STING agonists (1, right) into the TME leads to the activation of STING+ stromal cells (2), including dendritic cells (DC) and vascular endothelial cells
(VEC), leading to enhanced endothelial cell expression of adhesion molecules, improved vascular integrity/perfusion, and pro-inflammatory immune cell infiltration.
A subset of therapeutically-conditioned VEC may differentiate into PNAd+ high endothelial venules (HEV). STING activated DC and HEV produce TLS-promoting
cytokines/chemokines CCL19, CCL21, lymphotoxins, CXCL10 and IFNb, which serve to recruit T cells and DC into the TME in support of non-classic, immature TLS
formation proximal to HEV (3). CXCL13, required for optimal B cell recruitment into the TME and for germinal center (GC) formation within TLS, is only poorly
produced in the STING agonist-conditioned tumors, precluding formation of classical, mature TLS. Combination protocols will likely be required for conversion of
immature TLS into B cell/GC-rich classical, mature TLS (4) and/or to improve the therapeutic benefits associated with treatment-induced TLS formation (5). Image
created with BioRender.com.
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increased (87) tumor growth. In the former cases, B cells are
hypothesized to serve as intrinsic immunoregulatory cells or
facilitators of Treg recruitment/development/function (82–85),
while in the latter situation, B cells are believed to serve as
supportive antigen-presenting cells and/or producers of pro-TLS
cytokines (i.e. LIGHT) and therapeutic anti-tumor antibodies
(19, 78, 88–93).

In recent years, more attention has been devoted to discerning
the impact of B cells in TLS that form in patients’ tumors with a
generally beneficial role for B cells emerging. In both melanoma
and renal cell carcinoma, B cell gene signatures are enriched in
the tumors of patients who respond to immune checkpoint
blockade with positive correlations observed at baseline and
on-treatment (79). When tumor samples were histologically
analyzed, TLS containing B cells were more commonly
identified in tumor biopsies obtained from clinical responders
vs. non-responders, and these mature TLS appeared more
secondary-follicle-like and contained CD21+ follicular DC and
CD23+ germinal center B cells (79). Furthermore, the presence of
B cells in classical, mature TLS was associated with T cells
exhibiting more activated, functional phenotypes and expanded
repertoires (79, 94–96).

If these more recent observations can be generalized, they
sugges t that opt imal benefi t s f rom intervent iona l
immunotherapies may require treatment-associated development
of classic, mature TLS containing B cells. As such, STING agonist-
based regimens should be combined (synchronously or potentially
after STING agonists) with co-treatments that coordinately induce
the entry of therapeutic B cells, as well as FDC and Tfh cells, into
the TME to improve TLS-associated anti-tumor immune
responses. Candidate co-therapies include a range of toll-receptor
agonists (97–104), agonist anti-TNFR1 antibodies (105) and DNA
methylase inhibitors (106) which have each been reported to
augment production of CXCL13 by stromal cell populations.
This augmentation would be expected to improve tumor
infiltrating B cell content and GC formation within the TLS+

TME, conceivably improving immune-mediated control of tumor
growth. Indeed, several recent reports support therapeutic synergy
using treatment regimens combining STING agonists and TLR1/2
agonist Pam3Csk (97), TLR4 agonist monophosphoryl lipid A
(102), TLR7/8 agonist MEDI9197 (103) or TLR9 agonist CpG
(104). Although the impact of these interventional protocols on
TLS formation within the TME and the evolving anti-tumor
immune response remains unknown, these aspects are expected
to be actively pursued in future studies.
COMBINING STING AGONISTS WITH
AGENTS CAPABLE OF ANTAGONIZING
COMPENSATORY REGULATORY
PATHWAYS FOR IMPROVED
THERAPEUTIC EFFICACY

Given the ability of STING agonists to promote robust pro-
inflammatory responses in tumor-associated stromal cells, it is
Frontiers in Immunology | www.frontiersin.org 5
perhaps not surprising that these agents are competent to initiate
the development of non-classical, immature TLS within the TME
(67). And even though treatment of tumor-bearing mice with
STING agonists leads to reduced levels of tumor-associated
myeloid-derived suppressor cells (MDSC) and Treg cells (107,
108), these regimens promote compensatory activation of
immune regulatory pathways by augmenting expression of
arginase-2 (ARG2), cyclooxygenase-2 (COX2/PTGS2),
indoleamine 2,3 dioxygenase (IDO), programmed death-1
(PD-1), programmed death ligand-1 (PD-L1) and prostaglandin
E synthase (PTGES) within the TME (67, 109–111). Hence,
combined treatment protocols that include STING agonists
and antagonists of these regulatory pathways would be
anticipated to enhance/sustain inflammation within the TME
in support of TLS formation/maintenance and improved host
control of tumor growth. While the formation of TLS has yet
to be investigated as a therapeutic endpoint in translational
models of such combination treatment protocols, therapeutic
synergy has been observed for regimens combining STING
agonists with inhibitors of COX2 (Celecoxib) or IDO (BMS-
986205), or antagonist anti-PD1 and/or anti-PD-L1 antibodies
(107, 109, 112).
DISCUSSION AND FUTURE
PERSPECTIVES

TLS are increasingly viewed as important operational
components supporting the development and maintenance of
protective immune responses that impact patient prognosis
and response to interventional immunotherapy. The ability to
predictably and reproducibly promote or augment TLS
formation in a patient’s tumor(s) via the administration of
therapeutic agents may dramatically improve objective
response rates over those currently observed for standard of
care treatments, including immune checkpoint blockade
antibodies. Although previous animal modeling of gene
therapy and targeted antibody approaches to deliver
individual TLS homeostatic cytokines/chemokines have
proven successful in controlling tumor growth and
promoting TLS formation in mice (113–115), these strategies
have yet to be effectively translated into the clinic, and they rely
on the biologic dominance of a single agent to initiate the
complex biologic process of TLS formation. In this regard,
STING agonism provides the opportunity to coordinately
activate a range of tumor-associated stromal cell populations,
including vascular endothelial cells and immune cells, leading
to VN, enhanced immune cell infi l tration, and the
establishment of a pro-inflammatory TME in which TLS-
associated homeostatic chemokines and cytokines are
produced and TLS formation is facilitated. While provision
of STING agonist ADU-S100 into B16 melanomas resulted in
the development of a T cell repertoire unique to the therapeutic
TLS+ TME and to some abscopal benefit in regulating the
growth of distal, untreated tumor lesions, the current approach
has several limitations.
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First, the approach involves direct injection of a second-
generation STING agonist (which can only be administered
locally) into an accessible lesion, with the intent to treat
disseminated disease. In this regard, while local injection of
STING agonists [i.e. ADU-S100/MIW815 (NCT02675439), MK-
1454 (NCT03010176)] as monotherapies has provided some
evidence for pro-inflammatory changes in the TME or patient
sera, therapeutic benefits have been minimal (i.e. < 5% objective
response rate) in early phase clinical trials treating advanced-stage
cancer patients (as described in greater detail in a series of recent
outstanding reviews) (55, 116, 117). This deficiency may be
circumvented by the provision of next-generation, systemic
STING agonists for more effective treatment of patients with
multifocal, disseminated disease in visceral tissue sites. Several of
these agents (i.e. E7766 [NCT04109092], GSK-3745417
[NCT03843359], MSA-2, SB-11285 [NCT04096638], TAK-676
[NCT04420884]) (55, 118, 119) are planned for, or are currently
being evaluated in, phase I clinical trials. Given the pro-apoptotic
impact of high-doses of STING agonists on VEC (i.e. vasoablative)
and immune cell populations (67, 73–76, 120, 121), but the ability
of low-dose regimens to promote VN and enhanced pro-
inflammatory immune function in pre-clinical models, it might
be anticipated that low-dose protocols will provide optimal
immunotherapeutic benefits in these trials. While it is not clear
that the formation of TLS represents an exploratory endpoint in
these ongoing trial designs, one might expect that low-dose
regimens of these next-generation STING agonists will prove
effective in inducing de novo development of TLS or expansion
of existing TLS within the tumor of treated patients. It is also
possible given enhanced autoimmune manifestations in older
(cancer) patients (122), many of which have known associations
with the formation of TLS in affected tissues (123), that treatment
with systemic STING agonists may exacerbate the incidence and
severity of irAEs.

Second, the TLS promoted by ADU-S100 in the TME
appear rich in CD8+ T cells, DC and HEV, but they are poor
in CXCL13 production and infiltrating B cell/GC content
(67) [i.e. representative of non-classical, immature TLS
(2, 16)]. If B cells are indeed crucial to superior therapeutic
benefits associated with TLS formation in tumors, additional
co-therapies that i.) reinforce local CXCL13 production, ii.)
B cell, Tfh and FDC infiltration and iii.) GC formation, may
need to be combined with STING agonists to achieve maximal
interventional benefit.

Third, the natural checks and balances in evolving immune
responses must be considered in conditionally optimizing
STING agonist-based immunotherapies. The robust pro-
Frontiers in Immunology | www.frontiersin.org 6
inflammatory responses evoked by these agents result in an
upregulation in immune regulatory pathways within the TME,
including but not limited to prostaglandin E production
and immune suppression mediated by arginase, IDO and
co-inhibitory receptors (67, 68). These regulatory pathways
may be antagonized (individually or collectively) in
combination STING agonist protocols using available, in-clinic
targeted inhibitors. Such approaches would be expected to
augment and prolong inflammation within the TME in
support of TLS formation and the mobilization of broadly-
reactive anti-tumor immune responses in the therapy setting.
However, as suggested above, such deregulated reinforcement of
TLS formation in tumors and normal tissues carries increased
risk for the evolution of severe (autoimmune) irAEs.

Finally, previous findings suggest that in certain cases, STING
activation and the presence of HEV/TLS may be associated with
tumor progression. Hence, in murine lung carcinoma models
(109, 111), provision of STING agonists (i.e. CDA) initially
slowed primary tumor growth but ultimately resulted in
disease progression and metastasis due to treatment-associated
enhancement in immune regulatory/tolerogenic pathways
(COX2, IDO, PD-1), which could be mitigated using targeted
inhibitors in combination protocols (109, 111). Furthermore,
tumors with pronounced chromosomal instability and intrinsic
STING signaling competency have been reported to exhibit
STING-dependent metastatic potential (124), which might be
envisioned to be further exacerbated by treatment with STING
agonists. Additional reports caution that TLS enriched in Treg
cells or immature (thin-walled) HEV may be associated with
poor immune infiltration of tumors, poor patient prognosis and
increased tumor metastasis (125). Therefore, baseline tumor
STING signaling competency and the quality and cell
composition of STING-agonized TLS should be carefully
monitored for correlative impact on cancer patient outcome.
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