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Abstract

Background: In general, gene function prediction can be formalized as a classification problem
based on machine learning technique. Usually, both labeled positive and negative samples are
needed to train the classifier. For the problem of gene function prediction, however, the available
information is only about positive samples. In other words, we know which genes have the function
of interested, while it is generally unclear which genes do not have the function, i.e. the negative
samples. If all the genes outside of the target functional family are seen as negative samples, the
imbalanced problem will arise because there are only a relatively small number of genes annotated
in each family. Furthermore, the classifier may be degraded by the false negatives in the heuristically
generated negative samples.

Results: In this paper, we present a new technique, namely Annotating Genes with Positive
Samples (AGPS), for defining negative samples in gene function prediction. With the defined
negative samples, it is straightforward to predict the functions of unknown genes. In addition, the
AGPS algorithm is able to integrate various kinds of data sources to predict gene functions in a
reliable and accurate manner. With the one-class and two-class Support Vector Machines as the
core learning algorithm, the AGPS algorithm shows good performances for function prediction on
yeast genes.

Conclusion: We proposed a new method for defining negative samples in gene function
prediction. Experimental results on yeast genes show that AGPS yields good performances on both
training and test sets. In addition, the overlapping between prediction results and GO annotations
on unknown genes also demonstrates the effectiveness of the proposed method.

Background yeast two-hybrid systems [1], protein complex [2,3] and
One of the main goals in post-genomic era is to predict ~ microarray expression profiles [4], a large amount of bio-
the biological functions of genes. Recently, with the rapid  logical data have been generated. These data are rich
advance in high-throughput biotechnologies, such as  sources for deducing and understanding gene functions.
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For example, protein-protein interaction data are widely
exploited for inferring functions of genes with the
assumption that interacting proteins have the same or
similar functions, i.e. "guilty by association" rule [5-10].
In addition, gene expression data have been widely used
for gene function prediction, where genes with similar
expression patterns are assumed to have similar functions
[11]. In the literature, it has been shown that integration
of different kinds of data sources can considerably
improve prediction results [12-15]. With various kinds of
high-throughput data, the machine learning techniques,
especially Support Vector Machines (SVMs), have been
used for predicting gene functions and shown promising
results [16,17].

Despite the good performance of the machine learning
techniques, there are some limitations with existing meth-
ods, where gene function prediction is formalized as a
classification problem. Generally, to construct a classifier
for gene function prediction, one needs a number of
labeled training samples. In this case, it is relatively easy
to find positive samples (i.e. genes annotated with the
function of interested) that have been annotated by
human experts. However, it is hard to find the representa-
tive negative samples because the available information in
the annotation databases, such as Gene Ontology (GO)
[18] and the Munich Information Center for Protein
Sequences (MIPS) [19], is only about positive samples, i.e.
we know which gene belongs to which functional class
but we are not sure which gene does not belong to the
class. Hence, the available information to us is a set of
genes that have the target function, whereas it is unclear
whether the other genes have the function or not. Further-
more, since one gene may be annotated by more than one
function, it is inappropriate to use all the other genes out-
side of the target functional class as negative samples (e.g.
some of them may actually have such a function). In addi-
tion, the imbalanced problem will arise if all the genes
outside of the target functional family are seen as negative
samples because usually there are only a relatively small
number of genes annotated with the function, while the
number of negative samples may be hundreds even thou-
sands times the one of positive samples. Therefore, the
classifier may be degraded by the false negative samples or
imbalanced data [20].

In this paper, a new technique, namely Annotating Genes
with Positive Samples (AGPS), is presented for defining
negative samples in gene function prediction. In particu-
lar, a functional linkage graph is constructed to integrate
heterogeneous information sources and the singular value
decomposition (SVD) technique is employed to reduce
dimensionality and remove noise from the data. Then, the
AGPS algorithm is presented to define negative samples
and predict functions of unknown genes. In this work,
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genes annotated with the target function are denoted as
labeled data, while those annotated with other functions
instead of the target annotation are denoted as unlabeled
data. The unlabeled data are defined here because we
assume that the genes without target annotation may have
the function even though they are currently not annotated
with the function. The goal of the AGPS algorithm is to
automatically generate negative samples from unlabeled
data in the learning procedure. Unlike the conventional
single-class learning algorithm that is trained only on pos-
itive samples, e.g. one-class SVMs [21], the AGPS algo-
rithm defines negative samples from unlabeled data
automatically in the learning procedure, and therefore is
expected to have a superior performance. With SVMs as
the core learning algorithm, the AGPS algorithm can pre-
dict the functions of unknown genes effectively. Recently,
the basic idea has also been employed by other research-
ers [22-26], where promising performances have been
demonstrated. The major difference between AGPS and
the existing algorithms [22-26] is that instead of recogniz-
ing the positive samples from the unlabeled data directly,
the AGPS algorithm aims to define the representative neg-
ative samples from unlabeled data. With the negative
samples available, it is straightforward to predict the func-
tions of unknown genes by utilizing both the positive
samples and the defined negative samples. In addition, to
exploit all available information, the AGPS algorithm can
also integrate various kinds of data sources from high-
throughput technologies so as to predict gene functions in
a reliable manner.

To demonstrate the effectiveness, the proposed method is
applied to predict functions of S. cerevisiae genes in the
following procedures. Firstly, the data from protein inter-
action network, gene expression profiles and protein com-
plex data are integrated into a functional linkage graph.
Secondly, SVD is used to reduce the dimensionality and
remove noise by extracting the dominant structure of the
functional linkage graph. Finally, the AGPS algorithm is
employed to predict the gene functions based on the
refined data.

Results and Discussions

Data sources and processing

In this study, three kinds of data were integrated into a
functional linkage graph for function prediction of S. cer-
evisiae genes. The three data sources include protein-pro-
tein interaction, gene expression profiles and protein
complex data.

Functional annotation

The functional annotation data of S. cerevisiae genes used
here were obtained from the FunCat 2.0 [27] functional
classification scheme in 2006, which can be downloaded
from the Comprehensive Yeast Genome Database
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Table I: Annotating Genes with Positive Samples (AGPS)
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Input:
- positive training data P
- validation set P2
- unlabeled data Ku
- unknown gene Ug
Output:
- Prediction results
Stage |: Learning
U =Ku + P2;
Stage |.I: Initial negative set generation
- Construct classifier f; based on P 1 and U with one-class SVMs;

- Classify U using f,. The predicted negative set N is used as the initial negative training set in Stage 1.2;

-U=U-N,
Stage |1.2: Negative set expansion
- Classifier set FC =[], negative set NS=[1],i= 1.
- repeat
-izit 0
- Construct classifier f;based on P1 and N, with two-class SVMs;
-FC(i-1)=f, NS@i- 1) =NI;

- Classify U by f;, N, is the predicted negative set, where |[N,| < k|P1|;
- N, = [Ny Ngy], where Ngy is the negative SVs of f;in the previous step;

-U=U-N2
- until |U| <k|P1|
Stage |.3: Classifier and negative set selection

- Classify U with classifiers from FC, and select the classifier FC(i) with the best prediction accuracy;

- Return negative set TN « NS(i).
Stage 2: classification
Classify Ug with P and TN, where P = P1 + P2.

(CYGD) of MIPS [19]. The annotation data in FunCat are
organized as a hierarchical and tree like structure with up
to six levels of increasing specificity. In total, the FunCat
includes 1307 functional categories. A protein annotated
by one function in the functional tree is also annotated by
all the parents of the functional node. In this work, 13
general functional classes were selected, and consequently
4049 genes have been annotated in total. Table 2 shows
the selected functional classes and the corresponding
number of genes.

Table 2: The functional categories and genes used in this paper

Functional categories Number of genes

01 metabolism 967
02 energy 24|
10 cell cycle and DNA processing 727
I'l transcription 829
12 protein synthesis 364
14 protein fate 680
20 cellular transport 726

30 cellular communication 86

32 cell rescue, defense and virulence 307
34 interaction with the environment 332
40 cell fate 201
42 biogenesis of cellular components 471
43 cell type differentiation 354

Protein interaction data

The protein interaction data used here were obtained
from the BioGRID database [28]. The 2.0.20 version of
BioGRID for yeast was used in this work. The dataset con-
tains 82,633 pairs of interactions among 5,299 yeast
genes, of which 4049 genes are annotated by the 13 func-
tional classes. The protein-protein interaction can be rep-
resented as a network, where the vertices are genes and the
edges are interactions among genes.

Gene expression profiles

The gene expression dataset used in this work was down-
loaded from the Stanford Gene expression Database
(SMD), which contains the results from [29-33]. The
missing values in the gene expression profiles were esti-
mated by the KNNimpute algorithm [34], where k was set
at 15. The dataset contains 6012 common genes, where
5,132 genes are among the 5,299 genes in the protein
interaction dataset. Consequently, the dataset used in this
work contains 5,132 genes with 278 real value features for
gene expression data.

Protein complexes

The protein complex data were obtained from the MIPS
database in 2006, including the data from [2] and [3]. The
protein complex data were used here because genes occur-
ring in the same complex are assumed to have the same or
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similar functions. Although we cannot infer direct interac-
tion relationship among genes from protein complex
data, the genes occurring in the same complex are gener-
ally considered to have functional correlations. Hence, we
assigned functional relationships to genes occurring in the
same complex, where an edge was constructed for a pair
of genes occurring in the same complex. Finally, 62,042
functional edges were assigned to our dataset.

Data preprocessing

The relationship between any pair of genes in the protein
interaction and complex datasets generated above was
denoted as binary relationship here, because the relation-
ship is only expressed by "yes" or "no", i.e. "yes" if two
genes interact or occur in the same complex (where an
edge was constructed), otherwise "no". The network with
the binary relationship was denoted as a binary network.
Unlike existing methods that utilize the binary network
for gene function prediction, we used the binary network
to estimate the functional similarities among genes. Spe-
cifically, to evaluate the functional similarity between a
pair of genes, the Czekanowski-Dice distance (CD-dis-
tance) [35] was employed in this work. The CD-distance
between genes g1 and g2 is defined as:

|Ng1ANg2|
Ng1UNgz|+|NglﬂNgz|

D(g1,82) = | (1)

where N, means the set containing gene g and its interact-
ing partners, N,; U N,, means the union of N,; and N,
Ny m Ny, means the intersection of N,; and N, and
N, AN,, means the symmetric difference between two
datasets N,; and N,. The network with edges accompa-
nied by functional similarity was denoted as the func-
tional network in this paper.

For the protein interaction network, it is straightforward
to apply the CD-distance. After that, the functional simi-
larity between any pair of genes was represented as a real
value between 0 and 1. The smaller the value, the more
likely the pair of genes have the similar function. The
functional network obtained from protein interaction
data was denoted as G1.

For the gene expression profiles, the Pearson correlation
coefficients were first calculated, and a binary network
was then constructed for the dataset, where an edge was
added if the absolute value of the correlation coefficient
between corresponding pair of genes is larger than 0.7. In
such a way, one binary network can be generated. Subse-
quently, the CD-distance was applied to the binary net-
work just as described above. The obtained functional
network from gene expression data was denoted as G2.
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For the protein complex data, the CD-distance was
applied directly to the binary network, and the resulted
functional network was denoted as G3. Finally, we got
three functional networks for yeast, and the functional
similarity between any pair of genes in all of the three net-
works was measured by CD-distance. Furthermore, the
three functional networks obtained in this way were
merged into one integrated functional network G = aG1 +
PG2 + »G3, where G is an M x M matrix and M is the
number of genes. A simplerule ¢ : f: y=1:1:1 was
employed in this work. The idea behind the simple rule is
that all the three data sources contain functional relation-
ships among genes, and integrating them into one func-
tional network can complement each other. The resulted
functional network was denoted as the functional linkage
graph in this paper.

Results of 10-fold cross-validation on training data

With the functional linkage graph generated above, the
AGPS algorithm was applied to predict functions of S. cer-
evisiae genes. Here, genes annotated with the target func-
tion F were regarded as positive samples or labeled
samples, while those annotated with other functions
instead of F were seen as unlabeled samples. Our aim is to
define the negative samples and then predict the potential
genes that may be annotated with F from the unknown
genes. In the following experiments, gene function predic-
tion was formalized as a multi-class classification prob-
lem, which was then reduced to a set of binary
classification problems ("one vs the other" here). All the
experiments were conducted by utilizing the LIBSVM [36].

First, we evaluated the proposed method on the training
set [see Additional file 1]. In this paper, the training set
consists of genes annotated in the MIPS annotation of
March 2004, where 3663 genes have been annotated by
the selected 13 functional classes (i.e. Table 2). To see the
effectiveness of the defined negative samples on function
prediction, AGPS was compared against four other meth-
ods including conventional two-class SVMs, one-class
SVMs, PSoL [23], and kernel integration that is a simpli-
fied version of the one described in [16]. Furthermore,
dimensionality reduction was performed to reduce com-
putation cost and complexity. The SVD technique was
employed to reduce the dimensionality and remove noise
in this work, where 10-fold cross-validation was adopted
to determine the number of components that should be
kept in dimensionality reduction. For fair comparison,
dimensionality reduction was performed for all the meth-
ods but kernel integration to find the informative compo-
nents. No dimensionality reduction was performed for
kernel integration method due to its specific data struc-
ture. The Radial Basis Function (RBF) kernel was
employed for all the methods used in this work. The
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number of features selected for different methods can be
found in Table 3.

For AGPS, the 10-fold cross-validation was employed to
find the optimal parameters for kernel function, i.e. the
positive set was randomly divided into 10 groups, where
9 of 10 subsets from the positive set were used as the pos-
itive training set, while the rest one was seen as a valida-
tion set. Both the validation genes and those outside of
the target functional family were seen as unlabeled data.
The learning procedure of AGPS in each trial of 10-fold
cross-validation can be found in Table 1. In each trial of
10-fold cross-validation, the best classifier and the corre-
sponding negative set were returned. Consequently, the
negative samples occurring most often in the returned
negative sets were taken as the representative negative
samples, and the size of the final negative samples was
controlled to nearly equal to that of the positive set. For
example, after the 10-fold cross-validation, 10 negative
sets were returned and the samples were ranked according
to the times that they occurred in the 10 negative sets.
Finally, the samples with the highest frequency were
selected as the representative negative set. By selecting the
negative samples in this way, the false negatives can be
reduced. The final 10-fold cross-validation results were
obtained based on the positive set and the defined nega-
tive set with the parameters determined above, which
works in the same way as the conventional two-class SVMs
does.

For PSoL, the 10-fold cross-validation was employed to
find the optimal parameters for kernel function. In PSoL,
the unlabeled data were defined to include those genes
outside of the target functional class, unknown genes and
validation genes. The learning of PSoL was implemented
in the similar way as AGPS except that PSoL has only the
learning stage in Table 1 and returns possible positive

Table 3: The number of features used for each class in the paper
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samples at the end of learning and does not select classi-
fier. After the cross-validation, the best parameters were
determined for PSoL and the best results were recorded.
The details of PSoL can be found in [23].

For one-class SVMs, the genes outside of the target func-
tional class were seen as negative samples and the classi-
fier was trained only on the positive training set. The 10-
fold cross-validation was utilized to find the optimal
parameters for kernel functions, where 9/10 of the posi-
tive set was used as the positive training set and the rest
was seen as positive validation set. Furthermore, one ran-
domly-selected negative subset was used as the negative
validation set, where the randomly-selected negative sub-
set has nearly the same size as the positive validation set
(i.e. 1/10 of the positive set). With the cross-validation,
the best parameters for one-class SVMs were determined
and the best results were recorded.

For two-class SVMs, the negative samples consist of genes
outside of the target functional class. The 10-fold cross-
validation was utilized to find the parameters with which
they can best separate the positive samples from the neg-
ative samples. Furthermore, a balanced training set was
generated for the two-class SVMs, where the negative sam-
ples with the same size as the positive samples were ran-
domly selected from the genes outside of the functional
class, and this technique has been used to define negative
samples in the literature [37].

For the kernel integration method, the diffusion kernel
was applied to binary networks generated by protein-pro-
tein interaction and complexes while the RBF kernel was
applied to gene expression profiles. The parameters of the
kernels were determined by 10-fold cross-validation.
Instead of utilizing the semi-definite programming to find
the optimal wight coefficients as descried in [16], the ker-

Functional categories

Number of features

AGPS PSoL one-class SYMs two-class SVMs two-class SVMs_balanced
01 metabolism 295 110 10 10 10
02 energy 115 210 10 60 145
10 cell cycle and DNA processing 175 160 10 10 10
I'l transcription 280 210 10 260 10
12 protein synthesis 25 160 260 260 10
14 protein fate 160 160 10 10 295
20 cellular transport 190 260 10 60 10
30 cellular communication 70 160 10 110 70
32 cell rescue, defense and virulence 295 160 10 110 250
34 interaction with the environment 85 210 10 10 295
40 cell fate 55 260 10 10 100
42 biogenesis of cellular components 25 260 10 10 190
43 cell type differentiation 40 210 10 10 40
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nel matrices obtained were normalized and simply added
together to form a new kernel. Furthermore, a balanced
training set was generated, where the negative samples
with the same size as the positive samples were randomly
selected from the genes outside of the functional class.

Note that we compared different methods here to investi-
gate the influence of different negative samples on gene
function prediction, in particular to see the effectiveness
of the defined negative samples by the proposed method
on gene function prediction. In other words, the purpose
of the comparison is not to demonstrate the superiority of
the proposed method over existing methods but to show
the effectiveness of the AGPS on defining negative sam-
ples for gene function prediction.

The results of 10-fold cross-validation by the five methods
were shown in Table 4, which includes the results by two-
class SVMs and kernel integration on balanced data. It can
be seen from Table 4 that the AGPS algorithm performs
comparably well with other methods due to the defined
negative samples. Furthermore, all the methods utilizing
the negative samples outperform the one-class SVMs that
was trained only on positive samples. The poor perform-
ance of the one-class SVMs is due to the relatively fewer
positive training samples. For the two-class SVMs and ker-
nel integration, it can be clearly seen that with balanced
data, the performance of both classifiers can be consider-
ably improved. In other words, the imbalanced data can
indeed degrade the performance of the classifiers. Further-
more, the results on imbalanced and balanced data dem-
onstrate the importance of selecting negative samples in
gene function prediction. Compared with PSoL, the AGPS
algorithm can get a higher recall, i.e. it can recognize more
positive samples hidden in the unknown data, because it
defines better representative negative samples in the learn-
ing procedure.

Results on old data

Since March 2004, 386 previous unknown yeast genes
have been annotated by the selected 13 functional classes
(in 2006). Hence, the 386 genes were not involved in the
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Table 4: The results of 10-fold cross-validation by the five
methods averaged over |3 classes

Methods precision(%) recall(%)  F1(%)
AGPS 68 6l 6l
PSoL 68 37 47
two-class SVMs 45 24 33
two-class SVMs_balanced 6l 70 69
one-class SVMs 50 21 31
kernel integration 58 28 37
kernel integration_balanced 64 47 52

training procedure in the previous section [see Additional
file 2]. To validate AGPS and other methods, these 386
genes were regarded as test set and used to validate the
models trained in the previous section. For the test data,
the AGPS algorithm works as a conventional two-class
SVMs here with parameters and negative set defined
above. For PSoL, the unlabeled data were defined to
include unknown genes and those genes outside of the
target functional class. Note that the test data were
included in unknown genes in PSoL. With the best param-
eters determined in the training procedure and all positive
samples, PSoL was applied to find out putative positive
samples from unknown genes. For the other three meth-
ods, the classifiers trained above were just utilized to pre-
dict the functions of unknown genes. Specifically, the
two-class SVMs and kernel integration trained on imbal-
anced and balanced data were separately applied to pre-
dict gene functions. Furthermore, the ROC score, i.e. the
area under the ROC curve, was also utilized to evaluate
the overall performance of the classifiers. The ROC score
was not used in the previous section because there are not
negative samples available for single class methods. The
results are shown in Table 5.

It can be seen from Table 5 that the AGPS algorithm out-
performs all the other methods with respect to the overall
performance, i.e. ROC scores. The poor performance of
one-class SVMs is caused by the relatively small number of
positive training samples, which result in underfitting.
The PSoL algorithm performs well because it defines the

Table 5: The prediction results by the five methods averaged over 13 classes

Methods precision (%) recall (%) F1 (%) ROC score coverage 9
AGPS 15 66 22 0.6l 13 (13)
PSoL 20 18 19 0.55 12 (13)
two-class SVMs 28 10 16 0.53 I (13)
two-class SVMs_balanced 18 36 29 0.57 10(13)
one-class SVMs 10 42 15 0.53 13 (13)
kernel integration 39 16 23 0.56 11(13)
kernel integration_balanced Il 32 24 0.59 6(13)

aThe digit in the parenthesis is the true number of functional classes whereas the number outside is the number of classes that can be predicted by

the corresponding method.
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negative samples like the AGPS algorithm. However, the
selected negative samples and predicted positive samples
by PSoL may not be true. On the other hand, the AGPS
algorithm defines the representative negative samples that
can best recognize the positive samples from the unla-
beled data instead of predicting positive samples from the
unlabeled data directly, which is also the reason why the
AGPS algorithm can achieve a much higher recall rate.
Working in this way, the AGPS algorithm is able to reduce
false negatives. The results on balanced and imbalanced
data demonstrate again that the two-class SVMs and ker-
nel integration can be degraded by the imbalance prob-
lem. On the other hand, the difference between results on
balanced and imbalanced data also shows the importance
of selecting negative samples in gene function prediction.
Although the two-class SVMs and kernel integration have
higher F1 scores, they have lower recall rates compared
against AGPS. However, a higher recall is much important
because the biologists are mainly interested in which
genes have the target function instead of which genes not.
Although the imbalanced problem is avoided, both two-
class SVMs and kernel integration trained on balanced
data do not perform as well as the AGPS algorithm
because the randomly selected negative training samples
cannot capture the true distribution of negative samples
very well.

To see the ability of the five methods to recover positive
genes from unknown data, we compared the number of
genes that the five methods can predict correctly from
unknown genes on each functional class, where the results
by both two-class SVMs and kernel integration trained on
balanced data were also included. Figure 1 shows the
results obtained by the five methods, where two-class
SVMs_balanced means the results by two-class SVMs
trained on balanced data and the same for kernel integra-
tion. It can be easily observed from Figure 1 that the AGPS
algorithm can recover most of the unknown genes for
nearly each functional class.

Furthermore, we compared our method against other
methods class by class. The number of classes versus one
ROC score threshold was countered, and a higher curve
means a better result. Figure 2 shows the results by the five
methods, where two-class SVMs_balanced means the
results by two-class SVMs trained on balanced data and
the same for kernel integration. It can be seen from the
results that the proposed method outperforms all the
other methods in this case, which confirms the effective-
ness of the proposed method.

In addition, we compared the performance of the best two
single-class methods, i.e. AGPS and PSol, class by class.
Figure 3 shows the comparison of the ROC scores by the
two methods on each functional class. It can be seen from
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Figure 3 that the AGPS algorithm outperforms PSoL on
nearly each class, which also verifies the effectiveness of
the proposed AGPS algorithm.

Predicting functions of unknown genes

For the MIPS annotation data in 2006, there are 802 genes
marked as not annotated in our dataset. With all the
annotated genes in each functional class as the positive
training set and the defined negative genes, the AGPS
algorithm was applied to predict the functions of the 802
unknown genes. Although these genes are not annotated
in the MIPS database, some of them may be annotated in
the GO database with different functional terms. The GO
annotations in 2006 were downloaded from GO data-
base, and the GO terms assigned to the unknown genes
were mapped to the MIPS annotation terms using the
"go2mips" mapping table from GO. Finally, 457 genes
annotated by GO can be mapped to MIPS, among which
21 genes have been annotated by 8 of the selected 13 func-
tional classes [see Additional file 3].

To validate the predictions, the predicted results of AGPS
were compared against the GO annotations for the
unknown genes. Table 6 shows the results of the predicted
terms versus GO terms, where only the predicted annota-
tions that match GO terms with the same MIPS annota-
tion are shown. It can be seen from Table 6 that the
functions of nearly 71% (15/21) of the annotated genes
from GO can be successfully recovered by AGPS, which
confirms again the efficiency and effectiveness of the pro-
posed algorithm.

Conclusion

Annotating genes with biological functions is one of the
main goals in post-genomic era. An alternative way to this
problem is to formalize gene function prediction as a clas-
sification problem. In this paper, we proposed a new algo-
rithm, namely AGPS, to define negative samples in gene
function prediction. The AGPS algorithm is different from
existing methods, which have inappropriate assumptions
about those genes that have no target annotation. Specifi-
cally, we do not simply regard those genes without target
annotation as negative samples because one gene gener-
ally has multiple functions and it may indeed have the
function even though it is not annotated with the target
function currently. Unlike conventional binary classifier
which needs both definite positive and negative samples,
the new technique presented in this paper annotates genes
by requiring only positive samples which are available in
the public database. With explicit positive samples, the
AGPS algorithm can define representative negative sam-
ples automatically in the learning procedure. Utilizing the
defined negative samples, the AGPS algorithm performs
comparably well with the existing methods in terms of
prediction accuracy. In addition, the proposed method is
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respectively.

able to integrate various kinds of data sources to infer gene
functions in a reliable and accurate manner. In particular,
by integrating the heterogeneous data from protein inter-
action, microarray profiles and protein complexes into a
functional linkage graph, the AGPS algorithm was applied
to predict functions of yeast genes in this paper. Further-
more, the SVD technique was utilized to reduce the
dimensionality and remove noise, thereby significantly
improving computational efficiency. Experiment results
on yeast genes show that the prediction results on novel
genes considerably overlap with GO, which confirms the
effectiveness and the efficiency of proposed method.

What worth mentioning is that other kinds of data, e.g.
protein subcellular localization and protein domains, can
also be easily integrated for gene function prediction in
our method. Furthermore, the AGPS algorithm can be
expected to be applied to other fields in bioinformatics
except gene function prediction. In this paper, we only
applied the AGPS algorithm to the general functional

classes. In the future, we will apply AGPS to more specific
functional classes. In addition, the functional classes are
considered independently here. However, generally there
are correlations among these biological functions. If one
gene has function f1, it is possible that the gene also has
function f2 because function f1 correlates with function
f2. Therefore, the performance will be improved if the cor-
relation among genes is taken into account. The correla-
tion among functions will be considered in the future
work.

Methods

In this section, we present a new method for defining neg-
ative samples in gene function prediction. Figure 4 gives
an overview of the proposed method: (1) First, the protein
interaction data, gene expression profiles and protein
complex data for yeast genes are integrated into one func-
tional linkage graph; (2) Then, the SVD technique is uti-
lized to project the gene vectors into low-dimensional
feature space by uncovering the dominant structure of the
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Comparison of the five methods class by class. Comparison of the performance among the five methods, where two-
class SVMs_balanced means the results by two-class SVMs trained on balanced data and the same for kernel integration. The
number of classes versus one ROC score threshold is countered, and a higher curve means a better result.

functional linkage graph; (3) Finally, the AGPS algorithm
is utilized to define negative samples and to predict the
functions of genes. The detailed procedure of the pro-
posed method is given in the following subsections.

Singular Value Decomposition

With the functional linkage graph generated previously, a
total of 5132 features are generated for each gene. Com-
pared to the number of features, the number of samples in
each class lies in the range of (76, 909). Generally, too
many features may significantly increase computation
cost or make the classification problem much hard.
Hence, it is necessary to extract the informative features
and discard the effect of the noise. However, without any
information on negative samples, the common feature
selection methods cannot be used here. In this paper, the

Singular Value Decomposition (SVD) technique is
employed to uncover the dominant structure of the func-
tional linkage graph. Recently, the SVD method has also
been successfully applied to find functional clusters in
large network [38,39], where it is shown that the SVD
technique is effective to find the dominant structure of the
network.

In SVD, given a matrix A of size M x N, A can be decom-
posed into three matrices:

A =SzVT (2)
where § is the left singular matrix of size M x K (K is the

rank of matrix A), V is the right singular matrix of size N x
K, and X is the diagonal matrix of size K x K with non-neg
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Table 6: Predicted annotations by AGPS algorithm versus annotations from GO

MIPS functional categories

Gene ontology

genes annotated by GO

genes predicted by AGPS that
match GO annotation

0l metabolism GO:0008152 YELO44W YHL029C YGLI185C
YMROIOW

10 cell cycle and dna processing GO:0007067 GO:0006260 YDRI106W YGL168W YER038C

GO:0006281

Il transcription GO:0006364 GO:0006396 YLR196W YLR204W

12 protein synthesis GO:0043037 YFR032C YLR287C

14 protein fate GO:0006457 YNL310C

20 cellular transport GO:0006888 YDLO99W

32 cell rescue, defense and
virulence

42 biogenesis of cellular
components

GO:0006974 GO:0006950
GO:0006979
GO:0019898 GO:0007005
GO:0007047

YOL063C YMR251W YDR346C

YPLOO5W YDR339C YNLI49C
YKRI00C YNL310C YOR060C

YHL029C YGLI185C YMROIOW

YDR168W YER038C

YLRI96W

YFR032C YLR287C

YNL310C

YDLO99W

YOL063C YMR251W YDR346C

YKR100C YOR060C

The predicted terms versus GO terms, where only the predicted annotations that match GO terms with the corresponding MIPS annotations are

shown.
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-ative eigenvalues 4, > 4, >,...,> A= 0. In this paper, A = G
(i.e. the adjacent matrix of the functional linkage graph),
and M = N.

After applying SVD to the matrix G, one can express G as
follows:

K
G=) a5/ 3)
=1

where s, and v, respectively represent the 7" column of S
and V, corresponding to the 1t eigenvalue. It can be seen
from Equation (3) that the larger the eigenvalue the more

it contributes to matrix G. Hence, to reduce the dimen-
sionality, one can simply discard the smaller values in the
diagonal matrix ¥ and keep the top R eigenvalues. Accord-
ingly, by using the first R columns of S and V, the sizes of
the three matrices S, X, V are reduced to M x R, R x R and
M x R, respectively. Therefore, the number of features is
reduced to R. Note that ST gives coordinates of rows of G
in the space of R principle components, and rows of VT are
eigenvectors of GTG.

Given a new gene vector G; = [Gjy,...,G;y,] (i.e. the vector for
the i gene), we can project G;into the R dimensional sub-
space as follows:
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G =GV (4)

where G is the new vector with dimensionality R (R <<
M).

Annotating genes with positive samples

In general, one needs both positive and negative samples
to train the classifier, which is subsequently used to make
classification. However, there are usually no negative sam-
ples in practice for gene function prediction because the
available information to us is only about positive samples
as described in previous sections. On the other hand, it is
inappropriate to use genes currently not annotated with
the target function as negative samples because some of
them may actually have the function. Furthermore, the
number of negative samples generated in this way is much
larger than the one of positive samples, which will cause
the imbalanced problem and degrade the performance of
the classifier [20].

In the literature, some single class learning techniques
have been proposed [22-26], e.g. one-class SVMs [21], to
distinguish one class of data from the others in the feature
space. The one-class SVMs can avoid the imbalanced
problem by learning only from the positive set, where it
draws a decision boundary to cover most of the positive
samples in the feature space. However, there are only a
small number of genes annotated in each class here. In
other words, there are only a few positive samples availa-
ble. Therefore, without a negative set, one-class SVMs
trained only on a few positive samples tends to overfit eas-

ily.

To overcome these problems, we propose a new algo-
rithm, namely Annotating Genes with Positive Samples
(AGPS), in this paper. Here, genes with target annotation
are denoted as the positive set P, genes without target
annotation (i.e. annotated with other functions) are
denoted as the unlabeled data Ku, and unknown genes
(i.e. without any annotation) are denoted as Ug. In our
study, for a specific biological function, the genes without
target annotation (Ku in this case) are regarded as unla-
beled data instead of negative samples because genes are
generally annotated with multiple functions and it is
inappropriate to simply define those genes not annotated
with the target function currently as negative samples. Our
goal is to predict the functions of unknown genes based
on P and Ku, where the AGPS algorithm is able to define
the negative set automatically in the learning procedure
given positive and unlabeled data. The idea behind the
AGPS algorithm is to find a subset of negative samples
from unlabeled data, where the defined negative set can
best recover the positive samples hidden in the unlabeled
data. Furthermore, the defined negative set may be a small

http://www.biomedcentral.com/1471-2105/9/57

part of the true negative set but can represent the whole
negative set well and avoid the imbalanced problem
because the defined negative set can best recover the pos-
itive samples from unlabeled data and has a reasonable
size. To approach this goal, the positive set is divided into
positive training set P1 and validation set P2, where P2 is
put into Ku to form a new unlabeled data U (i.e. U = P2 +
Ku). Although U is unlabeled data, the label of P2 is
known. Therefore, we can select those samples in U to
best recover P2 from U. In this procedure, we define a set
of samples in U as representative negative samples TN,
with which we get the best prediction results on validation
set P2. The AGPS algorithm consists of two stages: (1)
Learning; (2) Classification. The flowchart of AGPS algo-
rithm is shown in Table 1. In the first stage, one-class
SVMs is first utilized to draw an initial decision boundary
to cover most of the whole dataset including positive and
unlabeled data. The data points not covered by the gener-
ated decision boundary are regarded as negative data
points because these data points are far from the positive
set in the feature space. With the generated initial negative
dataset, the two-class SVMs is then employed to expand
and refine the negative set from unlabeled data, where
each classifier is trained on the positive training set and
the negative set generated in the previous iteration, and
the trained classifier is subsequently used to classify the
remaining unlabeled data. The classifier and negative set
generated in each step are recorded. This procedure con-
tinues until the stopping criteria are satisfied.

It can be seen that the error in the previous step will affect
the current step. To reduce the accumulative error and to
avoid the imbalanced problem, the size of the extracted
negative samples in the current step is set to |N,| < k|P|,
where N, is the predicted negative genes corresponding
to the top n (n < k|P|) smallest decision values by SVMs
and k is set to 3 in this work so that the false negatives can
be reduced to some extent. The negative training set is
then set to N = [N, Ni,], where N, denotes the set of
negative support vectors (SVs) and N, is N, in Table 1.
The idea behind this is that the negative SVs represent well
the previous negative training set, and it is not necessary
to merge the previous negative set into the current
extracted negative set. Thus, the size of negative set is con-
trolled. After obtaining the negative sets and the trained
classifiers, one needs to find out the best classifier that can
recover the largest number of positive samples lied in the
unlabeled data because the classifiers trained above have
different discriminative power on the left unlabeled data.
The discrimination ability of the trained classifiers is eval-
uated with F1 defined in the next section. Accordingly, the
negative set corresponding to the best classifier is returned
as the representative negative samples, and the selection
of negative samples in this way can help reduce the false
negatives to some extent. With the positive and negative
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samples available, it is straightforward to predict the func-
tion of unknown genes in the same way as the conven-
tional two-class SVMs does.

It can be seen from above that there are some similarities
between AGPS and the existing methods, i.e. PSoL [23]
and SVMC [22]. For AGPS and SVMC, both algorithms
use one-class SVMs to construct the initial negative set and
two-class SVMs to refine the negative set. On the other
hand, for AGPS and PSolL, both algorithms use two-class
SVMs to refine the negative set during negative set expan-
sion. However, there are many differences among these
three algorithms. The goal of AGPS is to refine a subset of
negative samples from unlabeled data, where the defined
negative set may be a small part of the true negative set but
can represent the whole negative set well and also avoid
the imbalanced problem because the defined negative set
best recovers the positive samples from unlabeled data
and has a reasonable size. With the defined negative set
and existing positive set, AGPS employs two-class SVMs to
classify unknown genes. On the other hand, the PSoL and
SVMC algorithms aim to find possible positive samples
from unlabeled data. However, since there are much more
negative samples than positive ones in the unlabeled data,
the putative positive samples may contain false positives.
Furthermore, both PSoL and SVMC do not select the best
classifier trained in the learning procedure and the best
discriminative negative samples as AGPS does. Therefore,
the negative samples generated in PSoL. and SVMC may
contain more false negatives compared against AGPS. The
details of PSoL and SVMC can be found in [23] and [22],
respectively.

Evaluation measures of performance

In this study, the precision, recall and F1 measures are used
to evaluate the performance of the classifiers, and defined
as follows:

.. P
precision = ————— x100%, (5)
TP+FP
P
recall = ——x100%, (6)
RP
Fle 2*pre.a.szon*recall % 100%, )
precision+recall

where TP is the number of genes having function F and
predicted correctly, FP is the number of genes predicted to
have function F but actually not, and RP is the real
number of genes that have function F.
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