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� Brusatol affects migration and
invasion ability of HCC cells.

� Brusatol affects EMT process through
modulation of STAT3 activation
pathway.

� Brusatol mitigates tumorigenesis and
metastasis in HCC preclinical model.
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Introduction: Epithelial-mesenchymal transition (EMT) is a process of transdifferentiation where epithe-
lial cells attain mesenchymal phenotype to gain invasive properties and thus, can contribute to metasta-
sis of tumor cells.
Objectives: The antimetastatic and antitumor efficacy of brusatol (BT) was investigated in a hepatocellu-
lar carcinoma (HCC) model.
Methods: We evaluated the action of BT on EMT process using various biological assays in HCC cell lines
and its effect on tumorigenesis in an orthotopic mouse model.
Results: We found that BT treatment restored the expression of Occludin, E-cadherin (epithelial markers)
while suppressing the levels of different mesenchymal markers in HCC cells and tumor tissues. Moreover,
we observed a decline in the expression of transcription factors (Snail, Twist). Since the expression of
these two factors can be regulated by STAT3 signaling, we deciphered the influence of BT on modulation
of this pathway. BT suppressed the phosphorylation of STAT3Y705 and STAT3 depletion using siRNA
resulted in the restoration of epithelial markers. Importantly, BT (1mg/kg) reduced the tumor burden
in orthotopic mouse model with a concurrent decline in lung metastasis.
Conclusions: Overall, our results demonstrate that BT interferes with STAT3 induced metastasis by alter-
ing the expression of EMT-related proteins in HCC model.
� 2020 The Authors. Published by Elsevier B.V. on behalf of Cairo University. This is an open access article

under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction knockdown of SDHB (SDHBKD) in PCPGs resulted in increased
Metastasis is a process of dislodging of cancer cells from the pri-
mary tumor and their dissemination to the different organs
through lymphatic system or circulation [1–5]. Metastasis con-
tributes to about 90% of cancer-related deaths [6,7]. The five-year
survival rate of various early-stage cancers is above 50% and it falls
to below 20% when cancer cells are metastasized to distant tissues
[8,9]. During metastasis, the immobile epithelial cancer cell under-
goes trans differentiation to attain a mesenchymal phenotype that
can permeate via extracellular matrix (ECM) through a process of
epithelial-mesenchymal transition (EMT) [10,11]. The mesenchy-
mal phenotypes exhibit stem cell properties, enhanced production
of ECM components along with increased cellular motility, and
apoptotic resistance [12–15].

EMT can be modulated by diverse transcription factors
including zinc-finger E-box-binding (ZEB), Twist, Snail, and Slug
[16–18]. STAT3 is frequently overactivated in different tumors
including hepatocellular carcinoma (HCC) and can positively
correlate with tumorigenicity, EMT, antiapoptosis, and metastasis
[19–22]. IL-6 activates STAT3 to promote EMT through the induc-
tion of Snail expression in cancers [8,23]. Activated STAT3 can also
induce the transcription of the Twist gene to promote oncogenic
functions [24]. Therefore, it may be concluded that targeting STAT3
may be an appropriate strategy to counteract EMT and metastasis
in advanced cancers.

Brusatol (BT) is a natural quassinoid that has been demon-
strated as an inhibitor of nuclear factor erythroid 2-related
factor-2 (Nrf-2) by several research groups [25]. BT can interfere
with Nrf-2 signaling in cancer cells to enhance the chemotherapeu-
tic potential of paclitaxel, cisplatin, 5-fluorouracil, gemcitabine,
carboplatin, and etoposide [26–28] and also increase the radiosen-
sitivity of lung cancer cells [29]. In addition, many studies have
reported that various cellular targets can be affected by BT such
as c-Myc, HIF-1a, JNK and p38 MAPK, and PI3K/Akt pathways
[30]. On the contrary, Vartanian et al demonstrated that BT can
interfere with global protein synthesis [31]. Moreover, Harder
et al demonstrated that BT can localize in the endoplasmic
reticulum of the cancer cells and terminate the cap-dependent
and cap-independent protein translation which may affect various
short-lived proteins including Nrf-2 [32]. The deficiency of succi-
nate dehydrogenase subunit B (SDHB) is often observed in
pheochromocytomas and paragangliomas (PCPGs) and they
possess higher levels of ROS. Liu and colleagues reported that
cellular ROS levels and transcriptional activity of Nrf-2 [33]. Subse-
quently, the treatment of SDHBKD cells with BT disrupted Nrf-2
dependent transcriptional activity and induced oxidative DNA
damage [33]. The same group also demonstrated that isocitrate
dehydrogenase (IDH) 1-mutated glioma cells are dependent on
Nrf-2 signaling cascade. The inhibition of Nrf-2 by BT increased
oxidative damage to DNA with reduction in proliferation of
IDH1-mutated cells [34]. They also reported that Nrf-2 can pro-
mote glutathione synthesis and thereby display protective function
towards IDH1-mutated cells [35]. The abrogation of Nrf2/GSH
pathway by BT resulted in potent anticancer effect on IDH1-
mutated preclinical cancer models [35]. In addition, the effect of
BT on glutathione metabolism, ROS production, and chemoresis-
tance in breast cancer has been reported in the literature [33–
37]. Besides, Yang et al described the effect of BT on various types
of cancer cells, Nrf-2-guided gene transcription, and glutathione de
novo synthesis [37]. In our previous report, we had reported that
BT can effectively abrogate STAT3 phosphorylation in head and
neck squamous cell carcinoma (HNSCC) cells, but did not analyze
its actions on EMT process and tumor growth in preclinical settings
[38]. Since, STAT3 is an inducer of EMT, we have assessed here
whether the influence of BT on EMT may be mediated through
the modulation of STAT3 in a HCC model.
Materials and methods

Reagents

Brusatol (BT) (CAS: 14907–98-3, purity � 98% by HPLC analysis)
was isolated from Bruceae

Fructus in our laboratory and its structural identity was con-
firmed by comparing its NMR and HRMS data with those published
previously [27]. It was dissolved in dimethyl sulfoxide (DMSO) to
prepare a stock (10 mM), stored at �80℃. Further, stock solution
was diluted with culture medium as per experimental require-
ment. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bro-
mide (MTT), Sodium dodecyl sulfate (SDS), DMSO, and
ribonuclease A were obtained from Sigma–Aldrich (St. Louis, MO,
USA). Anti-Fibronectin, anti-Vimentin, anti-E-cadherin, anti-N-
cadherin, anti-Occludin, and anti-Twist antibodies (diluent, 1:
5000) were purchased from Santa Cruz Biotechnology (Santa Cruz,
CA, USA). Anti-Snail, anti-p-STAT3 (Tyr 705), and anti-STAT3 anti-
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bodies were purchased from Cell Signaling Technology (Beverly,
MA, USA).

Cell culture

HCCLM3 cell line was obtained from from Prof Zhao-You Tang‘‘s
laboratory at The Liver Cancer Institute and Zhongshan Hospital,
Fudan University, Shanghai China. This cell line has been com-
pletely characterized and published previously by us and others
[39,40]. They were maintained in DMEM containing 10% FBS and
1X penicillin/streptomycin.

Cell growth analysis

The growth behavior on BT treatment of cells was observed by
xCELLigence RTCA DP instrument as done previously [41–44].
HCCLM3 cells (5� 103 cells/well) were seeded on E-plate. Then
cells were treated by BT (0, 5, 10 nM) for 72 h, and analyzed every
15 min time intervals.

Western blot analysis

Western blotting was executed as elaborated before [45–48].

Real-time polymerase chain reaction
Total RNA was extracted using Trizol and PCR was done as elab-

orated upon previously [49].

Immunocytochemistry (ICC) for Vimentin and Occludin localization
Immunocytochemistry was carried out as per the prior reported

protocol [50].

Invasion assay
Roche xCELLigence Real-Time Cell Analyzer instrument was

used to calculate invasion as reported formerly [51–53].

Boyden chamber assay
In vitro invasion assay was executed using micro chemotaxis

Boyden chamber as described earlier [54]. Matrigel-coated 8-lm
polycarbonate membrane was prepared on trans-well chamber.
HCCLM3 cells (2 � 104 cells/well) were seeded on top chamber
with BT (10 nM) in medium then incubated at 37 �C in 5% CO2
conditions.

siRNA transfections
siRNA transfection was carried out as described earlier [55]. To

determine whether BT interferes with EMT through modulating
STAT3 signaling, HCCLM3 cells were transfected with STAT3 siRNA
(Santa Cruz Biotechnology [sc-29493]) and scrambled control with
transfection reagent (Intron Biotechnology, Seoul, Korea).

Acute toxicity studies
The study was conducted as per the protocol approved by the

SingHealth Institutional Animal Use and Care Committee (protocol
number: 2013/SHS/870). Thereafter the experiments were per-
formed using eight-week-old NCr nude female mice following
treatment with intraperitoneal injections of 5 and 15 mg/kg of
BT, and vehicle (0.1% DMSO) as described previously [56].

Preclinical experiments
In vivo experiments were performed as per the protocol

approved by the SingHealth Institutional Animal Use and Care
Committee (protocol number: 2013/SHS/870). NCr nude mice were
injected subcutaneously with 100 ll of HCCLM3-Luc cells (5 x106)
in the right flank region. After tumor reaching the size of 1 cm3, it
was removed and cut into small pieces of 2 mm3 and placed into
the liver of NCr nude mice orthotopically. Tumor development
was measured weekly twice by quantifying the bioluminescence
signals after intraperitoneal injection of BT (1 mg/kg) twice a week,
for four weeks.

Statistical analysis

The significance of differences between groups was evaluated
by Student’s t-test and one-way analysis of variance, (ANOVA) test.
p < 0.05 was considered as statistically significant. * p < 0.05;
** p < 0.01 and *** p < 0.001. All results are presented as the
mean ± S.D. of three independent experiments.
Results

BT moderately affects proliferation of HCC cells

Firstly, the action of BT (structure shown in Fig. 1A) on viability/
proliferation of HCC cells was elucidated. BT modestly decreased
the cell viability of HCCLM3 cells (Fig. 1B), and the differences in
the proliferation were observed at 5 and 10 nM doses (Fig. 1C).

BT alters the transcription and protein expression of EMT-related
proteins

We then evaluated the effects of BT on EMT markers. It reduced
the protein expression of Fibronectin, Vimentin, N-cadherin, Twist,
and Snail (Fig. 1D) and increased expression of Occludin, and E-
cadherin (Fig. 1E). In addition, we also noted that mRNA levels of
Fibronectin, Vimentin, N-cadherin were attenuated (Fig. 1F left)
whereas Occludin and E-cadherin mRNAs were elevated upon BT
exposure (Fig. 1F right). We analyzed the expression of Vimentin
and Occludin in control and BT-treated cells using immunofluores-
cence. BT impeded the level of Vimentin but triggered that of
Occludin (Fig. 1G) and thus can influence the EMT process.

BT suppresses migration as well as invasion in HCC cells

Next, whether BT regulates HCCLM3 cell migration was
explored using xCELLigence RTCA DP and Boyden chamber assay.
Interestingly, it was also noted that BT substantially counteracted
the invasiveness of HCCLM3 cells (Fig. 2A). In addition, HCCLM3
cells appeared to be able to migrate efficiently as noted in Boyden
chamber assay but BT inhibited the cell migration (Fig. 2B). These
data suggested that BT can reduce cancer cell motility in vitro.

BT inhibits constitutively active STAT3 in HCC cells

Our previous report suggests that BT can modulate STAT3 sig-
naling in HNSCC cells and since this transcription factor can regu-
late the EMT process. Therefore, the action of BT on
phosphorylation of STAT3Y705 in HCCLM3 cells was deciphered. It
was noted that BT concentration-dependently inhibited constitu-
tive STAT3 activation (Fig. 2C), thus suggesting that BT may affect
EMT through targeting STAT3 pathway.

BT regulates EMT through affecting STAT3 signaling

To decipher the possible role of STAT3 in modulating EMT, we
carried out the transient transfection using STAT3 siRNA. Fig. 2D
indicates that STAT3-siRNA transfection successfully depleted
STAT3 from the cells. In parallel, knockdown of STAT3 using siRNA
can substantially reverse the alteration of EMT markers expression
by BT (Fig. 2E and 2F).



Fig. 1. BT changes the levels of EMT markers. (A) The structure of BT. (B) HCCLM3 cells were exposed to BT (0, 1, 3, 5, 10, 25, 50, 100 nM) for 24 h and viability was calculated
by MTT method. (C) HCCLM3 cells were exposed to BT and proliferation assay was performed using RTCA for 72 h. (D-E) HCCLM3 cells were exposed to BT for 24 h and
Western blotting was executed. (F) Total RNA was measured via real-time PCR for levels of different genes. * p < 0.05; ** p < 0.01 and *** p < 0.001 as measured by (G) HCCLM3
cells were exposed to 10 nM of BT for 24 h, and then distribution of Vimentin and Occludin was studied by immunocytochemistry.
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BT did not exhibit toxicity in preclinical studies

Initially, we conducted acute toxicity studies to identify if any
adverse effects can be noted in mice treated with BT. We found
that no mortality in mice was observed and BT-treated animals
did not show major alterations in feed and water consumption,
and body weight. We also noticed that there were no variations
in the biochemical parameters of serum in BT-treated groups such
as blood urea nitrogen (BUN), alanine aminotransferase (ALT), and
aspartate aminotransferase (AST). Overall, these results suggest
that BT treatment did not impart notable toxicity in tested mice
(Fig. 3).

BT attenuates tumorigenesis and metastasis in vivo

We next established an orthotopic HCC mouse model as
described in methods and examined the antitumor activity of BT.
The intraperitoneal injection of BT (1 mg/kg, twice a week for four
weeks) dramatically reduced tumor burden (Fig. 4A-C). The tumor
burden was quantified by measuring photon counts before the first
administration of BT and at the last dose as described in our previ-
ous studies [57]. We also observed a slight increase in body weight
of mice in the brusatol treated group compared to vehicle control
mice, however no significant difference observed. The mice in both
the groups were found to be healthy (Fig. 4D). Interestingly, a sig-
nificant decrease in metastasis to lungs upon BT exposure as com-
pared to the vehicle-treated group (0.1% DMSO) was also noted
(Fig. 4E).

BT alters the levels of various proteins in tumor tissues

We determined the levels of EMT and proliferation markers in
the tumor tissues. The intensity of Ki-67, Vimentin, and Twist
was markedly reduced by BT treatment, whereas E-cadherin was
markedly elevated in the tissues (Fig. 5A and 4B). Besides, the level
of mesenchymal markers was downregulated and epithelial mark-
ers upregulated in BT-treated group. These observations are con-
sistent with our in vitro findings (Fig. 5C and 5D).

Discussion

EMT can control embryonic development, wound healing, tis-
sue remodeling, repair, and malignant transformation. Improper
activation of EMT in cancer cells can contribute to their metastasis
[58]. We report here that BT can significantly alter EMT through
affecting STAT3 activation. An initial evaluation revealed that BT
can suppress cell proliferation only at lower doses. Western blot-
ting, Real-Time PCR, and ICC analysis suggested that BT attenuated
the levels of mesenchymal markers with a subsequent increase in
epithelial markers (Fig. 6). An elevated N-cadherin expression can
be positively linked with metastasis in HCC and colon cancer tis-
sues with poor survival rates [59,60]. Fibronectin and integrin
levels are often augmented in tumors and can increase regulate
abnormal proliferation [61]. In addition, Fibronectin may also pro-
mote EMT in breast cancer cells [62].

Vimentin is ubiquitously expressed in non-diseased mesenchy-
mal cells and overexpressed in a broad range of epithelial cancers,
which can be positively correlated with elevated tumor prolifera-
tion, metastasis, and reduced survival [63,64]. A decrease in E-
cadherin can lead to the promotion of invasiveness, and resistance
to standard chemotherapeutics in colorectal cancer cells [65], and
knockdown of Occludin can contribute to the progression of breast
cancer [66]. Next, we were interested to investigate the cause
behind the altered expression of EMT-related proteins. Therefore,
we deciphered the levels of major transcription factors that can
affect EMT such as Snail and Twist. Interestingly, expression of
both these proteins was downmodulated thereby indicating that
EMT-related proteins may be suppressed by BT at the transcription
level. For instance, Snail can repress the levels of E-cadherin and
Occludin, and induce that of fibronectin, and MMP-9 [67]. The
expression of N-cadherin is dependent on the integrin-mediated
nuclear translocation of Twist1 [68]. Besides, Twist can regulate
the levels of E-cadherin and may contribute to altered levels of var-
ious mesenchymal proteins [69].

STAT3 is a major transcription factor that promotes malignant
progression, antiapoptosis, angiogenesis, and metastasis [70–76].
Activation of STAT3 can be achieved by forming a positive feedback
loop and crosstalk with other oncogenic mediators in the tumor
microenvironment [77–82]. Moreover, HCC patients with
increased phosphorylated STAT3 in tumor tissues showed poor
prognosis after transarterial chemoembolization and post-liver
resection [83]. In addition, hyperactivated STAT3 signaling con-
tributed to EMT in the same study [84]. IL-6, that can stimulate
STAT3 activation [85,86], can promote metastasis by promoting
EMT through JAK-STAT3-Snail axis in HNSCC [8]. In addition,
TGFb-induced EMT is also dependent on JAK-STAT3 cascade in lung
cancer [87]. In our previous investigation, we identified that STAT3
signaling can be downmodulated by BT in HNSCC cells [38]. Here
we found that BT suppressed the phosphorylation of STAT3Y705 in
HCC cells that can contribute to its effect on various hallmarks of
cancer, specifically EMT. The knockdown of STAT3 using STAT3 tar-
geted siRNA caused a substantial decline of epithelial and increase
in mesenchymal markers thus indicating that the STAT3 can mod-
ulate EMT. In parallel, we also observed a reduction in the levels of
Snail and Twist. This effect could be due to the regulation of Snail
and Twist expression by STAT3 [8,23,24].

It has also been previously documented that STAT3 can affect
EMT by modulating Snail gene expression in pancreatic cancer
[88]. Similarly, bergamottin, a furanocoumarin present in grape-
fruits, attenuated STAT3 signaling and mitigated metastasis
through inhibition of EMT [49]. In addition, we have previously
demonstrated that several STAT3 signaling inhibitors can suppress
metastatic ability of cancer cells [89–93]. Furthermore, we evalu-
ated the action of BT on the invasive and migratory potential and
the results demonstrated a significant decrease in cellular motility.
The alterations of EMT-related proteins by BT may mediate its
repressive actions on the invasive ability of HCC cells.

Since BT did not display any major toxic effects (up to 15
mg/kg), we next investigated its antitumor actions in HCC model.
BT imparted significant antitumor potential in orthotopic model
at a very low dose of 1 mg/kg. Lu and colleagues also reported
the non-toxic nature of BT (2 mg/kg) in nude mice when intraperi-
toneally administered for 28 consecutive days [94]. Importantly,
lung metastasis was also significantly inhibited with an alteration
in the expression profile of Ki-67, Vimentin, Twist, and E-cadherin.
The modulation in the expression of these proteins is consistent
with our in vitro experimental findings.

Conclusion

EMT has been linked with metastasis of cancer cells and com-
monly observed in advanced tumors. Blocking of STAT3 activation
by BT may interfere with mesenchymal phenotype and can down-
modulate metastasis potential. Our results demonstrate that BT
can attenuate STAT3-driven metastasis by altering the levels of
EMT-related proteins in HCC preclinical settings.



Fig. 2. BT reduces invasion and blocks the STAT3 pathway. (A) HCCLM3 invasive activity in Matrigel-coated plate was determined. (B) HCCLM3 cells were exposed to 10 nM
of BT for 8 h and invasion assay was done. (C) HCCLM3 cells were exposed to BT for 4 h and Western blot was executed. (D) HCCLM3 cells were transiently transfected with
scrambled or STAT3 siRNA and then exposed to10 nM of BT for 4 h and blotting was carried out. (E-F) Transfection was done with 50 nM STAT3 siRNA or scrambled siRNA for
24 h as narrated above in D. The cells were processed as narrated in C and blotting was conducted.
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Fig. 3. The consequence of intraperitoneal administration of BT on body weight change and various biochemical parameters was measured. The nude mice n = 5 per group
were exposed to one single dose of BT (5 or 15 mg/kg) and 0.1% DMSO control.
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Fig. 4. Effect of BT on tumor development. (A) Bioluminescence images of tumors in mice. HCCLM3-Luc cells-induced tumors are orthotopically placed followed by treatment
with 0.1% DMSO (n = 7) or BT (n = 7) (administered 1 mg/kg intraperitoneally, twice a week, for four weeks). Lung tissues were also analyzed for metastasis using
bioluminescence imaging (B) The scattered plot indicates the tumor burden was quantified by measuring photon counts before the first administration of BT and at the last
dose (**p < 0.01). (C) Tumor burden was recorded in vehicle-treated or BT-treated tumor-bearing mice throughout the study duration. (D) The graph represents the body
weight of experimental animals throughout the study duration. (E) The quantitative estimation of lung tumor burden after BT treatment.
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Fig. 5. The action of BT on EMT in tissues. (A) Analysis of EMT-related proteins by IHC. Magnification 200x. (B) Quantification of IHC. (C-D) The levels of various proteins was
checked in tumor tissues.
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Fig. 6. A graphic demonstrating the action of BT in regulating EMT process in HCC model.
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