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Abstract

Background: Each organ has a specific function in the body. “Organ-specificity” refers to differential expressions of
the same gene across different organs. An organ-specific gene/protein is defined as a gene/protein whose
expression is significantly elevated in a specific human organ. An “organ-specific marker” is defined as an organ-
specific gene/protein that is also implicated in human diseases related to the organ. Previous studies have shown
that identifying specificity for the organ in which a gene or protein is significantly differentially expressed, can lead
to discovery of its function. Most currently available resources for organ-specific genes/proteins either allow users
to access tissue-specific expression over a limited range of organs, or do not contain disease information such as
disease-organ relationship and disease-gene relationship.

Results: We designed an integrated Human Organ-specific Molecular Electronic Repository (HOMER, http://bio.
informatics.iupui.edu/homer), defining human organ-specific genes/proteins, based on five criteria: 1)
comprehensive organ coverage; 2) gene/protein to disease association; 3) disease-organ association; 4)
quantification of organ-specificity; and 5) cross-linking of multiple available data sources.
HOMER is a comprehensive database covering about 22,598 proteins, 52 organs, and 4,290 diseases integrated and
filtered from organ-specific proteins/genes and disease databases like dbEST, TiSGeD, HPA, CTD, and Disease
Ontology. The database has a Web-based user interface that allows users to find organ-specific genes/proteins by
gene, protein, organ or disease, to explore the histogram of an organ-specific gene/protein, and to identify
disease-related organ-specific genes by browsing the disease data online.
Moreover, the quality of the database was validated with comparison to other known databases and two case
studies: 1) an association analysis of organ-specific genes with disease and 2) a gene set enrichment analysis of
organ-specific gene expression data.

Conclusions: HOMER is a new resource for analyzing, identifying, and characterizing organ-specific molecules in
association with disease-organ and disease-gene relationships. The statistical method we developed for organ-
specific gene identification can be applied to other organism. The current HOMER database can successfully
answer a variety of questions related to organ specificity in human diseases and can help researchers in
discovering and characterizing organ-specific genes/proteins with disease relevance.

Background
Organ-specific patterns of gene expression can give
important clues about gene function and organ charac-
teristics. High-throughput sequencing methods offer the
opportunity to examine patterns of gene expression on

a genome scale and generate an abundance of data
describing the expression of gene transcripts within var-
ious human organs and disease states to facilitate tran-
scriptomic studies [1]. Organ-specificity expression
profiling has been widely used for identifying potentially
therapeutic genes related to specific organs [2] and
understanding the characteristics of cells and tissues in
an organ in terms of their differential expression of
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genes [3]. For example, Andrew Su etc. have designed
custom arrays that interrogate the expression of the vast
majority of protein-encoding human and mouse genes,
and have used them to profile a panel of 79 human and
61 mouse tissues or organs [4]. Previous researches have
identified organ-specific genes that are specifically
expressed in the testis [2], the heart [5], the prostate [6],
the brain [7], and the bladder [8] etc. For example,
Kouame etc. identified the genes uniquely detected in
each of the 15 tissues or organs such as testis, prostate,
ovary, mammary gland, uterus, vagina, skin, liver, adi-
pose tissue, lung, bone, skeletal muscle, cerebral cortex,
hypothalamus, and pituitary gland. Their study shows
that 61 organ-specific transcripts in the testis are statis-
tically different from the other organs and that some
transcripts such as dipeptidase 3, ankyrin repeat domain
5, and ubiquitin-conjugating enzyme E2N are exclusively
found in the testis [2]. They have also identified some
prostate specific genes such as microseminoprotein
(beta-MSP), seminal vesicle protein secretion 2, seminal
vesicle antigen (SVA) and mucin 10 (MUC10) which are
involved in protein secretion, cell signaling and
spermatogenesis.
For “organ-specificity of gene expression”, we refer to

differential expressions of the same gene across different
organs. In particular, we define an “organ-specific gene/
protein” as a gene/protein whose expression is signifi-
cantly elevated in a specific human organ. However, the
expression level of the organ-specific gene/protein may
vary in an organ under certain circumstances, which
makes the organ-specificity questionable. Therefore, we
need to quantify organ specificity based on organ con-
text. Highly expressed genes/proteins with high quanti-
tative organ specificity levels are also implicated in
human diseases related to the organ. In other words,
they may be used as an indicator of the normal/abnor-
mal physiological states of the organ. We refer to them
as “organ-specific markers”.
The organ-specific gene/protein can be used as an

indicator to measure the function of a tissue in a respec-
tive organ. The organ-specific gene/protein can indicate
important clues about gene function [4] and also moni-
tor organ integrity both during preclinical toxicological
assessment and clinical safety testing of investigational
drugs. Additionally, it may provide valuable information
for decision making during toxicological assessment and
may be used for sensitive and specific target organ mon-
itoring during clinical trials [9].
There are a number of databases today that include

information on tissue specific expression of genes/pro-
teins, for example, TiGER [10], TiSGeD [11], and HPA
[12]. These resources have several limitations. First, they
all uses organ name to present tissue. For example,
brain is considered as a tissue and not an organ. Tissue

is a group of cells that perform specific functions. An
organ is a group of tissues that perform a specific func-
tion or group of functions. Also it is common to know
what organ system is involved in a disease and diseases
are mostly categorized by human organ system. There-
fore, we need to map tissues to organs and use organ
name instead of tissue name for calculating organ-speci-
ficity and building the disease-organ association which is
more accurate than disease-tissue relationship. Second,
they have a low coverage of organs and genes. For
example, TiGER [10] covers only 30 organs. It includes
expression values for genes and has Gene ID’s, but no
protein information is presented. 1,494 out of 6,698
UniGene IDs have been retired since its last update in
2008. In TiSGed [11], 18 organs are covered. It defines
tissues by organ name in a tree fashion, but all tissues
in an organ are not covered and protein information is
not presented. HPA (Human Protein Atlas) [12] pro-
vides a range of 74 tissue-specific proteins which cover
24 organs based on the protein levels in 65 normal cell
types. Although HPA’s normal tissue data contains
11261 Ensembl genes, their expression values are based
on the annotated expression levels: “Negative”, “Moder-
ate”, “Strong”, “Weak”, “Medium”, “High”, “None”, and
“Low.” No real number value for expression is given,
which makes digitizing the expression values very chal-
lenging and calculating organ specificity questionable.
For example, How to accurately digitally distinguish
between the “Strong” and “High”, the “Weak” and
“Low”, and the “Moderate” and “Medium?”. Last, they
don’t contain disease information such as disease-organ
relationship and disease-gene relationship.
For studies focusing on organ-specificity with relation

to diseases, it is desirable that the database should
house data from a range of organs, have quantitative
organ specificity and, more importantly, disease infor-
mation. Therefore, as described in this paper, we
designed an integrated database defining human organ-
specific molecule (gene/protein). In our organ-specific
molecule design we considered five criteria: 1) compre-
hensive organ coverage; 2) gene/protein to disease asso-
ciation; 3) disease-organ association; 4) quantification of
organ-specificity; and 5) cross-linking of multiple avail-
able data sources.
The Human Organ-specific Molecular Electronic

Repository (HOMER), located at http://bio.informatics.
iupui.edu/homer/ is a comprehensive database covering
about 22,598 proteins, 52 organs, and 4,290 diseases
integrated from databases including dbEST [13],
TiSGeD [11], HPA [12], CTD [14], and Disease Ontol-
ogy [15]. It is the first comprehensive database that can
be used to analyze, identify, and characterize organ-spe-
cific molecules in association with disease-organ and
disease-protein relationships. The gene/protein to
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disease and disease-organ associations allow future iden-
tification of organ-specific markers. The comprehensive
52 organs in 13 human organ systems and the ability to
choose quantitative variables (p-value, z-score, #EST,
and Adjusted #EST) provide us with power statistics
and computation to accurately calculate organ specifi-
city. And the cross-linking of multiple data sources
enables subsequent validation.
The database has a Web-based user interface that

allows users to query organ-specific genes/proteins by
gene, protein, organ, or disease, browse organ-specific
genes/proteins by human organ system and disease
ontology, explore a histogram of each organ-specific
gene/protein, and identify disease-related genes or dis-
ease-related organs.
Moreover, two case studies were performed to demon-

strate and validate that the repository can help research-
ers discover and characterize organ-specific protein
molecules implicated in human diseases related to the
organ: 1) an association analysis of organ-specific genes
with disease and 2) a gene set enrichment analysis of
organ-specific gene expression data.

Results
Database content statistics
By integrating organ-specific protein/genes and disease
databases including dbEST [13], TiSGeD [11], HPA [12],
CTD [14], and Disease Ontology [15], we have developed
HOMER, the Human Organ-specific Molecular Electronic
Repository. As of the current release (June 2011), HOMER
contains 22,598 proteins (IPI IDs), 5,703 genes (gene IDs),
52 organs, and 4,290 diseases (MeSH IDs) of which 4492
are disease-related organ-specific genes (gene IDs) and
2000 are identified as organ-specific markers (gene IDs)
(Table 1). A comparison of organ-specific genes/proteins
in HOMER against several common human tissue/organ-
specific data sources is shown in Table 2.

General online features
In Figure 1, we show the user interfaces of the web-
based online version of HOMER. It supports both

standard and customized search options that allow users
to specify a list of genes/proteins or keywords as the
query input. In the Advanced Search interface, users can
drill down in very specific ways, including referencing a
list of genes/proteins, searching within p-value, z-score,
number of EST, and adjusted number of EST ranges,
and looking for organ-specific genes/proteins related to
specific organs, disease MeSH IDs, or dbEST library
IDs. One of the more interesting features of HOMER is
the ability to browse for organ-specific genes/proteins
by human organ system and disease ontology.
In response to these queries, HOMER can retrieve a

list of related organ-specific genes in a highly flexible
table, with which users can further explore details about
organ-specific genes/proteins. For example, users can
browse gene symbol, p-value and z-score for each gene/
protein, explore the organ-specific expressions of the
HMID by clicking on the histogram icon in the table,
and look through the gene-related diseases and disease-
related organs by clicking on the disease relevance icon
in the last column. In the histogram, users can browse
the dbEST libraries and reference sources which contain
the ESTs related to the gene/protein. The organ-specific
genes/proteins are freely available for downloading in
tab-delimited format on the download page. User quer-
ied organ-specific gene/protein data stored in HOMER
can also be freely downloaded as tab-delimited text files
using links below each organ-specific gene/protein table.

Overlap of OSGs among organs
We used a heatmap to show the overlap of OSGs among
the 52 organs (Figure 2). The 3 organs which show more
than 300 organ-specific genes are testis (773); blood ves-
sel (549); and brain (369), while gallbladder (11), spinal
cord (6), peritoneum (2), and ureter (2) have the least
number of organ-specific genes in our study.
When we tightened the criteria from RZ ≥ 4 to RZ ≥

5, we found that there is no overlapping among the 52
organs. We also found that the distribution of organ
specificity of genes between the 52 organs marginally
changes with the increase in relative z-score. This sug-
gests that those top organs with more organ-specific
genes are much more organ-specific than the other
organs.
Figure 2 shows that the liver and the spleen have the

largest number of OSGs in common: 16. The other
large overlapping of OSGs between organs are heart and
muscle (7), bladder and salivary gland (4), ear and leio-
mios (3, leiomyoma), esophagus and mouth (3), and
lymph and lymph node (3).

Validation by HPA
Selecting the top three genes from each organ, we
found 154 organ-specific genes in UniGeneIDs (152 in

Table 1 Current statistics of database

Total Number Count

Organs 52

Genes 111367 UniGene IDs

Proteins 76755 IPI IDs

Organ-specific Genes 5703 GeneIDs, 6999
UniGeneIDs

Disease-related and Organ-specific
Genes

4492

Organ-specific Markers 2000

Diseases 4290
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Table 2 A comparison of human organ-specific genes/proteins in HOMER against several common human tissue/
organ-specific data sources

TissueDistributionDBs[3] TiGER[10] TiSGeD[11] HPA[12] HOMER

Organ coverage 40 30 18 24 52

Gene coverage 1359* 4283** 957*** 74 5703

Last Updated 2010 March 2008 July 2010 Jan 2011 June 2011

Criteria for organ-specific genes TissueSpecificityIndex p-value<1e-3.5
EE>5

SPM Exclusively detected in a single cell p-value ≤ 1e-5
RZ ≥ 4
AE ≥ 10
RE ≥ 4

Expression Value Relative expression Yes No No Relative Expression

Plasma Detectability No No No No Yes

Disease Association No No No No Yes

*1359 gene IDs were filtered out from 54, 576 human UniGene IDs with TissueSpecificityIndex = 1. We used TissueSpecificityIndex = 1 as the website didn’t
recommend any criteria for us to derive organ-specific genes.

** 1494 of 6698 UniGene IDs were retired.

*** 957 gene IDs were filtered out from 2423 gene IDs with SPM ≥ 0.9. We used SPM ≥ 0.9 as the website didn’t recommend any criteria for us to derive organ-
specific genes.

c

a

d

e

f

g

b

Figure 1 Web interface structure. a) Query organ-specific genes by genes or proteins. For example, a UniGene ID, an Entrez gene ID, a gene
name, a uniprot ID or IPI ID are all supported. To enter multiple values, delimit them by comma, semi-colon or space. b) advanced search.
Query in customized ways, including referencing a list of genes/proteins, searching within p-value, z-score, number of EST, and adjusted number
of EST ranges, or looking for organ-specific genes/proteins related to specific organ, disease MeSH ID, or dbEST library ID. c) browse organ-
specific genes/organs by human organ system. d) browse organ-specific genes/organs by disease ontology. e) search result. In the gene/protein
organ specificity table, it shows gene HMID, gene symbol, organ specificity, source, significance (p-value and z-score), and disease relevance.
Users can further explore the histogram of the organ-specific gene/protein across the 52 organs by clicking on the histogram icon in the
column of organ specificity, and its disease relevance by clicking on the disease relevance icon in the last column. f) histogram of organ-specific
gene/protein. g) disease relevance of organ-specific gene/protein.
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gene IDs; peritoneum and ureter only have two organ-
specific genes, 73 match with HPA data, Additional
File 1). Based on expert experience, we digitalized the
annotated protein expression in HPA. On a scale of 0
to 9, ‘None’ 0, ‘Negative’ is 1, ‘Low’ 2, ‘Weak’ 3, ‘Med-
ium’ 5, ‘Moderate’ 6, ‘High’ 7, and ‘Strong’ 9. After
scoring the annotated protein expression, we used the
similar statistics method for the dbEST data to calcu-
late the p-value and z-score for HPA and found 25
(34%) out of the overlapping 73 organ-specific genes in
HOMER are specific to the same organ in HPA data
(Additional File 1).

Pathway analysis, gene ontology categorization, and drug
target analysis of organ-specific genes/proteins
The pathway-gene association matrix for the 154 organ-
specific genes is shown in the Additional File 2. The top
two pathways are “Neuroactive ligand-receptor interac-
tion” and “Ribosome.” 15 disease/cancer-related path-
ways are included in the Additional File 2, which are
“Pathways in cancer,” “Jak-STAT signaling pathway,”
“Autoimmune thyroid disease,” “PPAR signaling path-
way,” “Chemokine signaling pathway,” “p53 signaling
pathway,” “Type I diabetes mellitus,” “Alzheimer’s dis-
ease,” “Amyotrophic lateral sclerosis (ALS),”
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Figure 2 Heatmap of organ-specific genes among organs. x-axis and y-axis are both 52 organs. The degrees of redness and blackness in
each cell represent increase of number of overlapping genes between organs. The legend above the heatmap indicates the range of number of
overlapping genes between organs. It is nonlinear color scale from white to red to black, correspondingly, indicating the value scales from 0 to
775.
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“Huntington’s disease,” “Vibrio cholerae infection,”
“Epithelial cell signaling in Helicobacter pylori infec-
tion,” “Small cell lung cancer,” “Allograft rejection,” and
“Graft-versus-host disease.”
Figure 3 quantifies the significance of the biological

process component of the gene ontology. The top 3 bio-
logical processes for the 154 organ-specific genes are
“defense response,” “immune response,” and “homeo-
static process.”
In the Additional File 3, we list all drugs with which

those 154 organ-specific genes interact as drug targets.
Interestingly, we found some organ-specific drug targets
are involved in a particular metabolic or signaling path-
way that is specific to the organs as key molecules. For
example, the two brain-specific biomarkers SV2A and
GRM3 are used as drug targets of Levetiracetam, and
Nicotine and Acamprosate, respectively, which is consis-
tent with previous findings. Pediatr etc. studied 23
patients with cancer and seizures treated with Levetira-
cetam, and they observed that over 95% of patients had
fewer seizures, with 65.2% becoming seizure free; only
one patient experienced an adverse reaction. They con-
cluded that Levetiracetam is effective and well tolerated
in children with brain tumors and other cancers, who
are often on multiple enzyme-inducing drugs [16].
One study shows that Nicotine can help improve

some of the learning and memory problems associated
with hypothyroidism. Such studies suggest that nicotine
– or drugs that mimic nicotine – may one day prove
beneficial in the treatment of neurological disorders
[17]. Another new study has found that one of nicotine’s

metabolites, cotinine, may improve memory and protect
brain cells from diseases such as Alzheimer’s and Par-
kinson’s [18].
Acamprosate, also known by the brand name Cam-

pral, is a drug used for treating alcohol dependence.
Acamprosate is thought to stabilize the chemical bal-
ance in the brain that would otherwise be disrupted by
alcoholism, possibly by blocking glutaminergic N-
methyl-D-aspartate receptors, while gamma-aminobuty-
ric acid type A receptors are activated [19].

Case studies
It has been reported that organ-specific genes are often
implicated in diseases related to specific organs. How-
ever, it remains largely unknown whether there is a cor-
relation between the organ specificity of a gene/protein
and the diseases associated with the organ. We show
two case studies of increasing complexity and biological
significance to achieve three goals: 1) to demonstrate
that the database can help researchers discover and
characterize organ-specific genes/proteins from experi-
mental data, 2) to test the hypothesis that there is corre-
lation between the organ specificity of a gene/protein
and the associated diseases, and 3) thereby to validate
the usefulness of our database.

Case study 1: website features
The liver is the human body’s one of most important
organs, functioning as a living filter to clean the system
of toxins, metabolize proteins, control hormonal bal-
ance, and produce immune-boosting factors. In this case
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Figure 3 GO analysis of the 154 organ-specific genes. The numbers in the pie chart are the number of represented genes in a GO term.
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study, we illustrate the features of HOMER by testing
the association between liver-specific genes/proteins and
the liver diseases.
We first investigated the liver-specific gene/protein by

querying organ by liver (Figure 1b and 1c). We obtained
317 liver-specific genes (195 in dbEST, 193 in TisGeD
[11], 2 in HPA). These proteins include major plasma
proteins such as ALB, factors in hemostasis and fibrino-
lysis such as PLG, carrier proteins such as SERPINA6,
hormones such as IGF2, prohormones such as AGT and
SERPINA7, and apolipoproteins such as APOA1. This
number of proteins may suggest that the proteins which
are produced in the liver and secreted into the blood
have a high percentage of secretion in liver-specific
genes.
We further investigated the disease status of the 317

liver-specific genes by querying for diseases of the liver
(Figure 1d). We found that 248 (77.3%) out of the 317
liver-specific genes are associated with liver-related dis-
eases. For example, those liver-related diseases include
MESH:D006394 (Hemangiosarcoma), MESH:D006501
(Hepatic Encephalopathy), MESH:D006527 (Hepatolen-
ticular Degeneration), MESH:D008103 (Liver Cirrhosis),
MESH:D008107 (Liver Diseases), and MESH:D010382
(Peliosis Hepatis). 245 (99%) out of the 248 are validated
as directly related to the liver by Disease Ontology [15].
We, therefore, concluded that liver-specific genes/pro-
teins identified by HOMER are more likely to be asso-
ciated with diseases related to the liver. In the future,
we will test whether this conclusion can be applied to
the other organs.

Case study 2: organ-specific gene set enrichment analysis
We downloaded microarray data from GEO [20] for six
organs: lung, ovary, prostate, bladder, pancreas, and kid-
ney (Table 3). We then created a phenotype table of
normal and disease states for each reference series.
Next, we built 52 organ-specific gene sets (for example,
a lung-specific gene set consists of 115 organ-specific
genes, an ovary-specific gene set 96 organ-specific
genes, a prostate-specific gene set 144 organ-specific
genes, a bladder-specific gene set 71 organ-specific
genes, a pancreas-specific gene set 161 organ-specific
genes, and a kidney-specific gene set 191 organ-specific
genes) and 10 random non-specific gene sets using the
organ-specific gene set enrichment analysis method
explained in the method section.
After preparing the three data files – expression data-

sets, phenotype labels, and gene sets– we loaded them
into R-GSEA, set the analysis parameters, and ran the
analysis for every reference series. For example, the
GSEA results for GSE16538 are shown in Figure 4. The
genome-wide gene expression profiles in GSE16538
were compared in tissues derived from subjects with

active pulmonary sarcoidosis (n=6) and those with nor-
mal lung anatomy (n=6). Its original purpose was to test
the hypothesis that tissue genome-wide gene expression
analysis, coupled with gene network analyses of differen-
tially expressed genes, would provide novel insights into
the pathogenesis of pulmonary sarcoidosis [21].
For the lung-specific gene set, five key statistics for the

gene set enrichment analysis were reported, Enrichment
Score (ES) (0.604), Normalized Enrichment Score (NES)
(1.54), familywise-error rate (FWER)(0.287), False Dis-
covery Rate (FDR)(0.425), and Nominal P Value(0.0291).
The normalized enrichment score (NES) is the primary
statistic for examining gene set enrichment results [22].
By normalizing the enrichment score, GSEA accounts
for differences in gene set size and in correlations
between gene sets and the expression dataset; therefore,
we used the normalized enrichment scores (NES) to
compare analysis results across organ-specific gene sets
and non-organ-specific gene sets.
Figure 5 displays the normalized enrichment score for

all 52 organ-specific gene sets and 10 random non-
organ-specific gene sets over the six organs: lung, ovary,
prostate, bladder, pancreas, and kidney. We can see that
in the bladder, kidney, lung, ovary and pancreas, the

Table 3 Statistics of GEO microarray data for GSEA

Organ Disease #Samples Reference
series

Lung Lung-sarcoidosis 12 GSE16538

Lung adenocarcinoma(Lung Tumor) 107 GSE10072

Lung Cystic Fibrosis 20 GSE2395

Lung Squamous Lung Cancer 10 GSE3268

Lung Malignant pleural mesothelioma 54 GSE2549

Lung Lung-Cancer 192 GSE4115

Prostate prostate cancer 104 GSE6099

Prostate metastatic prostate tumor 6 GSE7930

Prostate metastatic prostate tumor 164 GSE6919

Prostate prostate tumors 30 GSE3868

Ovary ovarian cancer 24 GSE14407

Ovary Serous Carcinoma 37 GSE10971

Ovary polycystic ovary syndrome 15 GSE5090

Ovary Ovarian Endometriosis 20 GSE7305

Bladder carcinomas 60 GSE3167

Bladder Urothelial carcinoma 17 GSE24152

Pancreas soft tissue sarcoma 39 GSE2719

Pancreas multistep pancreatic
carcinogenesis

22 GSE19650

pancreas Pancreatic Ductal
Adenocarcinoma

78 GSE15471

pancreas Clinic Pancreatic Tumor 52 GSE16515

Kidney renal cell carcinoma 20 GSE6344

Kidney hyperaldosteronism 15 GSE8514

Kidney preeclampsia 6 GSE6573

Kidney metastatic prostate tumors 164 GSE6919
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medians of the normalized enrichment scores for organ-
specific gene sets are above those of the random non-
specific gene sets. This might suggest that organ-specific
gene sets are more likely to become enriched in disease
samples. On the other hand, we didn’t see this

characteristic in the prostate. In the prostate, the nor-
malized enrichment scores for organ-specific gene sets
are very similar to random non-specific gene sets. Vali-
dation for more organs is planned in the future to test
our hypothesis that organ specificity of a gene/protein
correlates with associated diseases.

Conclusion
We developed HOMER as an integrated database system
to query, analyze, and characterize organ-specific genes/
proteins. HOMER integrates many different types of
organ-specific molecular information: organ-specific
genes/proteins from the dbEST [13], TiSGED [11], and
HPA [12] databases; disease gene relationship from the
CTD [14] database; and disease organ relationships from
the Disease Ontology [15] database. Organ-specific
genes/proteins can be searched, displayed, and down-
loaded from our online user interface. The current
HOMER database can help users address a wide range
of organ specificity related questions in human disease
studies. We also developed a statistical method for
organ-specific genes/proteins, which can be extended to
other organisms. Last, our database was evaluated by
comparison to other known databases and two case
studies.

Discussion
In this paper, we have demonstrated that HOMER can
be used to discover and characterize organ-specific
genes/proteins from experimental data and to test the
hypothesis that there is correlation between the organ

Figure 4 GSEA tesults of GSE16538 for lung-specific gene set.
A null distribution for the ES was generated based on permuted
phenotype labels and recomputed ES of the gene set for the
permutated data. The empirical, nominal p-value of the observed ES
is then calculated relative to this null distribution.
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Figure 5 Organ-specific gene sets analysis for lung, ovary, prostate, bladder, pancreas, and kidney. The median normalized enrichment
scores of organ-specific gene sets are markedly higher than that of random non organ-specific gene sets, in lung, ovary, bladder, pancreas, and
kidney, except for prostate.
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specificity of a gene/protein and the associated diseases.
In Case Study 1, we showed that liver-specific genes/
proteins identified by HOMER are more likely to be
associated with diseases related to the liver. And in case
study 2, we showed that organ-specific gene sets are
more likely to become enriched in disease samples in
the lung, ovary, bladder, pancreas, and kidney, but not
in the prostate. It is obvious that more data and analysis,
validation methods and tools, and clinical trials are
needed to translate organ-specific biomarkers to clinical
applications. With ongoing efforts and as more disease
and microarray data are collected, HOMER can become
a useful resource to investigate the relationship between
organ specificity and organ-related disease.
In biology, an organ is a group of tissues that perform

a specific function or group of functions. There are 4
primary tissue types in the human body: epithelial tis-
sue, connective tissue, muscle tissue and nerve tissue.
And there are 12 major organ systems in the human
body: Circulatory System, Lymphatic System, Digestive
System, Endocrine System, Integumentary System, Mus-
cular System, Nervous System, Reproductive System,
Respiratory System, Skeletal System, Urinary/Excretory
Systems, and Embryonic System. Usually there is a main
tissue and sporadic tissues in an organ. For example, the
heart is mostly composed of fibroblasts and to some
extent of cardiomyoc[1,24,25]. Based on the main tissue
and the human organ system, we categorized the tissues
in dbEST into organs. We found some tissues difficult
to categorize in this way, for example, adipose tissue,
peritoneum and leiomios (leiomyoma). Since there are
too many libraries of those tissues in the dbEST, we
decided to categorize them into separate organs with
the same name of the tissues.
Adipose tissue and peritoneum don’t really belong to

any organ system. Adipose tissue is more commonly
known as fat, and it helps cushion the skin and provide
protection from cold temperatures. All the peritoneum
really does is lubricate and drain the abdomen. A leio-
myoma (leiomios) is a benign smooth muscle neoplasm
that is not premalignant. It can occur in any organ, but
the most common forms occur in the uterus, small
bowel and the esophagus. In the dbEST, there are 58
libraries which list leiomios, an uncharacterized tissue,
as an organ, for example in lib.3508 (http://www.ncbi.
nlm.nih.gov/nucest/20967784).
There are also several potential limitations to this

study. First, some libraries in dbEST are not labeled
clearly for tissues or organs. For example, in lib.50 to
lib.70, we cannot get any information about tissues or
organs. Second, there are 44 libraries in dbEST which
are mixed, such as Lib.589, which pools human melano-
cyte, fetal heart, and pregnant uterus. We removed
these before data analysis. The last possible limitation to

the study relates to the relatively small or even absence
of microarray sample numbers in some organs. For
example, most organs have only 2 to 5 reference series
which contain normal and disease states, and there is no
microarray data with both normal and disease states for
amnion, blood vessel, bone, ear, embryo, gallbladder,
ganglia, leiomios, rectum, salivary gland, spinal cord,
spleen, thymus, tonsil, trachea, umbilical cord, and
ureter. However, with the ongoing development of
HOMER and GEO [20], more microarray data will
become available and be collected, and more organ-spe-
cific genes/proteins may be validated.

Methods
Pathway analysis, gene ontology categorization, and drug
target analysis of organ-specific genes/proteins
We used pathway analysis, gene ontology analysis and
drug target analysis to unravel the intricate pathways,
functional contexts and targeting drug, and this
approach is essential to the understanding of molecular
mechanisms of organ-specific genes/proteins.

Function annotation analysis
DAVID database was used to study biological process in
gene ontology. Fisher’s exact test is used to test the sta-
tistical significance for association between the gene list
with expression changes and the function set [26].

Pathway-gene association matrix
Pathway comparisons were performed using the follow-
ing databases: Kyoto Encyclopedia of Genes and Gen-
omes (http://www.genome.ad.jp/kegg/) [27] and HPD
[28]. The visualization for the pathway-gene association
matrix was created by Excel 2010 VBA.

Drug-target analysis
Drugs and drug targets were retrieved from Drugbank
[29]. A light-weight implementation of the Document
Object Model interface in Python 2.7.l [30], xml.dom.
minidom, was used to parse the XML format data.

Data source
We show an overview of the data integration process in
Figure 6. Organ-Specific Markers data in HOMER were
collected from three different sources, i.e., dbEST [13],
TiSGeD [11], and HPA [12].
Raw data of EST reports from dbEST (at 04/19/2011)

were downloaded from NCBI. We retrieved the “dbEST
ID”, “EST name”, “GenBank Acc”, “Lib Name”, “Tissue
type”, and “Organ” for each EST library under condition
that the “Organism” in the EST library is Homo sapiens.
Based on “Lib Name”, “Tissue Type”, and “Organ”,

each library was categorized into a corresponding organ
category, according to the TissuDB tissue hierarchy [45],
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tissue-type terms and their ontological hierarchy in Tis-
sue Ontology [31], and disease of anatomical entity in
Disease Ontology [15]. Briefly, our library categorization
process is described as follows. For libraries with a defi-
nite “Organ”, we categorized by “Organ”. For libraries
with no “Organ”, we referred to the descriptions of “Lib
Name” and “Tissue Type” and their hierarchy in TissuDB
[45], Tissue Ontology [31], or Disease Ontology [15] and
manually categorized them into a corresponding organ.
Libraries without a definite pathological description were
removed. Last, organs with gene number less than 100
and EST number less than 300 were excluded. In all, we
downloaded 8,314,483 human ESTs from 8,723 EST
libraries, and the screening process described above left
us with 8,031 libraries and 6,351,056 ESTs distributed in
111,367 UniGene IDs after converting from “GenBank
Acc” and 52 organs (Table 4).
TiSGeD [11] is a database consisting of genes with an

associated SPM, which is a measure of its tissue specifi-
city. SPM values range from 0 to 1.0. Currently there
are 2423 human genes from 107 tissues from different
organs which have an SPM value above 0.9. A user can
also retrieve the data of organ-specific genes, which will
be a collection of different tissues constituting that

organ. Thus, for the organs of our interest, we include
the organ-specific genes having SPM values >0.9.
In HPA, we have 4,842 proteins and their expressions

across 48 tissues. The expression data were obtained
based on analysis of immunohistochemistry-based
images in [32] and categorized as negative/weak/moder-
ate/strong. HPA also provides a list of 74 proteins
which are found to be expressed in only one cell type.
The Comparative Toxicogenomics Database CTD[14]

and Disease Ontology [15] were used to extract the
associations between disease and gene/protein and
between organ and disease, respectively. We first used
perl to convert the Disease Ontology file in OBO format
to a relational table in tab-delimited format. Then we
used OBO-Edit [33] to open the Disease Ontology file
in OBO format and manually parsed the association for
each disease and each organ in the disease of anatomical
entity (Figure 7). For example, we categorized 25 dis-
eases into the breast (Table 5). After the two steps of
parsing, the disease and organ relationships contain 46
organs and 7,850 diseases, 2,600 of which can be
mapped into MeSH ID.
The Gene–Disease Relationships were downloaded

from CTD [14] website in CSV format and contained

Data 
Collection

Specificity 
Measurement

Comparative 
Analysis with 

Disease

Organ-Specific 
Genes

GSEA 

Disease-related 
Proteins

dbEST HPATiSGeD

Disease
Ontology CTD

P-value<=1e-5
RZ>=4
RE>=4
AE>=10

Organ-Specific 
Proteins

Tissue-Specific Gene Database

(Osborne, et al. 2009)

(Xiao, et al. 2010) (Uhlen, et al. 2010)

Comparative 
Toxicogenomics 
Database

(David, et al. 2011)

(Boguski, et al. 1993)

Validaton 1

Validaton 2

Disease Database

Figure 6 Data integration process. The whole data integration process was divided into three steps: 1) organ-specific biomarker colletion from
dbEST, TiSGeD, and HPA; 2) disease data collection from CTD and disease ontology; and 3) validation: 3a)gene set enrichment analysis and 3b)
disease comparative analysis.
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Table 4 dbEST Statistics for human organs

# of ESTs # of Libraries # of UniGenes ORGAN Human Organ System

1343245 990 41075 brain Nervous System

525690 293 37481 testis Reproductive System

453069 416 33210 lung Respiratory System

391891 127 26930 liver Digestive System

259386 74 26809 eye Nervous System

324056 258 26629 uterus Reproductive System

261443 202 25571 kidney Excretory System

347930 385 23174 placenta Embryonic System

280145 45 22673 embryo Embryonic System

202761 27 22367 spleen Immune System

279494 986 22261 colon Digestive System

369626 1140 21953 breast Reproductive System

288058 93 21901 skin Integumentary System

339113 350 21370 prostate Reproductive System

252414 48 20678 pancreas Digestive System

154320 72 20072 bone Skeletal System

148343 49 19875 heart Circulatory System

142041 42 17744 muscle Muscular System

188269 354 17319 stomach Digestive System

132396 194 16936 ovary Reproductive System

172902 139 16801 blood Circulatory System

108962 29 16781 lymph node Lymphatic System

100250 35 14619 blood vessel Circulatory System

92800 47 13154 thymus Immune System

109850 329 13012 bone marrow Immune System

85617 58 12465 nerve Nervous System

92072 267 11901 mouth Digestive System

82442 401 11618 thyroid Endocrine System

48816 35 10716 small intestine Digestive System

105486 37 9622 cervix Reproductive System

41381 30 9500 adrenal gland Endocrine System

55430 6 9278 trachea Respiratory System

56134 168 8413 pharynx Respiratory System

36857 66 8310 bladder Excretory system

56676 9 7428 lymph Lymphatic System

47340 273 7392 larynx Respiratory System

23085 4 7005 parathyroid gland Endocrine System

22976 15 6229 pituitary Endocrine System

21731 22 5906 esophagus Digestive System

16066 19 5764 adipose

19241 6 5470 ear Nervous System

23920 10 5146 salivary gland Digestive System

9612 7 4296 ganglia Nervous System

20474 13 3719 tonsil Immune System

14660 17 3502 umbilical cord Embryonic System

5555 2 2816 ureter Excretory System

12127 63 2749 amnion Embryonic System

6327 4 2420 rectum Digestive System

10640 58 2218 leiomios

2853 8 1566 gallbladder Digestive System

2346 3 1368 spinal cord Nervous System

366 7 195 peritoneum
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20,444 genes and 4,290 diseases as of April 7, 2011,
1,096 of which were in common with the diseases in the
disease and organ relationships.
The microarray datasets and their latest gene chip

annotation files were derived from NCBI GEO [20].
Phenotype tables for each reference series were manu-
ally created based on the description of samples we
downloaded.

Statistics
We developed a statistic model based on p-value, z-
score and number of ESTs to determine organ specifi-
city of genes.
Given p to be the probability of success in a Bernoulli

trial where one EST in gene i falls in organ j, the prob-
ability of x successes is

P x C p pK
x x K x( ) ( ) ,( )= − −1

Where K is the total number of ESTs in gene i, M is
the total number of ESTs in organ j, N is the total num-
ber of ESTs in Human, p=M / N, and x is the number
of ESTs corresponding to gene i in organ j.
The p-value for gene i in organ j is the probability of

obtaining a test statistic at least as extreme as the one
observed, given that the null hypothesis that there is no
enrichment between gene i and organ j is true, and cal-
culated according to the formula

Pvalue P xx
M= ∑ ( ).

The absolute expression value (AE, or #EST) of gene i in
organ j is defined as x, the number of ESTs corresponding
to gene i in organ j. The expected expression value (EE) of
gene i in organ j is defined as the expected number of ESTs
of gene i in organ j under the null hypothesis that the two
variables, gene and organ, are independent of each other.

EE K
M

N
= ⋅ .

The relative expression value (RE, or Adjusted #EST)
of a gene i in organ j is defined as AE/EE.
The absolute z-score (AZ) shown as follows is used to

indicate how many standard deviations an observed
absolute expression value in gene i above the mean

AZ
AE AE

ae

= −
s

.

Similarly, the relative z-score (RZ) is calculated by

RZ
RE RE

re

= −
s

.

We define the genes as organ-specific genes if they
satisfy the four criteria (i.e. p-value ≤10–5, RZ ≥ 4, RE ≥

Figure 7 Disease ontology. The class of ‘disease of anatomical entity’ in the left panel contains 10 subclasses in the right panel. Each
subclasses can be further expanded into sub-subclasses.

Zhang and Chen BMC Bioinformatics 2011, 12(Suppl 10):S4
http://www.biomedcentral.com/1471-2105/12/S10/S4

Page 12 of 16



Table 5 25 primary diseases related to breast

ChildID ChildName ChildMSHID ParentID ParentName ParentMSHID Organ

DOID:10349 solitary cyst of breast breast

DOID:10349 solitary cyst of breast DOID:10350 breast cyst MESH:
D047688

breast

DOID:10686 lactocele DOID:10350 breast cyst MESH:
D047688

breast

DOID:10351 mammary duct ectasia breast

DOID:10352 fibroadenosis of breast breast

DOID:10353 fibrosclerosis of breast breast

DOID:3274 proliferative type fibrocystic change of
breast

DOID:10354 breast fibrocystic disease MESH:
D005348

breast

DOID:5997 non-proliferative fibrocystic change of
the breast

DOID:10354 breast fibrocystic disease MESH:
D005348

breast

DOID:10686 lactocele breast

DOID:12698 gynecomastia MESH:
D006177

DOID:10688 hypertrophy of breast breast

DOID:13520 neonatal infective mastitis DOID:10690 mastitis MESH:
D008413

breast

DOID:10691 fat necrosis of breast breast

DOID:11603 infant gynecomastia MESH:
D006177

breast

DOID:12698 gynecomastia MESH:
D006177

breast

DOID:13520 neonatal infective mastitis breast

DOID:3463 breast disease MESH:
D001941

DOID:15 reproductive system disease breast

DOID:12698 gynecomastia MESH:
D006177

DOID:1923 sex differentiation disease MESH:
D012734

breast

DOID:8310 sclerosing adenosis of breast DOID:3274 proliferative type fibrocystic change of
breast

breast

DOID:10350 breast cyst MESH:
D047688

DOID:3463 breast disease MESH:
D001941

breast

DOID:10688 hypertrophy of breast DOID:3463 breast disease MESH:
D001941

breast

DOID:10690 mastitis MESH:
D008413

DOID:3463 breast disease MESH:
D001941

breast

DOID:10691 fat necrosis of breast DOID:3463 breast disease MESH:
D001941

breast

DOID:11603 infant gynecomastia MESH:
D006177

DOID:3463 breast disease MESH:
D001941

breast

DOID:5998 microglandular adenosis MESH:
D005348

DOID:3463 breast disease MESH:
D001941

breast

DOID:9504 benign mammary dysplasia DOID:3463 breast disease MESH:
D001941

breast

DOID:5996 blunt duct adenosis of breast breast

DOID:10353 fibrosclerosis of breast DOID:5997 non-proliferative fibrocystic change of
the breast

breast

DOID:5996 blunt duct adenosis of breast DOID:5997 non-proliferative fibrocystic change of
the breast

breast

DOID:5999 apocrine adenosis of breast DOID:5997 non-proliferative fibrocystic change of
the breast

breast

DOID:5996 blunt duct adenosis of breast DOID:5998 microglandular adenosis MESH:
D005348

breast

DOID:5999 apocrine adenosis of breast DOID:5998 microglandular adenosis MESH:
D005348

breast

DOID:7312 breast adenomyoepithelial adenosis DOID:5998 microglandular adenosis MESH:
D005348

breast

DOID:8310 sclerosing adenosis of breast DOID:5998 microglandular adenosis MESH:
D005348

breast
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4, and AE ≥ 10). We determine the parameters based on
the following four criteria: 1) AE must be greater than
the average absolute expression value of all genes, 2) RE
must be greater than the average relative expression
value of the genes identified by criteria 1, 3) at least 95%
of identified organ-specific genes are absolute organ-
specific gene, and 4) the more organ-specific genes iden-
tified, the better.
If a gene is identified as specific to one organ, it is

called single-organ-specific gene or absolute organ-spe-
cific gene. On the other hand, if a gene is identified as
specific to multiple organs, it is called multiple-organ-
specific gene or relative organ-specific gene.
First, we set AE ≥ 10 according to experience after

rounding to 10 the mean absolute expression value of
all the genes in our database, which is 9.56.
Second, we set RZ ≥ 4 according to experience after

rounding to 4 the mean relative expression value of all
the rest genes in our database after filtering with the
first criteria, which is 3.85.
Suppose z-score be from a standard normal distribu-

tion, one-tailed p-value of testing the hypothesis that
there is no enrichment between gene i and organ j is

P Z znorm ≥( ) .

For example, p-value is equal to 2.28E-02, 1.35E-03,
3.17E-05, 2.87E-07, and 9.87E-10, respecitively, when z-
score is equal to 2, 3, 4, 5, and 6. We round the p-values
and obtain five pairs: (p-value≤10–2, RZ ≥ 2), (p-
value≤10–3, RZ ≥ 3), (p-value≤10–5, RZ ≥ 4), (p-
value≤10–7, RZ ≥ 5 ), and (p-value≤10–10, RZ ≥ 6).
Comparison of the four pairs of parameters is shown

in Table 6. The threshold (p-value≤10–10, RZ ≥ 6) is
too strict. It filters out about two third of the organ-
specific genes that are identified by (p-value≤10–2, RZ
≥ 2). The thresholds (p-value≤10–2, RZ ≥ 2) and (p-
value≤10–3, RZ ≥ 3) cannot satisfy the second criteria
that requires at least 95% of identified organ-specific
genes are absolute organ-specific gene. Finally, we

choose (p-value≤10–5, RZ ≥ 4) as thresholds based on
the forth criteria because we can identify more organ-
specific genes with (p-value≤10–5, RZ ≥ 4) than with
(p-value≤10–7, RZ ≥ 5).

Organ-specific gene set enrichment analysis
Our method for organ-specific gene set enrichment ana-
lysis includes three steps: 1) collecting microarray data
from GEO [20] and creating phenotype tables for each
reference series, 2) producing organ-specific gene sets,
and 3) running R-GSEA in R programming environment
and performing statistical analysis. R-GSEA is the R ver-
sion of the GSEA program [22]. In order to run it, R
release 2.0 or later is required.
We downloaded microarray expression data from

GEO [20] for six organs: bladder, kidney, lung, ovary,
pancreas, and prostate. The datasets must have data
on normal and diseased state with respect to the six
organ, based on which we created phenotype tables.
We then built an organ-specific gene sets for each of
52 organs. For the comparison of our organ-specific
gene set, we built 10 non-specific gene sets by ran-
domly picking up genes which were sufficiently lower
ranked to the organ or specific to other organs. We
compared the organ-specific gene set(s) with the non-
specific gene sets to determine if the organ-specific
gene set was significantly enriched, while other gene
sets were not being enriched with regards to a diseased
state related to that organ.

Table 5 25 primary diseases related to breast (Continued)

DOID:8335 microglandular adenosis of breast DOID:5998 microglandular adenosis MESH:
D005348

breast

DOID:5999 apocrine adenosis of breast breast

DOID:7312 breast adenomyoepithelial adenosis breast

DOID:8310 sclerosing adenosis of breast breast

DOID:8335 microglandular adenosis of breast breast

DOID:10349 solitary cyst of breast DOID:9504 benign mammary dysplasia breast

DOID:10351 mammary duct ectasia DOID:9504 benign mammary dysplasia breast

DOID:10352 fibroadenosis of breast DOID:9504 benign mammary dysplasia breast

DOID:10354 breast fibrocystic disease MESH:
D005348

DOID:9504 benign mammary dysplasia breast

Table 6 A comparison of four pairs of P-value and Z-
score thresholds

#OSG #R-OSG #A-OSG %A-OSG

p-value ≤ 10–2, RZ ≥ 2 9597 1913 7684 80%

p-value ≤ 10–3, RZ ≥ 3 8434 923 7511 89%

p-value ≤ 10–5, RZ ≥ 4 6569 168 6401 97%

p-value ≤ 10–7, RZ ≥ 5 4622 0 4622 100%

p-value ≤ 10–10, RZ ≥ 6 2903 0 2903 100%
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Online HOMER server design
The online version of HOMER database is a typical 3-
tier web application, with an Oracle10g database at the
backend database service layer, Apache/PHP server
scripts to the middleware application web server layer,
and CSS-driven web pages presented on the browser.
The result tables derived from the data generation

steps were imported into the Oracle10g database (Figure
8). The organ-gene, disease-gene, organ-disease, organ-
protein, and tissue-organ mapping tables enable users to
query the database with different IDs.

Additional material

Additional File 1: 154 Organ-specific genes. AE: absolute expression
RE: relative expression RZ: relative z-score

Additional File 2: The pathway-gene association matrix of 154
organ-specific genes. In the organ-gene association matrix, 1 stands for
presence of a gene in a pathway and 0 for absence.

Additional File 3: Drug target analysis of 154 organ-specific genes.
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