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Targeting the Immune Checkpoint molecules (ICs; CTLA-4, PD-1, PD-L1/2, and others)

which provide inhibitory signals to T cells, dramatically improves survival in hard-to-treat

tumors. The establishment of an immunosuppressive environment prevents endogenous

immune response in glioblastoma; therefore, manipulating the host immune system

seems a reasonable strategy also for this tumor. In glioma patients the accumulation

of CD4+/CD8+ T cells and Treg expressing high levels of CTLA-4 and PD-1, or the

high expression of PD-L1 in glioma cells correlates with WHO high grade and short

survival. Few clinical studies with IC inhibitors (ICis) were completed so far. Notably,

the first large-scale randomized trial (NCT 02017717) that compared PD-1 blockade

and anti-VEGF, did not show an OS increase in the patients treated with anti-PD-1.

Several factors could have contributed to the failure of this trial and must be considered

to design further clinical studies. In particular the possibility of targeting at the same time

different ICs was pre-clinically tested in an animal model were inhibitors against IDO,

CTLA-4 and PD-L1 were combined and showed persistent and significant antitumor

effects in glioma-bearing mice. It is reasonable to hypothesize that the immunological

characterization of the tumor in terms of type and level of expressed IC molecules on the

tumor and TIL may be useful to design the optimal ICi combination for a given subset

of tumor to overcome the immunosuppressive milieu of glioblastoma and to efficiently

target a tumor with such high cellular complexity.
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INTRODUCTION

Since the discovery in 2005 of the clinical utility of Temozolomide in glioblastoma (GBM) patients
(1), no other cytotoxic drug was added in the standard treatment protocols. In the meantime our
knowledge on the molecular mechanisms deranged in GBM has had impressive advancements and
the possibility of targeting these pathways has been extensively exploited in the hope to improve
the current standard of care (2–4). Differently from many other tumors, in GBM the promises
of molecularly targeted therapies against oncogenic alterations did not meet success in phase I/II
and III trials even though they were highly promising in preclinical models; thereafter they have
limited clinical utilization (5). The lack of success of targeted therapies and the limited activity of
standard cytotoxic treatments in GBM, reside in the cellular complexity and clonal evolution of
this tumor (6, 7). Moreover, many molecules that display strong antitumor activity in vitro against
glioma cells and that are utilized for the therapy of other tumors, are ineffective in vivo because
they cannot pass through the Blood Brain Barrier (BBB), or because of drug efflux, intrinsic or
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rapidly developing drug resistance and, last but not least,
the presence of a pool of cancer cells with stemness
characteristics (7).

In the recent years, targeting the so-called Immune
Checkpoint molecules (ICs) which provide inhibitory signals
to T cells, has offered new exciting treatment opportunities in
cancer (8). Inhibition of autoreactive CD8+ T-cells through
ICs is a physiological mechanism to prevent autoimmunity; on
the other end, this mechanism inhibits the immune response
against aberrant cancer cells. Differently from conventional
cytotoxic or from targeted therapies that are aimed at the
cancer cells, the therapies that involve the modulation of ICs
attempt to redirect the function of the immune system to elicit
cancer cell death. Several checkpoint molecules capable to
shut down the response against neo-antigens are present on
T cells as well as on tumor cells. These molecules are at the
center of regulatory networks that result in immunosuppression.
Antibodies against the “classic” IC molecules (CTLA-4, PD-1,
PD-L1, and PD-L2) are considered the “first generation” IC
inhibitors (ICis) that interfere with the immune escape of
tumor cells, followed by second and third generations ICis
targeting other immunoregulatory molecules and pathways
(9, 10).

Immune checkpoints inhibition dramatically improved
survival in hard-to-treat tumors like lung cancer and melanoma
so that the therapy with IC inhibitors (ICis) has entered
in the standard clinical practice for these tumors whereas
clinical trials have been launched for many other tumors
(8, 10).

BLOOD-BRAIN BARRIER,
IMMUNOLOGICAL MECHANISMS AND
IMMUNE CHECKPOINTS INTERPLAY IN
GLIOBLASTOMA

For many years the CNS has been considered as an immune-
privileged compartment with the BBB responsible to maintain
a constant brain microenvironment from metabolic insults and,
at the same time, physically blocking or actively favoring the
transport of bioactive molecules. During the development of
glioma, the integrity of the BBB is preserved up to a tumor
size of ∼2 mm3; above that, the angiogenetic pressure elicited
by GBM releases the tight and adherent junctions between
the cerebral endothelial cells allowing the passage of molecules
up to 12 nm (11, 12). With further tumor growth the BBB
becomes freely permeable to larger molecules. Nevertheless,
tumor cells in niches at the boundary of the surgically
excised tumor remain protected by the BBB reducing the
efficacy of the treatment. Beside immune cells (13), several
cell types in the brain (microglia, astrocytes) can act as
antigen-presenting cells and elicit immune response against
the tumor. This mechanism is aided by the permeability of
the damaged BBB that enables the passage of tumor antigens
outside the brain (14–16). Similarly to other tumors, GBM is
associated with significant immunosuppression particularly in
the T-cell compartment (17) because of the combined effect

of steroid/cytotoxic treatment, the downregulation of MHC-I
antigens and of the secretion of immunosuppressive cytokines.
Moreover, also in glioma, the correct maintenance of the
physiological status of immunological tolerance and response is
mediated by the coordinate interplay of many actors, including
IC molecules, and different cell types as summarized below and
in Figure 1.

CTLA-4
CTLA-4 (CD152) was the first immunoregulatory molecule to
be targeted for therapeutic purposes utilizing the humanized
antibody Ipilimumab approved by FDA and EMA in 2011,
initially for melanoma (18), soon followed by Tremelimumab for
mesothelioma (19, 20). CTLA-4, expressed on T-cells (activated
and regulatory), interacts with its ligands CD80 and CD86 on
APCs to inhibit co-stimulators T-cell pathways (21). In GB the
expression of CTLA-4 on CD4+ and CD8+ cells is strongly
inversely correlated with outcome (22).

PD-1/PD-L1
PD-1 on T cells and its ligand PD-L1 on APC and tumor cells
are the most important immunosuppressive molecules so far
identified. Their interaction leads to the suppression of early T-
cell activation, abolishing their cytotoxic activity and interferes
with the production of inflammatory cytokines (23, 24). Two
PD-1 suppressive Ab were licensed in 2014 (Nivolumab) and in
2016 (Pembrolizumab) and two anti-PD-L1 Ab: Atezolizumab
in 2016 and Avelumab in 2017. Their original indications were
rapidly extended to other tumors and many clinical trials with
newer molecules are ongoing (8, 25, 26). The expression of
PD-L1 on glioma cells has been documented as well as that of
PD-1 on tumor infiltrating lymphocytes (TIL). The functional
and clinical implications of PD-1/PD-L1 expression in GBM are
still unclear. Indeed, no correlation between PD-L1 expression
and overall survival was seen in two cohorts (27, 28). On
the other hand, in another study, PD-L1 staining and PD-
1/PD-L1 expression were associated with decreased survival
(29). The absence of standardized experimental parameters, of
defined cut-off values and the heterogeneity of the cohorts
might explain these contrasting findings. Interestingly PD-L1
expression is directly correlated with WHO grade and within
Grade IV tumors, PD-L1 expression is significantly higher in
IDH1/2 wt tumors compared to IDH1/2 mutated or hyper
methylated GBM (27). Overall, the expression of PD-L1 is
linked to well-known negative prognostic indicators in GBM
and its effect on survival must be examined in homogeneous
cohorts.

Tim-3
Tim 3 is a molecule expressed by CD4+ and CD8+ T cells
that, similarly to PD-1, is involved in immune suppression and
promotes tumor escape through the exhaustion of T cells (30). A
large proportion of TILs in GBM and other tumors is composed
by T cells not capable of cytokine secretion and not exerting
their physiological function. In GBM the overexpression of TIM-
3 is associated with higher malignancy (higher grade, lower
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FIGURE 1 | Simplified representation of the IC network. In red are indicated the FDA-approved drugs and the IDO inhibitors in advanced stage of clinical test (phase

III). TIM-3 inhibitors are at an early stage of development for clinical use (phase I).

Karnofsky score, and IDHwt) and is thus considered a strong
negative prognostic indicator (31, 32).

IDO
Although IDO is not a classical immune checkpoint
molecule and lacks receptorial capacity, it is included in
this functional class because of its suppressive properties
on T-cell activation and NK cell function (33). Similarly to
TIM-3, IDO overexpression is linked to poorer outcome in
GBM patients (34) and targeting IDO with Epacadostat or
Indoximod (35), was a successful experimental strategy in in vivo
models (36).

GENETIC AND EPIGENETIC FACTORS
DETERMINE THE FUNCTIONALITY OF IC
MOLECULES

Targeting IC molecules with blocking antibodies alone or
in combination with other ICi therapies, or with standard
chemotherapy has revolutionized the therapeutic approach to
lung cancer and other hard to treat tumors. Nevertheless,
along with very favorable response rate, other patients
are unresponsive to the therapy or show life-threatening
side effects. Predicting the response and the appearance of
major side effects during treatment is a major health issue.
Limiting certain therapies to patients likely to respond and
strict monitoring of patients at risk have several ethical
implications and could enable the Public Health Systems to
offer the best available therapy to the patients who could

really benefit from it. However, reliable biomarkers predicting
response or adverse reactions to ICi therapy are not yet
available.

Single nucleotide variations (SNVs) of IC genes can affect
the expression levels of IC molecules thus altering immune
tolerance and leading to increased susceptibility to autoimmune
diseases or to reduced immunological response against cancer
cells.

A meta-analysis that included 12 studies and more than
5,000 tumor patients and an equal number of healthy controls
showed a decreased cancer risk for TT homozygous individuals
at polymorphism PD-1.5 (rs2227981) and, for Asian populations,
a decreased risk was seen for AG individuals and an increased risk
for AA, at PD-1.3 (rs11568821) (37). PD-1.5 allele frequencies
and risk of low- and high-grade glioma development were
examined in 156 mid-Eastern patients and significantly higher
frequency of the PD1.5 C/T and T/T genotype were found in
high-grade glioma compared to low-grade tumors and control
individuals (38).

Some studies, described below, have examined the clinical
impact of IC polymorphisms in tumor and autoimmune disease
patients treated with ICi. Years ago, it was shown that SNVs in
CTLA-4may affect the transcriptional activity of the gene as well
as the interaction with CD80 and influence immune response in
autoimmune diseases (39, 40). SNV of CTLA-4 are implicated
in clinical response and survival in melanoma patients (41, 42)
and, more recently, SNV-1577G > A and SNV CT60G > A were
linked to a better response to Ipilimumab in a 173-patients cohort
(43) and SNV-1661A > G to the onset of endocrine adverse
events (44).
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In NSCLC CTLA-4, PD-1, and PD-L1 were examined in two
studies that involved more than 400 patients (21, 45). Overall
three PD-L1 SNV (rs2282055G > T; rs4143815C > G, and
rs2297136T > C) were significantly associated with a better
overall response rate and improved OS and PFS when treated
with chemotherapy alone or with Nivolumab as second or third
line of treatment after chemotherapy.

Overall these results indicate that genetic variations in IC
molecules can be utilized as conventional biomarkers predictive
of response to treatment and outcome to optimize patients’
treatment. This is particularly important also in view of the
availability of new drugs whose efficacy and toxicity may
be genetically-dependent and whose utilization requires a
“personalized approach” to cancer treatment.

Studies on hematologic disorders like myelodysplastic
syndrome (MDS) treated with inhibitors of DNA
methyltransferases demonstrated the up-regulation of PD-1
as a consequence of the therapy (46, 47). High expression of
PD-1 is a negative prognostic indicator and it has been proposed
that the treatment of MDS with hypomethylating agents should
be coupled with the blockade of ICs.

The analysis of several solid tumors demonstrated that
epigenetic mechanisms regulate the expression of IC molecules
and that methylation of PD-1 and PD-L1 promoters is associated
with worse outcome (48–51).

The immunological landscape of glioma is influenced by
IDH1/2 mutations; indeed, in mutated tumors PD-L1 is
significantly diminished supporting the rationale of ICi treatment
in IDH1/2wt patients (52). Besides DNA methylation, other
epigenetic modifiers may influence IC expression in glioma.
Namely, miRNAs may directly impact CTLA-4, PD-1, and PD-
L1 expression through a series of miRNA like mir-155 (CTLA-
4), mir-138 (CTLA-4 and PD-1), miR-424 (PD-L1 and CD80),
mir-28 (PD-1), miR-34a, miR-200 miR-513, and miR-138-5p
(PD-L1).

Moreover, the same or other miRNA regulate the expression
of cytokines like IFN-γ or transcription factors that are
positive or negative regulators of IC generating a redundant
and extremely complex network. The interaction between
IC molecules, and miRNA have been recently shortly
reviewed (53).

IMMUNE CHECKPOINT BLOCKADE IN
GBM: PRECLINICAL FINDINGS

Several preclinical trials conducted utilizing two
immunocompetent animal models (GL261/C57Bl/6 and
SMA560/VM/dk) (54) demonstrated that IC blockade utilizing
ICi as single agent or in combination significantly prolongs
survival at an extent that depends on the molecule, or their
combination. In one study, CTLA-4 blockade alone resulted
in 80% of long survivors (55) whereas in two others the
percentage of long survivors was 40 and 25% (28, 56). PD-1
blockade alone resulted in 56% long survivors in one study
(57) but had no effect in another study unless associated with
radiotherapy (15–40% long survivors) (58). PD-L1 blockade

was tested in two studies leading to 60% (57) and 25% long
survivors (56). Only one study examined the effect of TIM-3
blockade with no effect on survival (59). The effect of the
therapy was strongly augmented when different ICis were
utilized in combination or with standard therapy. Two studies
in murine models demonstrated that the combination of
radiation therapy and PD-1 and/or TIM-3 exerted a strong
antitumor response over the treatment with a single agent and
the maximal activity (100% long survivors) was seen when
PD-1 and TIM-3 inhibition were combined with stereotactic
radiosurgery (58, 59). Another study described the effects of
the concomitant CTLA-4/PD-L1/PD-L2 inhibition that resulted
in 75% long survival (56). Finally, disabling the entire IC
network (CTLA-4/PD-L1/IDO) (57) or the dual IC blockade
(TIM-3/PD-1) coupled with radiosurgery (59), both resulted
in the survival of 100% of the treated mice. Importantly in all
these treatments it was possible to demonstrate the activation
of the immune system within the tumor (cytokines production,
TIL activation, etc.) and sustained anti-tumor immune response
since regrowth of the tumor was not observed after tumor cell
re-challenge.

Overall, these preclinical models support the rationale for
disabling many components of the IC network in conjunction
with standard therapies for an efficient glioma treatment.
Moreover, since the concomitant utilization of several ICis
could increase the risk of life threatening adverse effects, the
need of identifying molecular markers predicting response and
therapy-induced toxicity, as previously mentioned, appears of the
utmost importance for the clinical utilization of combined IC
treatment.

IMMUNE CHECKPOINT BLOCKADE IN
GBM: CLINICAL TRIALS

The successful preclinical trials and the very favorable results
obtained with other tumors like NSCLC and melanoma, set
the basis for the utilization of ICis in many other tumors
including GBM. The survey of the NIH Clinical Trials Database
(https://www.clinicaltrials.gov) performed on July 2018, showed
60 registered trials; only two of them were completed (Table 1).
One of the completed studies (NCT01860638) is a phase
II randomized study to test the safety of the combination
Bevacizumab/Lomustine as second line treatment followed by
Nivolumab as third line. The primary endpoint of the study that
enrolled 296 patients and ended in 2017 was OS but the results
were not made available to the public. The second completed
study was NCT02550249, a phase II study that enrolled 29
patients and had as primary outcome the evaluation of the
expression of PD-L1 in tumor cells and lymphocytes upon
treatment with Nivolumab. Also, in this case the results are not
available.

The ongoing studies (mostly phase I or II) test several
ICi molecules as single agents or in various combinations
with standard cytotoxic molecules, targeted therapies, or
other immunological therapies and are aimed, not only at
determining the clinical utility of these molecules, but also
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TABLE 1 | Clinical trials with IC inhibitors in glioma (July, 2018).

Target Clin. Trial ID Molecule Disease Phase Patients Status Year S/E

CTLA-4 NCT03460782 Ipilimumab Glioblastoma I ? ? 2018/?

PD-1 + CTLA-4 NCT03430791 Nivolumab + Ipilimumab Glioblastoma II 60 Not yet recruiting 2018/2021

NCT03233152 Ipilimumab + Nivolumab Glioblastoma I 6 R 2016/2019

NCT02017717 Ipilimumab + Nivolumab +

Bevacizumab

Glioblastoma III 626 A-NR Data

available (Ref. 59)

2013/2018

NCT03367715 Ipilimumab + Nivolumab Glioblastoma

MGMT

Unmeth

II 24 R 2018/2020

NCT02311920 Ipilimumab + Nivolumab + TMZ Glioblastoma

Gliosarcoma

I 32 A-NR 2015/2018

NCT03425292 Ipilimumab + Nivolumab + TMZ Glioblastoma I 45 R 2018/2020

NCT03422094 Ipilimumab + Nivolumab +

personalized vaccine (NeoVax)

Glioblastoma I 30 Not yet recruiting 2018/2023

CTLA-4 +

PD-L1

NCT02794883 Tremelimumab + Durvalumab Glioblastoma II 36 R 2016/2019

PD-1 NCT01952769 Pidilizumab DPIG I/II 50 A-NR 2014/2019

NCT02359565 Pembrolizumab DPIG and

other brain

tumors

I 110 R 2015/2020

NCT02529072 Nivolumab + Dendritic cell

vaccine

Glioblastoma I 7 A-NR 2015/2017

NCT03576612 Nivolumab + immunostimulator Glioblastoma I 36 A-NR 2018/2022

NCT03557359 Nivolumab IDHmut GB II 37 A-NR 2018/2021

NCT03347097 PD-1 producing pluripotent killer

cells

Glioblastoma I 40 R 2017/2018

NCT02311582 Pembrolizumab + laser ablation Glioma I/II 58 R 2015/2021

NCT02658981 Nivolumab + anti-LAG-3 Glioblastoma I 100 R 2016/2020

NCT02852655 Pembrolizumab Glioblastoma NA 35 A-NR 2016/2021

NCT02335918 Nivolumab + Varilumab Glioblastoma

solid tumors

I/II 175 A-NR 2015/2020

NCT02526017 Cabiralizumab + Nivolumab Glioblastoma

solid tumors

I 295 A-NR 2015/2019

NCT03058289 INT230-6 (cytotoxic carrier,

intratumor) + Nivolumab

Glioblastoma

solid tumors

I/II 60 R 2017/2020

NCT01860638 Bevacizumab + Lomustine +

Nivolumab + TMZ +

Radiotherapy

Glioblastoma III 296 C - No results

available

2013/2017

NCT03014804 Dendridic cell vaccine +

Nivolumab

Glioblastoma II 30 To be started 2018/2020

NCT03493932 Nivolumab + Anti-LAG-3 Glioblastoma I 15 R 2018/2021

NCT02798406 Oncolytic Adenovirus (intratumor)

+ Nivolumab

Nervous

System

Tumors

II 48 R 2016/2020

NCT02937844 Chimeric T cells armed with

PD-1 and CD28 to activate T

cells and kill PD-L1+ tumor cells

Glioblastoma I 20 R 2016/2019

NCT03173950 Nivolumab Brain tumors

not GB

II 180 R 2017/2021

NCT03170141 CAR-T cells Glioblastoma I 20 R by invitation 2017/2020

NCT03491683 Cemiplimab +

immunomodulators INO-5401

and INO-9012

Glioblastoma I/II 52 R 2018/2021

NCT02829931 Nivolumab + radiotherapy Glioblastoma I 26 S by the Company 2016/2020

NCT02550249 Nivolumab Glioblastoma II 29 C - No results

available

2015/2017

NCT02648633 Nivolumab + Valproic Acid Glioblastoma I WT 2016/2017

NCT03452579 Nivolumab + Bevacizumab Glioblastoma II 90 R 2018/2018

(Continued)
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TABLE 1 | Continued

Target Clin. Trial ID Molecule Disease Phase Patients Status Year S/E

NCT02667587 Nivolumab + TMZ +

radiotherapy

Glioblastoma III 693 R 2026/2023

NCT02617589 Nivolumab + TMZ +

radiotherapy

Glioblastoma III 550 R 2016/2019

NCT03311542 Pembrolizumab Glioblastoma

Melanoma

? ? ? 2017/?

NCT02313272 Pembrolizumab + Bevacizumab

+ radiotherapy

Glioblastoma I 32 A-NR Data

Available (Ref: 62)

2015/2019

NCT02054806 Pembrolizumab Glioblastoma

and many

solid tumors

I 477 (26

GB)

A-NR Data

Available (Ref: 61)

2014/2018

PD1 + IDO NCT03491683 Epacadostat + Nivolumab Glioblastoma I/II 52 R 2018/2021

PD-L1 NCT02968940 Avelumab + radiotherapy Glioblastoma

IDHmut

II 43 R 2017/2019

NCT03291314 Avelumab + Axitinib Glioblastoma II 52 R 2017/2018

NCT02866747 Durvalumab + radiotherapy Glioblastoma I/II 62 R 2017/2020

NCT03341806 Avelumab + lasertherapy Glioblastoma I 30 R 2018/2020

NCT02336165 Durvalumab + radiotherapy +

Bevacizumab

Glioblastoma II 159 A-NR Data

Available (Ref:63)

2015/2018

NCT03047473 Avelumab Glioblastoma II 30 R 2017/2019

NCT03174197 Atezolizumab + TMZ Glioblastoma I/II 60 R 2017/2021

NCT03158389 Atezolizumab + targeted therapy

with various molecules

Glioblastoma I/II 350 R 2018/2024

IDO NCT02052648 Indoximod + radiotherapy +

TMZ + Bevacizumab

Glioblastoma I/II 160 A-NR 2014/2018

NCT02502708 Indoximod + TMZ +

radiotherapy + other cytotoxic

drugs

Pediatric

brain tumors

I 115 R 2015/2019

NCT02764151 PF-06840003 Brain tumors I 17 A-NR 2016/2018

Data taken from https://www.clinicaltrials.gov

R, Recruiting; C, Completed; A-NR, Active Not Recruiting; AC, Accrual completed; NI, Not Indicated; WT, Withdrawn; S, Suspended; Year S/E, Year Start/End.

at determining the safety of the treatment and are expected
to be completed starting from 2019 but mostly after year
2020.

The only study with published results is NCT02017717
(CheckMate 143), a large phase III randomized trial that
enrolled over 600 patients. This study was the first large
trial where the effect of IC inhibitors was stringently
tested. Encouraging results were initially obtained in one
of the study arms where three patients showed partial
response and 8 disease stabilization with the combination
Nivolumab+Ipilimumab (60), however when the study was
extended, this arm was closed because of the treatment failure
(61).

Two other large phase III randomized trials (NCT02617589
and NCT02667587) are testing the effect of Nivolumab
on MGMT methylated or unmethylated patients and the
results of these studies are expected in 2019 and 2023,
respectively.

Phase Ib trial NCT02054806 tested the safety and efficacy of
the PD-1 inhibitor Pembrolizumab on a large series of solid
tumors. In the GBM arm (26 patients), one partial response and
12 disease stabilization were observed (62).

Phase I trial NCT02313272 tested the effect of the addition
of Pembrolizumab to Bevacizumab and radiotherapy. The initial

results were encouraging since more than 50% of the patients at
6 months showed partial or complete response (63).

Finally, phase 2 trial NCT02336165, the PD-1 inhibitor
Durvalumab was tested in combination with Bevacizumab and
radiotherapy and showed partial response or disease stabilization
in 60% of the patients after 6 months. Four patients remained
progression free (64).

CONCLUSIONS

Targeting ICs has revolutionized the therapeutic approach to
certain tumors. There is strong hope that this therapy could be
effective also for GBM patients. Indeed, the preclinical trials and
the initial results obtained in some phase I/II studies suggested
that ICis could offer new therapeutic options to these patients.
The results of the first large phase III trials were somehow
disappointing and inhibiting PD-1 could not fully restore the host
immune response (61).

Nevertheless, the treatment with Nivolumab doubled the
response to therapy in 8% of the patients (11.1 months vs. 5.3
with Bevacizumab) (61). Moreover, the high levels of VEGF
seen in GBM are strongly immunosuppressive and this effect
should be better counteracted. In this respect, targeting multiple
IC pathways also in combination with cytotoxic drugs could be
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a winning strategy. The results of the two ongoing phase III
trials and of the phase I/II trials where combination therapies
are explored may provide new weapons against this rapidly and
invariably deadly cancer.
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