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Abstract: Every day, up to 1 g of cholesterol, composed of the unabsorbed dietary cholesterol, the
biliary cholesterol secretion, and cholesterol of cells sloughed from the intestinal epithelium, enters
the colon. All cholesterol arriving in the large intestine can be metabolized by the colonic bacteria.
Cholesterol is mainly converted into coprostanol, a non-absorbable sterol that is excreted in the
feces. Interestingly, cholesterol-to-coprostanol conversion in human populations is variable, with a
majority of high converters and a minority of low or inefficient converters. Two major pathways have
been proposed, one involving the direct stereospecific reduction of the ∆5 double bond direct while
the indirect pathway involves the intermediate formation of 4-cholelesten-3-one and coprostanone.
Despite the fact that intestinal cholesterol conversion was discovered more than a century ago, only
a few cholesterol-to-coprostanol-converting bacterial strains have been isolated and characterized.
Moreover, the responsible genes were mainly unknown until recently. Interestingly, cholesterol-to-
coprostanol conversion is highly regulated by the diet. Finally, this gut bacterial metabolism has
been linked to health and disease, and recent evidence suggests it could contribute to lower blood
cholesterol and cardiovascular risks.
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1. Introduction

Cholesterol sustains life of most higher animals and birds as a main element of cell
membrane architecture, a unique natural precursor for the synthesis of all five classes of
steroid hormones (glucocorticoids, mineralocorticoids, progestins, androgens and oestro-
gens), vitamin D, and bile acids. Yet, an excess of cholesterol in blood is also detrimental in
humans since it is recognized as a major risk of cardiovascular disease, which is a leading
cause of mortality in developed countries [1]. Excess cholesterol in blood and other organs
comes from an imbalance between input and output. Input originates from endogenous
synthesis mainly in the liver and the small intestine, plus exogenous food intake of animal
origin. Output proceeds via bioconversion to bile acids in the liver, steroid hormones
in diverse tissues, mainly the adrenal cortex, testis, and ovary, cell renewal, plus enteric
metabolism into virtually non-absorbable microbial derivatives, which are eliminated in
the feces. Among them, non-absorbable coprostanol is by far the most predominant and of
highest clinical interest for removal of cholesterol from the body. Figure 1 gives a rough
estimation of daily cholesterol input and output in the healthy adult.

Considerable effort has thus been devoted to develop, question, and update reliable
clinical interventional strategies aimed at lowering blood cholesterol through either de-
pleting input, stimulating output, or both. A simple way of getting there would be to
limit cholesterol input by lowering its dietary supply from animal products and/or its
intestinal absorption by sequestering or competing ingredients [2], which unfortunately
may not be sufficient in a number of cases where an inherited propensity to synthesize too
much endogenous cholesterol limits the effectiveness of a healthy diet. For that reason, a
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number of medicines have been proposed to inhibit synthesis of cholesterol by the liver
and intestine, the most popular and widely prescribed being statins. A complementary
strategy would be to increase the use of cholesterol for bile acid synthesis. This could
be done through oral intake of bile acid sequestering agents, which partially remove bile
acids from the enterohepatic circulation and boost their compensatory de novo synthesis
from the unique precursor cholesterol. A fourth and last strategy, which was proposed
several decades ago, but failed to be put into practice up to now, would be to increase
the bioconversion of cholesterol in the gut lumen to its end, non-absorbable bacterial
metabolite coprostanol, which could be achieved through supplementation with either
cholesterol-metabolizing microbes or microbial enzymes. The latter strategy was the matter
of a series of patents and well-known papers in the field [3–9]. The bottleneck is, however,
our limited knowledge about cholesterol metabolism by the gut microbiota, as regards to
only few isolated coprostanoligenic bacterial strains and unidentified responsible genes.
If cholesterol-to-coprostanol conversion has been mentioned or described in numerous
previous reviews [10–20], the present one is the first one entirely dedicated to this gut
bacterial metabolism. It constitutes an opportunity to reassess what we know or suspect
about this bacterial metabolism, which, in spite of being probably as old as appearance of
mammals on earth, still remains so mysterious.
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2. Historical Evidence

The idea that gut microbes could participate in the elimination of cholesterol from
the body through the bowel emerged as early as the late 19th century [21,22], 30 years
after the discovery of coprostanol in human feces in 1862 [23], designated at that time
as “stercorin” or “coprosterol.” Coprostanol was early ascribed to enteric metabolism
since (i) it was largely recovered in stool after a healthy human had ingested choles-
terol [21], (ii) it was found to be absent from meconium and feces of fasting animals [24],
and (iii) it was not found in any other body compartment besides feces and intestinal
contents [25]. Then, multiple evidence that the intestinal microbiota was solely responsible
for the cholesterol-to-coprostanol conversion in the intestine wasbrought by a number of
observations, notably (i) coprostanol was never found in feces of germ-free animals [26–29],
and (ii) administration of bactericides/antibiotics abolishes/diminishes coprostanol for-
mation in conventional animals [29–31] and in man [32]. Interestingly, several studies
have reported that microbial cholesterol-to-coprostanol conversion in human populations
was bimodal, with a majority of high converters (almost complete cholesterol conversion)
and a minority of low or inefficient converters (coprostanol content representing less than
one-third of the fecal neutral sterols content) [33,34].
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The transformation of cholesterol to coprostanol was reproduced in vitro [35] almost
one century after the discovery of coprostanol and its origin, and 20 more years were neces-
sary to obtain the first pure culture of a cholesterol-to-coprostanol-reducing bacterium [36].
It is not for lack of interest for this unique metabolism, which finds applications in areas as
diverse as medicine, biotechnologies, enzymology, environmental protection, and paleode-
mography, but simply because sterol metabolism is one of the most complex, and the gut
anaerobes that support it are probably among the most difficult to cultivate, isolate, and
preserve.

3. Coprostanol as a Tracer for Life on Earth and Anthropogenic Water Pollution

Coprostanol (5β-cholestanol) and 5β-phytostanols (5β-campestanol and 5β-stigma-
stanol) of dried feces appear to be very stable, as evidenced by gas-liquid chromatography
patterns, which appear indistinguishable in more than 2000-year-old human coprolites and
contemporary specimens [37]. Stanols can even persist in anoxic sediments for thousands
of years [38–40]. Therefore, several studies have successfully used fecal 5β-stanols and their
ratios to mark the presence of humans and domesticated ruminants [38,41,42]. For instance,
the coprostanol:5β-stigmastanol ratio has been used to distinguish between human and
ruminant fecal deposition [41] with values greater than 1.5 being considered indicative of
human-sourced pollution [42]. Various other sterol indices have also been derived from
sediments of archaeological sites as indicators of the agriculture practices [43–46]. The
5α-isomers of coprostanol and coprostanone, formed from the degradation of cholesterol by
soil microbial communities [42], have also been proposed and used to distinguish between
stanol input and preservation in a specific environment (5α isomers), and stanol input from
feces (5β isomers) [47–50].

While refractory to degradation in anoxic sediments [38,39], coprostanol and other
stanols degrade with considerable rates in effluent and sea water [39,51]. Thus, fecal stanols
are suitable markers for sewage dispersion in coastal waters where the relatively shallow
waters and slow current do not allow sewage particles to stay in suspension in the water
column. Once incorporated into anoxic sediments, stanols are expected to persist, and
any decline in concentration can be attributed to physical sediment transport [39]. Thus,
metrics used to trace sewage contaminants in sediment or sewage sludge dispersion are
the same as those used for sediments of archaeological sites [52,53].

4. Gut Microbial Metabolites of Cholesterol and Suspected Pathways

Cholesterol (examples of synonyms 3β-hydroxy-5-cholestene or 5-cholesten-3β-ol)
in the intestine may be either absorbed or undergo microbial conversion to different
metabolites, of which non-absorbable coprostanol (examples of synonyms 5β-cholestanol
or 5β-cholestan-3β-ol) is the end and predominant product found in feces. Note that
multiple synonyms can be employed for a same steroid molecule, which does not help
the reader to find his way. Cholesterol is a 27-carbon molecule with a structure formed
by a polycyclic ring skeleton with a trans A/B ring junction, a β-hydroxyl group in the
equatorial position at C3 (i.e., in plane of the molecule), a double bond at C5 (∆5 double
bond), two methyl groups at C10 and C13, and a side chain at C17 (Figure 2A). Cholesterol
metabolism by gut bacteria seems to be limited to the end product coprostanol and its
intermediates, with no degradation of the side chain, and no fission of the steroid rings,
which, in aerobic soil bacteria, lead to the complete degradation of the steroid molecule
up to CO2 [54,55]. This could be interpreted as a symbiotic relationship between the gut
cholesterol-metabolizing microbiota and the host, which participates in the elimination
of excess cholesterol from the body without altering the integrity of the intestinal cell
membranes. On the other hand, the significance of cholesterol-to-coprostanol reduction to
the physiology of the bacteria remains to be elucidated. Eyssen et al. [56] speculated that
cholesterol acted as a terminal electron acceptor in cholesterol-reducing bacteria, thereby
supplying energy by means of electron transport. However, several active strains do not
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require cholesterol for growth, indicating that some cholesterol reducing microorganisms
can use alternate electron acceptors, or generate energy by other ways [57].
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Coprostanol is the saturated analogue of cholesterol. In addition to the saturation of
the ∆5 double bond, the structure of coprostanol differs from that of cholesterol by a cis
A/B ring junction, which causes the A ring to be bent into a second plane at approximately
a right angle to the B:C:D rings, and the 3-hydroxy group to be in the axial position, i.e.,
out of plane of the molecule (Figure 2B). Such a structure would be mainly responsible for
the poor ability of coprostanol to be esterified within the intestinal mucosa, and therefore
to be absorbed [58–60].

Two metabolic pathways have been proposed to explain the conversion of cholesterol
to coprostanol by intestinal microorganisms [35,61]. One pathway is the direct stereospe-
cific reduction of the ∆5 double bond [35] (Figure 3). The other pathway involves the
intermediate formation of ∆4-cholelesten-3-one (or 4-cholelesten-3-one, or cholestenone)
and coprostanone [61] (Figure 3). A series of complex in vivo and in vitro experiments us-
ing labeled and double-labeled steroid molecules was conducted over almost two decades,
to follow the outcome of the hydrogen atom of the 3-hydroxy group [35,61–63] and prove
the formation of the intermediates 4-cholesten-3-one and coprostanone [61,64]. This led
to the incontrovertible evidence that conversion of cholesterol to coprostanol proceeds at
least in part, if not largely, via the intermediate-involving pathway, while participation of a
direct pathway is not proved but cannot be excluded [61]. Since then, many patterns of
neutral fecal sterols by gas liquid chromatography, coupled or not with mass spectrometry,
have referred to the presence of coprostanol, 4-cholesten-3-one and coprostanone in feces
from humans and conventional animals, while all three metabolites are totally absent in
germ-free models [26–29].
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5. Isolated Active Strains

As intestinal conversion of cholesterol to coprostanol is a metabolism specific to the
anaerobic intestinal environment, it was naturally assumed to be carried out by strict anaer-
obes, and active microorganisms were searched and isolated from anaerobic ecosystems,
namely, feces of animals and humans, or sewage sludge. In fact, consistent work but
modest results clearly illustrate the challenge.

In 1973, Crowther’s group [65] claimed that several pure cultures of intestinal bacterial
strains, including Clostridium, Bacteroides, and Bifidobacterium, converted cholesterol to
coprostanol when grown in the brain-based medium of Snog-Kjaer et al. [66]. Some strains
of Bacteroides were reported to convert more than 50% of the cholesterol substrate after 7 d
of incubation [65]. Since the active strains had been lost, Sadzikowski et al. [67] tried to
repeat the experiment with the same methods and media, but they failed to isolate any
cholesterol-reducing bacterium. The inability of subsequent investigators to demonstrate
cholesterol reduction by pure cultures of similar strains remains unexplained.

The first isolation of a pure culture of a cholesterol-reducing bacterium was most likely
accomplished by Eyssen et al. [36], with Eubacterium sp. strain ATCC 21408 isolated from rat
cecal contents. In addition to cholesterol, Eubacterium 21,408 also reduced 4-cholesten-3-one
to coprostanol. Sitosterol, campesterol, stigmosterol, 5-androsten-3β-ol-17-one, and 5-
pregnen-3,20β-diol were also converted to their corresponding 5-hydrogenated derivatives.
During the same period, the same group [68] showed that cholesterol was extensively
hydrogenated into coprostanol in conventional rats, or gnotobiotic rats associated with a
reducing Clostridium species plus Eubacterium 21,408. However, production of coprostanol
was abolished within 2 days after cecotomy, and Eubacterium 21,408 was unable to develop
in the intestine of cecectomized rats. As disappearance of the bacterium could not be
related to modification of the pH or Eh values of the colonic contents, it was attributed
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to the fact that the cecum was necessary to maintain “normal microecology” of in this
animal model.

Then, another active strain, Eubacterium 403, was isolated from baboon feces [69]. Both
isolates, E. 21,408 and E. 403, grew for only a limited number of transfers in brain-free
media supplemented with cholesterol dispersed with lecithin. For long-term maintenance,
the addition of homogenized brain or lipid extracts of brain was required. By separating
an organic solvent extract of brain into its components, it was determined that the bacteria
required plasmenylethanolamine (PLE) for growth [69]. When pure PLE was added to a
medium that contained cholesterol dispersed with lecithin, the Eubacteria grew, formed
fibers, and solidified the medium. The cultures also catabolized PLE, which disappeared
with cell growth.

Then, nine new active strains were isolated from dilutions of feces or intestinal contents
of baboons plated on cholesterol-brain agar (CBA) [57]. Among them, two could reduce
cholesterol in the absence of PLE. Unfortunately, all these strains were lost, probably due
to their challenging cultivability.

Later, an easier-to-culture strain, Eubacterium sp. strain HL, ATCC 51,222, known as
Eubacterium coprostanoligenes, was isolated by plating hog sewage lagoon onto a modified
lecithin agar medium [70]. This isolate was claimed to have characteristics that make it
a better candidate for future applications, compared to previous isolates, including the
ability to grow without cholesterol or PLE, aerotolerance, and the ability to form colonies
on a solid medium simply incubated in GasPak jars.

As the first two active microorganisms isolated by independent groups from different
environments (Eubacterium sp. strain ATCC 21408 from rat feces [36] and E. ATCC 51222
from sewage sludge [70]), were identified as members of the genus Eubacterium, it was
extrapolated that active strains should mainly belong to this genus [32]. Yet, intriguingly,
the two microorganisms essentially differed in their growth requirements, the former but
not the latter having an absolute requirement for large amounts of cholesterol or other
related ∆5-sterols. The large amount of steroid required for maximal growth (no less than
1.5-2 mg/mL broth) led to speculate that cholesterol did not act as a growth factor but that
the ∆5-bond of cholesterol and plant sterols is a hydrogen acceptor in the microorganism’s
metabolism [36].

The most recently isolated and only strain from human origin is Bacteroides sp. strain
D8 [71], isolated on CBA in 2007, from feces of a man previously identified as a high
cholesterol-to-coprostanol converter, based on gas chromatography pattern of his fecal
neutral sterols. Phylogenetic tree construction showed that this strain clustered in an
independent clade with two isolates of the Bacteroides dorei species. Nevertheless, no
cholesterol-reducing activity was detected in B. dorei type strain cultures. As observed with
E. coprostanoligenes, Bacteroides sp. strain D8 started to reduce cholesterol to coprostanol
on the third day of growth in vitro, and seven days were necessary to achieve complete
cholesterol conversion. The intermediate products, 4-cholesten-3-one and coprostanone,
were detected during cholesterol conversion by Bacteroides sp. strain D8, and this strain
was able to convert 4-cholesten-3-one and coprostanone to coprostanol in vitro, indicating
an indirect pathway for coprostanol production. The cholesterol-to-coprostanol reduction
efficiency of resting cells of Bacteroides sp. strain D8 was found to be 0.57 mg (1.5 µmol)
cholesterol reduced/mg bacterial protein/h [71], which is higher than the maximum yields
previously obtained with E. coprostanoligenes ATCC 51,222.

In the early 2000s, a number of non-intestinal, safe, class 1 bacteria were tested for their
ability to reduce cholesterol in an attempt to use them as new probiotics. Unfortunately,
none of sixteen probiotic strains belonging to the genera Bifidobacterium, Enterococcus,
Lactobacillus, and Streptococcus, was found to be able to convert cholesterol to coprostanol
in vitro in a test medium composed of peptone yeast extract enriched with freeze-dried
calf brain, or in vivo in GF mice mono-associated with a probiotic strain [72]. A few years
later was the attractive discovery of five active strains of Lactobacillus [73]: two strains of L.
acidophilus (ATCC 314, FTCC 0291), two strains of L. bulgaricus (FTCC 0411, FTDC 1311), and
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one strain of L. casei (ATCC 393). When cultivated in cholesterol-enriched medium, these
strains were shown to incorporate cholesterol into the phospholipid bilayer of their cellular
membrane, and to reduce a fraction of it to coprostanol, as determined by fluorometric
assay for cholesterol reductase activity in culture supernatants and harvested lysed cells, as
well as HPLC quantification of both cholesterol and coprostanol in the culture supernatant.
Surprisingly, no further action has been taken since this seemingly promising discovery.

As only a few active strains could be isolated, it has been postulated that microbial
conversion of cholesterol to coprostanol would be carried out by only a few microbes
indigenous to the human microbiota [32]. Yet, we evaluated the most probable number
(MPN) of active bacteria, which fell between 107 and 109 active bacteria per g of stools in
high cholesterol converters [34]. Similarly, an impressive large-scale multiomics study [74]
showed that metagenomics species (MSPs) encoding 3β-hydroxysteroid dehydrogenase
(HSD) (an enzyme involved in the first step of the reduction of cholesterol to coprostanol,
see paragraphs below) are frequent and abundant in a large proportion of human micro-
biomes from diverse geographic locations. Thus, the poor availability of isolated active
strains rather means that the activity is carried out by a number of sensitive anaerobes
whose isolation, culture, and preservation are challenging.

The information about these isolated active strains is summarized in Table 1.

Table 1. Isolated active strains.

Strains Isolated from No. Strains
Tested

No. Strains Able
to Reduce

Cholesterol to
Coprostanol

Reference Comment

E. coli
Streptococcus faecalis 1

Clostridium spp.
Bacteroides spp.

Bifidobacterium spp.

Human feces

20
20
20
18
12

0
0
9

12
9

[65]

No strain
characterization

Not pursued
Stains lost

Eubacterium 403 Baboon feces _ One isolate [69] Confirmed (59)
Strain lost

Eubacterium ATCC
21408 Rat caecal contents _ One isolate [36] Confirmed (59)

Strain lost

Similar to Eubacterium
21408

Feces and
intestinal contents

of baboons
_ Nine isolates [57] Not pursued

Strains lost

Eubacterium ATCC
51222

Hog sewage
lagoon _ One isolate [70] Confirmed

Available at ATCC

Bacteroides sp. strain
D8 Human donor _ One isolate [71]

Confirmed
Available upon
request in our

laboratory
Lactobacilli

L. acidophilus ATCC
314

L. acidophlus FTCC
0291

L. bulgaricus FTCC
0411

L. bulgaricus FTDC
1311

L. casei ATCC 393

Originally isolated
from the human
gastrointestinal

tract

15 5 [73]

Not pursued
Not reproduced

Available at ATCC
and the Culture

Collection Center
of Universiti Sains
Malaysia (Penang,

Malaysia)

1 new name: Enterococcus faecalis.
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6. Step-by-Step Conversion of Cholesterol to Coprostanol

Evidence of cholesterol reduction via the indirect pathway being established, efforts
have been made to characterize each step involved, and to identify and purify the corre-
sponding enzymes. Here is where it gets tricky, as limited progress has been made since
the isolation of the first active strains.

6.1. From Cholesterol to 4-Cholesten-3-One

The first step of the indirect pathway is the oxidation of cholesterol to 4-cholesten-3-
one. Two types of known enzymes are able to catalyse this reaction, cholesterol oxidase
(ChOx, EC 1.1.36) and 3β-hydroxy-∆5-steroid dehydrogenase (3β-hydroxy-∆5-HSD, EC
1.1.1.145) [75]. Both are bifunctional enzymes, which carry out two separate, sequential
reactions. The enzymes first oxidize the 3β-hydroxy group of cholesterol into the 3-
keto group of 5-cholesten-3-one, and then isomerize the double bond in the steroid ring
backbone, from ∆5 to ∆4, giving 4-cholesten-3-one (EC 5.3.3.1, steroid Delta-isomerase)
(Figure 3).

Importantly, ChOx are oxygen-dependent enzymes, and they are found in hundreds of
various aerobic cholesterol-degrading soil microorganisms, including bacteria, molds, and
yeasts [76,77]. ChOx is the first enzyme in the oxic pathway of cholesterol mineralization
to carbon dioxide [78]. To our knowledge, only two inhabitants of the gastrointestinal tract,
both facultative anaerobes, namely, one Escherichia coli strain isolated from the feces of a
colon-cancer patient [79], and one Bacillus subtilis strain isolated from fecal tiger excreta [80],
were reported to support ChOx activity in aerobic cultures. We also found genes that share
30–60% sequence identity with ChOx in the genome of Bacteroides strain D8 (unpublished
data). Although it is unlikely that ChOx could participate in the conversion of cholesterol
to 4-cholesten-3-one in the anaerobic environment of the lumen, it cannot be ruled out
that the mucosa-associated microbiota could oxidize cholesterol in an oxygen-dependent
enzymatic reaction. No homologs of any queried ChOx could be found in the genome of E.
coprostanoligenes or among almost six million non-redundant complete genes assembled
from the metagenomic sequencing of more than three thousand human fecal samples from
various countries of the world [74]. In contrast, within the same study [74], a 3β-HSD
was found in E. coprostanoligenes ATCC 5122. The enzyme, named IsmA for “Intestinal
steroid metabolism A,” was overexpressed in E. coli, purified using HisPur™ Ni-NTA Resin,
and partially characterized [74]. It is an NADP+ dependent, oxygen independent, and
cholesterol inducible HSD that oxidizes cholesterol to 4-cholesten-3-one and coprostanol to
coprostanone, but does not accept the 3α-hydroxy bile acids cholic and chenodeoxycholic
acids as substrates. Based on massive amount of correlations combining huge metage-
nomics and metabolomics datasets from several cohorts in the world, six homologs of
IsmA were also tracked from uncultivated members of the human gut microbiota [74].
They were overexpressed in E. coli, and all six lysates were confirmed to oxidize cholesterol
to 4-cholesten-3-one as well as coprostanol to coprostanone. When binning co-abundant
genes into metagenomic species (MSPs) across more than 3000 metagenomics datasets,
20 different MSPs containing ismA genes were identified. They formed a coherent clade in
the phylogenetic neighbourhood of Clostridium cluster IV, which contains species linked
to host health, including short-chain fatty acid producers. IsmA-encoding MSPs had a
high relative abundance (average 1.4%) in human metagenomes, and the percentage of
metagenomes containing at least one IsmA-encoding MSP varied from 37% to 92%, which
supports the idea that IsmA-encoding bacteria are prevalent constituents of the human
gut microbiome [74]. However, they do not exclude implication of other enzymes, since
functional predictions based on sequence similarity may be difficult in the particular case
of enzymes where the actual enzymatic reactions or substrates may differ even at high
sequence similarity, and vice versa [81,82].
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6.2. From 4-Cholesten-3-One (Cholestenone) to 5β-Cholestan-3-One (Coprostanone)

In 1973, Björkhem and coworkers [64] obtained a crude enzyme preparation from
supernatants of freeze-pressed cecal contents of rats, which, when incubated with [4-
14C]cholesten-3-one, produced coprostanone as the only product. The 3-oxo-∆4-steroid 5β-
reductase activity required NADH as cofactor. The semi-purified enzyme preparation also
catalyzed the reduction of the ∆4-double bond of progesterone and testosterone but not the
∆5-double bond of cholesterol, pregnenolone, or dehydroepiandrosterone. The mechanism
of reduction of ∆4-double bonds in 3-oxo-∆4-steroids by the microbial 3-oxo-∆4-steroid
5β-reductase was found to involve transfer of hydrogen from the 4B-position of NADH
to the 5β-position of the steroid. We could not find any recent proof of 3-oxo-∆4-steroid
5β-reductase activity in the gut microbiota, and no bacterial 3-oxo-∆4-steroid 5β-reductase;
EC:1.3.1.3, has never been purified nor can be found in the databases (Figure 3). However,
three genes predicted to encode cholestenone 5β-reductase, EC 1.3.1.3, were found to be
upregulated when B. bifidum PRL2010 was grown in presence of cholesterol [83] (Figure 3).
One of them had a sequence that was found to be highly conserved (identity greater than
80 % and coverage 100 %) in the genomes of ten other bifidobacteria, all isolated from the
mammalian gut [83]. When a large daily inoculum is administered (109 cells per day of
overnight cultures over 20 days) to the hypercholesterolemic apoE-KO mice, B. bifidum
PRL2010 tended to lower plasma cholesterol in this small-sized experiment (5 mice treated
and 5 untreated). Genes sharing 30–60% sequence identity with cholestenone 5β-reductase,
EC 1.3.1.3, were also found in the genome of Bacteroides strain D8 (unpublished data).

6.3. From Coprostanone to Coprostanol

Cultures of E. coprostanoligenes [84] and Bacteroides sp. strain D8 [71], efficiently convert
coprostanone to coprostanol, but the responsible enzyme (EC:1.1.1.270 or other 3-keto
reducing enzymes) has never been characterized (Figure 3). However, it was recently
suggested that 3β-HSDs could participate in this last step of cholesterol-to-coprostanol
conversion by the human gut microbiota [74].

7. From Birth to Elderly

Although data exist regarding gut colonization before birth, it is widely accepted
that our gut starts accumulating microbes during and after birth. Infants and babies have
low gut microbial diversity. Our gut microbiota becomes more complex, diversified, and
stable as we become adults. As we move into old age, this stability tends to fall and the
composition of our gut microbial communities again varies [85].

That meconium of new-born infants does not contain coprostanol (formerly “ster-
corin”) was reported from the late nineteenth century [24], and this was ascribed to lack of
bacterial “fermentation” in the foetal intestine. This is in line with the combined knowledge
acquired since then, that the foetus is free from germs in the uterus until the rupture of
the foetal membranes, and that colonization of the digestive tract evolves over the first
years of life to reach equilibrium and stability around 3 y of age [86–88]. In parallel, it
was repeatedly confirmed that coprostanol and intermediate microbial metabolites of
cholesterol are found at very low or even undetectable levels in stools of children under
12–18 months of age [89–94]. Their levels progressively increase with advance in age
to reach patterns approaching those observed in adults, in children aged 3 to 4 [89–92].
Importantly, though not surprising, a strong correlation was found between intensity of
microbial metabolism of cholesterol to coprostanol and that of primary to secondary bile
acids from birth until adulthood [89,90]. The initiation of microbial cholesterol metabolism
would be somewhat delayed in breast-fed compared to bottle-fed children [93], but this
would not preclude of the efficacy of later cholesterol biotransformation, since both breast-
and bottle-fed children can become either low or high cholesterol-to-coprostanol converters
at 2 y of age [93]. Partitioning of the population into low and high cholesterol metabolizing
microbiota has been confirmed in youth, young adulthood [94] and adulthood, low con-
verters (coprostanol/cholesterol + coprostanol fecal ratio <0.5) representing about 5–30%
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of adults from the USA [33,95], South Africa [96], and Europe [32,34,95,97,98]. However,
it is not clear whether this trait is stable or not over an individual’s life, or dependent on
changes in diet or any other endogenous or exogenous factor, as no longitudinal study
over decades of life is available. A reduction in the number of low- and non-converters has
been observed in the older age categories of a large cohort of European healthy adult men
(n 286, 18–81 years of age), but not in women (n 347, same age interval) [32,99]. The authors
hypothesized that a lower capacity to convert intestinal cholesterol to coprostanol could be
associated with a higher risk of leaving the healthy fraction of the population prematurely.

Factors affecting efficacy of cholesterol conversion may be the composition of the
intestinal microbiota, antagonistic bacteria, the physical state of the cholesterol molecule
in the intestine, or the intestinal transit time [33]. The high and low conversion patterns
were found to be equally distributed with respect to sex and independent of age [33].
Moreover, the efficiency of cholesterol conversion in the human gut as measured by the
ratio of coprostanol to cholesterol in stools was shown to be related to the abundance of
cholesterol-reducing bacteria estimated by the Most Probable Number method [34]. That
the “low” or “high” phenotype can be transmitted to germ-free born rats colonized with the
microbiota of either a low- or high- converter human donor would designate the microbiota
structure and functions as a main driving force [100]. But we do not know which particular
structural and functional features of the microbiome accompany these different profiles. A
study looked for an association between the gut microbiota composition and the amount of
coprostanol in the stools of seven patients treated with antibiotics for a Clostridium difficile
infection, and six healthy volunteers with or without a recent exposure to antibiotics [101].
In this study, low levels of coprostanol were observed in stools of all patients but one, and
coincided with low relative abundances of 63 taxonomic units belonging to the families
Lachnospiraceae and Ruminococcaceae (order Clostridiales), which, in an independent study,
also correlated with high levels of HDL-cholesterol [102]. In the large-scale study of Kenny
et al [74], IsmA-encoding MSPs that best correlated with coprostanol level in stools, were
close phylogenetic neighbours of marker species for Clostridium cluster IV and cluster
XIVa, which does not exclude other MSPs that would encode coprostanol-related functions
not interrogated in this study.

8. Dietary Regulation

Any dietary strategy aimed at decreasing cholesterol absorption in the proximal
intestine and increasing cholesterol-to-coprostanol biotransformation in the hindgut would
be beneficial for blood cholesterol lowering, provided that the coprostanol producing
phenotype is present. Many studies report the results of dietary strategies to lower blood
cholesterol in man or diverse animal models. However, few of them include a profile of fecal
sterol excretion among which we can gather little significant information on cholesterol-to-
coprostanol transformation and excretion rates. Importantly, the purpose of this paragraph
is not to summarize the extensively documented dietary regulation of blood cholesterol,
but to bring together what we know about the effect of the diet on biotransformation of
cholesterol in the gut. Some effects of dietary sugars, fatty acids, proteins, and amino acids,
as well as specific diets, are reported below.

8.1. Sugars

In rats fed a lactose-supplemented diet, intestinal absorption of dietary cholesterol
markedly increased, and formation of coprostanol in the hindgut decreased, compared
to a sucrose-based diet. In parallel, total liver cholesterol increased, but these effects
were counteracted when the lactose diet was supplemented with calcium chloride [103].
The authors postulated that calcium formed insoluble complexes with phospholipids or
fatty acids, which inhibited intestinal cholesterol absorption. In another study, diverse
sugars such as lactose, galactose, fructose, sucrose, or glucose decreased the efficiency of
conversion of radiolabeled cholesterol to coprostanol by human fecal homogenates in vitro,
and this was attributed to a shift down in the pH [104]. Therefore, both availability of
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cholesterol and physiochemical conditions in the hindgut would impact the efficiency of
cholesterol to coprostanol conversion.

8.2. Fatty Acids

Marked differences in neutral sterol excretion were reported when rats were fed either
linoleic, oleic, or palmitic acid, as well as a fat-free diet [105]. The most striking difference
among groups was in the partition of the coprostanol-to-cholesterol ratio in the feces.
Linoleic acid markedly increased the reduction of cholesterol to coprostanol, so that the
latter became the major neutral sterol present in the feces. Conversely, diets containing
either oleic or palmitic acids decreased coprostanol formation [105]. Interestingly, the
essential omega-6 polyunsaturated fatty acid, linoleic acid, is now recognized to decrease
cardiovascular lipid risk markers in healthy individuals [106], but to our knowledge, the
relationship with the microbial metabolism of cholesterol has never been addressed.

8.3. Protein Source and Amino Acids

In different animal models, our group [107] and others [108–110] demonstrated that
microbial metabolism of acidic and neutral steroids was stimulated by soy protein com-
pared to casein. In parallel, soy protein, in full or partial substitution for casein, has a
well-known hypocholestrolemic effect, which is suppressed if methionine is added to
the soy diet, naturally deficient in this amino acid [111]. Coincident with this, a positive
correlation has also been repeatedly found between blood cholesterol and the dietary me-
thionine supply or the dietary methionine:glycine ratio [112], and the addition of glycine to
methionine-enriched diets suppresses the hypercholesterolemic effect of methionine [113].
More recently, it was discovered that a low dietary methionine:glycine ratio also coincided
with a cardioprotective low homocysteinemia [114,115]. While these effects are currently
investigated from the perspective of host metabolism, implication of the microbiome part-
ner should absolutely be considered in the future. Indeed, when rats colonized by a human
microbiota from a high converter donor were fed a “humanized” diet added with 3%
methionine, conversion of cholesterol to coprostanol was completely abolished, and this
was rapidly reversed as soon as methionine was withdrawn (personal observation).

8.4. Vegetarian Diets and Plant Sterols

Fecal concentration of cholesterol and its microbial metabolites, either expressed per
g of dry [116] or wet [117] feces, is generally reported to be highest in omnivores, lowest
in vegans, and intermediate in lacto-ovovegetarians, but total excretion of neutral sterols
per 24 h would be higher in vegetarians [116]. Interestingly, mean efficiency of microbial
cholesterol metabolism, expressed as the ratio of cholesterol to its microbial products,
would not essentially differ between dietary habits [116,117], and the same percentage
of low converters (around 20%) would be found in omnivores and vegetarians [116]. In
a way similar to cholesterol, plant sterols are metabolized by the gut microbiota. In this
respect, main bacterial metabolites are ethylcoprostanone, ethylcoprostanol, and sitostanol
for β-sitosterol, methylcoprostanone and campestanol for campesterol, and stigmastenol
and ethylcoprostenol for stigmasterol [118]. Independent studies agree that cholesterol
metabolism by the gut microbiota is less efficient when high supraphysiological doses
of plant sterols are consumed daily by healthy human volunteers [118,119], suggesting
that the gut microbiota could preferably use plant sterols as substrates when present in
greater proportions than cholesterol [118]. The same was observed in hamsters fed a hy-
percholesterolemic diet [120], providing evidence that the higher plant sterol consumption,
the lesser microbial cholesterol metabolism. At the higher dose (0.2% by weight of the diet),
plant sterols were effective in reducing cholesterol absorption in the intestine as proved
by increased excretion of untransformed cholesterol, decreased total and non-HDL blood
cholesterol, decreased liver cholesterol, and reduction of the atherosclerotic plaque by more
than 50% [120]. Since the plant sterols had no effect on gene expression of the different
transporters and enzymes involved in intestinal cholesterol absorption, it was concluded
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and in vitro experienced that plant sterols could displace cholesterol from micelles and
therefore inhibit its intestinal absorption [120].

8.5. Other Diets

In pigs, high cholesterol intake led to a quadrupled neutral sterols stool excretion, but
the ratio of coprostanol to cholesterol in stools was shifted from more than ten to less than
one. This provides evidence that the efficiency of cholesterol to coprostanol reduction was
limited in this animal model [121]. In parallel, total and LDL blood cholesterol markedly
increased when moving from the low to the high cholesterol diet. In the same study, the
addition of a cholesterol sequestering agent, β-cyclodextrin, to the hypercholesterolemic
diet, brought back cholesterolemia to normal values, while still increasing excretion of
neutral sterols in stools, mainly in the form of untransformed cholesterol [121]. Limited
bioreduction of cholesterol to coprostanol when dietary cholesterol supply increased was
also observed in rats [122]. At last, in three healthy male volunteers, exclusive consumption
of a liquid diet for 10 days was accompanied by a drastic drop in fecal excretion of neutral
steroids and conversion of cholesterol to coprostanol [65].

Clearly, many, if not all, dietary ingredients have an impact on the biotransformation of
cholesterol in the hindgut, but mechanisms are far from all being elucidated. In particular,
these changes in cholesterol biotransformation have never been put in perspective with
structural and functional modulations of the gut microbiota.

9. Coprostanol Formation and Links to Health and Disease

The first associations between cholesterol-to-coprostanol conversion and diseases
have relied on gut pathologies. Indeed, it has been shown that the fecal levels of cholesterol
and its metabolites were higher in patients with intestinal cancers, adenomatous polyps,
and ulcerative colitis [123–125]. Moreover, the enzymatic cholesterol-reductase activity
was found higher in the stools of colon cancer patients, compared to individuals not
suffering from intestinal pathology [126]. Finally, the fecal concentration of coprostanol
was significantly higher in patients with colon cancer relative to healthy controls or patients
with colon polyps [127]. Altogether, these studies suggest that microbial metabolites of
cholesterol could act as co-carcinogens and may increase colon cancer risk. It is not clear
whether this association has not been confirmed during the last decades, because of its
weak significance or because no dedicated studies were performed recently.

Besides this potential deleterious effect of gut microbial cholesterol metabolism, the
impact of gut microbial cholesterol metabolism on host cholesterol homeostasis has been
more extensively studied. Gut microbiota contributes to a substantial proportion of the
variation in blood lipids, independent of age, gender, and host genetics [102], and an impact
of gut microbiota on blood cholesterol has been particularly evidenced. Indeed, germ-free
mice have an altered cholesterol metabolism [128], and a recent study showed that micro-
biota depletion using antibiotics leads to increased blood cholesterol in ApoE-deficient
mice. Strikingly, transplant of the microbiota from humans harboring elevated choles-
terolemia induced high plasma cholesterol levels in recipient mice [129]. A mathematical
model of cholesterol metabolism in the human body, including the gut microbiota, recently
revealed that both bile salt metabolism and cholesterol-to-coprostanol conversion can
influence blood cholesterol level [130]. Indeed, because coprostanol is poorly absorbable
and excreted in the feces, it has been proposed that cholesterol-to-coprostanol conversion
by the intestinal microbiota could facilitate the elimination of cholesterol from the body
and lower cholesterolemia. This hypothesis was originally proposed by Sekimoto and
colleagues, who found in 1983 a negative relationship between cholesterol/coprostanol
ratio in feces and cholesterol serum concentration [131]. Later on, several studies with
animal models were designed to investigate the effect of feeding of E. coprostanoligenes
on serum cholesterol concentration. However, only one small-sized experiment includ-
ing six dietary-induced hypercholesterolemic rabbits, which were daily force fed with
live (three rabbits) versus heat-inactivated (three rabbits) E. coprostanoligenes, supported
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a hypocholesterolemic effect of the coprostanoligenic bacterium, with the concomitant
increase of coprostanol-to-cholesterol conversion in the proximal digestive tract of the
rabbits treated with live bacteria, even after discontinuing the gavage [9]. Other attempts
to reproduce this effect in normocholesterolemic lawing hens [8] or germ-free mice [4] daily
gavaged with E. coprostanoligenes, or alternatively normocholesterolemic germ-free rats fed
with Eubacterium ATCC 21,408 [56] were unsuccessful, despite the evidence of effective
cholesterol-to-coprostanol conversion by the administered active bacteria in all studies.
This might suggest that one or two conditions need to be reached for the hypocholes-
terolemic potential of administered cholesterol-reducing bacteria to be effective in vivo:
(i) an hypercholesterolemic condition must exist, and/or (ii) the administered microorgan-
ism must be present and active in the proximal digestive tract, where cholesterol absorption
takes place. Nevertheless, the hypothesis of an impact of cholesterol-to-coprostanol conver-
sion on blood cholesterol recently emerged again. Indeed, a recent study in overweight
postmenopausal women showed an inverse relationship between plasma cholesterol con-
centrations and fecal coprostanol/cholesterol ratio after nutritional intervention using milk
polar lipids [132]. Moreover, the discovery of ismA genes described above revealed their
potential impact on host cholesterol metabolism. The presence of these ismA genes in
the microbiome was associated with the presence of coprostanol in stools and lower fecal
cholesterol levels. More importantly, the presence of ismA genes in human metagenomes
was associated with a decrease in total serum cholesterol concentrations, at levels similar to
variants in human genes involved in lipid homoeostasis [74]. Finally, relative abundance
of IsmA-encoding bacterial species was significantly depressed in Crohn’s disease but
not in ulcerative colitis compared to non-inflammatory status. Clearly, these innovative
data provide evidence that these 3β-HSDs participate in the first step, and potentially
in the last step of cholesterol-to-coprostanol conversion by the human gut and that their
abundance correlates with some health conditions, notably, intestinal inflammation and
cholesterolemia.

10. Conclusions

Despite the fact that cholesterol-to-coprostanol metabolism by the gut microbiota has
been known for decades, many questions are still unanswered. Only a few cholesterol-
reducing bacteria have been isolated and characterized, and the real diversity of active
bacteria is still unknown. Moreover, the real impact of this metabolism on health and
disease has not been extensively assessed, and it is even unclear whether it is mainly
beneficial or deleterious for human health. The recent discovery of genes implicated in this
metabolism and the association of their presence in the gut microbiome with lower blood
cholesterol should lead to new research dedicated to the understanding of its influence
on disease risks. This could pave the way for the use of the cholesterol-to-coprostanol
metabolism as a predictive biomarker of health status and may lead to microbiota-targeted
therapeutic interventions, for example, in the context of cardiovascular disease.
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