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In proteomics, protein identifications are reported and
stored using an unstable reference system: protein iden-
tifiers. These proprietary identifiers are created individu-
ally by every protein database and can change or may
even be deleted over time.

To estimate the effect of the searched protein sequence
database on the long-term storage of proteomics data we
analyzed the changes of reported protein identifiers from
all public experiments in the Proteomics Identifications
(PRIDE) database by November 2010. To map the submit-
ted protein identifier to a currently active entry, two dis-
tinct approaches were used. The first approach used the
Protein Identifier Cross Referencing (PICR) service at the
EBI, which maps protein identifiers based on 100% se-
quence identity. The second one (called logical mapping
algorithm) accessed the source databases and retrieved
the current status of the reported identifier.

Our analysis showed the differences between the main
protein databases (International Protein Index (IPI), Uni-
Prot Knowledgebase (UniProtKB), National Center for
Biotechnological Information nr database (NCBI nr), and
Ensembl) in respect to identifier stability. For example,
whereas 20% of submitted IPI entries were deleted after
two years, virtually all UniProtKB entries remained either
active or replaced. Furthermore, the two mapping algo-
rithms produced markedly different results. For example,
the PICR service reported 10% more IPI entries deleted
compared with the logical mapping algorithm. We found
several cases where experiments contained more than
10% deleted identifiers already at the time of publication.
We also assessed the proportion of peptide identifications
in these data sets that still fitted the originally identified
protein sequences. Finally, we performed the same over-
all analysis on all records from IPI, Ensembl, and
UniProtKB: two releases per year were used, from 2005.
This analysis showed for the first time the true effect of

changing protein identifiers on proteomics data. Based on
these findings, UniProtKB seems the best database for
applications that rely on the long-term storage of pro-
teomics data. Molecular & Cellular Proteomics 10:
10.1074/mcp.M111.008490, 1–11, 2011.

Proteomics data is produced in constantly growing quan-
tities. Like in other high-throughput approaches, one of the
major challenges for a proteomics laboratory is the storage
and management of huge amounts of information. There-
fore, Laboratory Information Management Systems (LIMS)
(1–3) have been developed and are heavily used as in-house
data repositories to store the performed experiments for
years to come. In addition, by means of standardized data
formats, the new publication guidelines from scientific jour-
nals, and the requirements related to public data availability
of some funding agencies, an increasing amount of pro-
teomics data is being submitted to public proteomics re-
positories. Experiments are then stored in resources like the
PRoteomics IDEntifications database (PRIDE)1 (4), Peptide-
Atlas (5), or Tranche (6).

Storing digital data for a potentially indefinitely long period
of time invariably raises the big question of how long we will
be able to read the data. A prominent example of lost data
happened when the NASA discovered that they could no
longer read their data from the first two manned moon mis-
sions (7). They simply no longer possessed a working model
of the tape reader required to read the produced magnetic
tapes. Proteomics does not require highly specialized hard-
ware to store its data. Nevertheless, there still is a consider-
able risk that some of the produced data might be lost in the
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future because protein identifications are reported and stored
using an unstable reference system: protein identifiers.

In Mass Spectrometry (MS) based experiments, the most
common approach relies on the use of search engines to
match sequences to mass spectra through a comparison of
recorded peptide fragmentation spectra with theoretical
spectra derived from a protein sequence database (8). The
potentially identified proteins are then reported using the
searched database’s proprietary identifiers. These identifiers
are unstable and can change or may even be deleted over
time. The latter happens if, for instance, hypothetical proteins
are removed when gene prediction algorithms are updated or
new biological evidence is created.

The four main comprehensive protein databases used for
proteomics experiments are the International Protein Index
(IPI) (9), the UniProt Knowledgebase (UniProtKB) (10), En-
sembl (11), and NCBI’s nonredundant (nr) database (12). Be-
cause each database has a different focus, the databases can
vary in terms of completeness, degree of redundancy, and
quality of annotations. IPI is a nonredundant protein database
built from different source databases. Its main characteristic
is that it clusters the entries from the different source data-
bases, which are believed to represent the same protein. The
clusters are created by combining the results of sequence
similarity comparisons with information derived from pre-ex-
isting cross-references (9). Thus, IPI provides a good balance
between the degree of redundant records and its complete-
ness. There are different IPI databases for different species
such as human, mouse, rat, zebrafish, Arabidopsis, cow, and
chicken. IPI will be discontinued in September 2011.

UniProtKB is a component of the UniProt suite of databases
and actually consists of two databases: UniProtKB/Swiss-Prot
and UniProtKB/TrEMBL. UniProtKB/Swiss-Prot is a high quality
manually annotated protein knowledgebase whereas Uni-
ProtKB/TrEMBL holds computationally analyzed records en-
riched with automatic annotation and classification (10). Both
databases use a shared space of protein identifiers, and iden-
tifiers from both databases are often mixed in experiments.
Therefore, these two databases will not be distinguished in this
paper. The major strengths of UniProtKB are the quality of its
records and its minimal degree of redundancy.

The NCBI nr database compiles all protein sequences avail-
able from the following databases: “GenBank” translations,
the Protein Data Bank (PDB) (13), UniProtKB/Swiss-Prot,
PIR, and PRF (see http://www.ncbi.nlm.nih.gov/blast/blast_
databases.shtml). The NCBI assigns “GenInfo” (gi) numbers
to every sequence processed. Thus, experiments using NCBI
nr or reporting their identifications using gi numbers are re-
ported as “NCBI gi” in this paper. Records in the NCBI nr
database possess a high level of redundancy. However, it is
widely used for studies involving nonmodel organisms be-
cause it has a better representation of these species.

Finally, Ensembl is a genomics centric resource that inte-
grates the information for a comprehensive set of mainly

vertebrate genomes and provides automatic annotations de-
rived from genome sequences. Ensembl produces protein
sequence sets for each organism directly derived from the
gene predictions (11). Ensembl’s major strength is the easy
connection between proteomics and biological knowledge as
it directly links proteins to genes and transcripts. In PRIDE,
these four are by far the most popular searched databases,
together with other databases specific to certain model orga-
nisms like The Arabidopsis Information Resource (TAIR) (14).

When protein identifications have been generated from dif-
ferent databases, making results comparable can be trouble-
some (15). This is because of the existence of heterogeneous
and changing identifiers referring to the same protein in dif-
ferent resources. To overcome this common problem in pro-
teomics, the Protein Identifier Cross Referencing (PICR) ser-
vice was launched in 2007 at the EBI (16). PICR uses the
archive database of UniProt (UniParc) (10) as a data ware-
house to offer protein cross-references based on 100% se-
quence identity from over 70 distinct source databases
loaded into UniParc.

The impact of the selected searched protein sequence
database on the sensitivity, specificity and speed of the
search has been described before. For instance, it was shown
that more inclusive bigger protein databases will take longer
to search and may result in more false-positive identifications
as well as reduced statistical significance (17). In this study we
investigate the influence of the searched protein database on
the long-term storage of proteomics data, estimating the rate
of changing protein identifiers. Data coming from all public
experiments from the PRIDE repository were processed using
two distinct protein identifier mapping algorithms. Further-
more, the same analysis was performed on the complete
database releases. Up to our knowledge, this is the first study
that has investigated this aspect of the proteomics data gen-
eration workflow.

EXPERIMENTAL PROCEDURES

To analyze the effect of changing protein identifiers on the storage
of real data, all public experiments available in the PRIDE database
were used as a test data set. At the time of performing this study
(November 2010), there were a total of 8500 public experiments
containing 2,075,324 protein identifications (see Supplementary Ta-
ble S1). The whole data set can be accessed via the PRIDE BioMart
interface (http://www.ebi.ac.uk/pride/prideMart.do).

Database Release Date Curation—The workflow followed can be
seen in Fig. 1. As a first step, the used search database and its version
were manually curated. If the used database and/or database version
was not available in the PRIDE submission metadata, the correspond-
ing publication was downloaded and the information extracted from
there. In case the PRIDE entry did not contain a link to a publication,
the submitted contact’s details were used as input for a PubMed
search to retrieve a possible publication. In total, 6956 experiments
containing a total of 1,402,837 protein identifications could be
mapped successfully to specific searched database release dates
(see Table I).

As a next step, the reported protein identifiers and used searched
databases were curated. This had to be done at the identification level
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as several experiments reported protein identifications using multiple
protein identifier systems. Out of the 1,402,837 protein identifications
mapped to a database release date, 1,307,505 identifications were
successfully processed (see Table II). This set of identifications
formed the basis for the here presented study. The group of “exotic”

databases contained either custom built databases (for instance,
“fgcz_6239_20050304.fasta,” “MSDB,” or “wormpep150-phg-orf-
ecoli-rand.fasta”) or databases used in too few PRIDE experiments to
be thoroughly evaluated (for instance, Flybase, Saccharomyces Ge-
nome Database or the EMBL Nucleotide Sequence Database). Invalid
protein identifiers were defined as identifiers that did not confer to
the format expected by the submitted database (for instance

FIG. 1. Flowchart representing the protein mapping algorithm(s). All public experiments available in PRIDE were used as initial test data
set. This data set was then manually curated before the protein identifier mappings were performed. The box represents the protein mapping
algorithms and depicts the different steps of the mapping process.

TABLE I
Searched database release date curation

Status
Number of

Experiments

Successfully mapped 6956
No database version given in publication 1349
No publication found 102
Data not public 15
Publication not accessible 2
Custom database used 76

TABLE II
Protein identifier and searched database mapping

Status Number of Identifications

Successfully Mapped 1,307,505
Decoy Database Entries 594
Exotic Search Database 93,334
Invalid Protein Identifiers 960
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“BIOCTM_gi_88041_pir__A31994” as a UniProtKB accession number
or “CZB00000043” as an IPI identifier).

Protein Identifier Mapping Algorithms—To map reported protein
identifiers to active identifiers, two different approaches were used
(Fig. 1). The first mapping approach was performed using the PICR
service at the EBI (http://www.ebi.ac.uk/Tools/picr) (16). As previously
described, PICR maps protein identifiers based on 100% sequence
identity. Thus, PICR ensures that a mapped identifier refers to the
same protein sequence as the original one. Unfortunately, NCBI gi
numbers could not be processed using this approach as PICR relates
these entries to their source database at the NCBI and provides no
data on the changes of the NCBI gi numbers themselves.

The second mapping approach (termed “logical mapping” algo-
rithm) was meant to resemble the way a user tries to get a current
protein entry. Source databases were accessed and the current sta-
tus of the reported identifier retrieved. In addition to changes to the
protein identifier, the current protein sequences were downloaded—
either for the still active entry or for the new one. Ensembl entries were
not supported by this approach as Ensembl is purely gene based and
thus provides very limited information on protein identifier changes.
Reference Sequence (RefSeq) database (18) identifiers were pro-
cessed like NCBI gi numbers and are reported as part of the NCBI gi
numbers. The main reason for this decision was that several studies
using RefSeq reported NCBI gi numbers. This then left to few “true”
RefSeq identifiers to get significant results.

Both mapping approaches returned four possible states: entry is
active, entry was deleted, entry was replaced and entry was de-
merged (for instance, into distinct identifiers for every species).

Impact of Changing Protein Sequences on Peptide Identifica-
tions—For both mapping algorithms, we checked whether the origi-
nally identified peptide sequences still fitted the reported identified
protein’s sequence. As mentioned above, the logical mapping algo-
rithm downloaded the protein sequence of the currently active entry.
This sequence was then used to check whether the reported peptides
still fitted this sequence. In addition, when available, the search
engine scores (Mascot, Sequest, SpectrumMill, OMSSA, X!Tandem,
and PeptideProphet) for the peptide spectrum matches were re-
trieved from the PRIDE database when the underlying protein se-
quence changed. These scores were then used to investigate whether
peptides that no longer fitted the protein sequence showed a different
score distribution compared with peptides that still fitted the se-
quence. The score distributions were analyzed using R (package stats
version 2.12). Significant differences between the average score of
peptides fitting and not fitting the protein sequence were defined as
a Student’s t test’s p � 0.01.

The PICR based mapping algorithm followed exactly the same
criteria as are applied to protein identifications submitted to the
PRIDE database. To make submitted data to PRIDE more usable
PRIDE automatically maps submitted protein identifiers to several
other protein databases using PICR on a regular basis. PRIDE only
reports an active mapped identification if all the identified peptides
still match the reported protein sequence. In addition, the “PRIDE

PICR” mapping process retrieves the current protein sequence.
Thereby, protein sequence changes that do not lead to protein iden-
tifier changes are already taken into consideration and can lead to
“missing” mappings even though the protein identifiers remained
unchanged. It is important to highlight that the “PRIDE PICR” map-
pings are, by design, very pessimistic and use direct string matching.
Although isobaric amino acids are taken into account, in cases of
ambiguous/unknown amino acids, these peptides would not be cor-
rectly mapped to the protein sequence.

Rate of Change of Complete Protein Databases—We also analyzed
the rate of change of protein identifiers from complete releases of IPI,
UniProtKB, and Ensembl. Unfortunately, this analysis could not be
done for the NCBI nr database because it is built on a daily basis and
previous versions are not available. To calculate the rate of change, at
least two complete releases per year of the respective databases
(starting from 2005 - IPI version 3.01, UniProtKB version 2005_02,
Ensembl release 33) were used. Again, both algorithms (logical map-
pings and PICR) were used, except for Ensembl, where it was only
possible to use PICR for the reasons explained above.

For the logical mappings, each complete release was com-
pared with a recent version of each respective resource (April 2011 -
IPI version 3.82, UniProtKB version 2011_04). To generate the
UniProtKB database, the respective UniProtKB/SwissProt and Uni-
ProtKB/TrEMBL identifiers were merged. As the complete UniProtKB/
TrEMBL database was too big to perform the analysis, we only
investigated the human and mouse specific identifiers and database
builds.

RESULTS

Protein Identifier Mappings—For the presented analysis, an
initial pool of 8500 PRIDE experiments was used containing
2,075,324 protein identifications. As explained in Experimen-
tal Procedures a prefiltering step of the data present in PRIDE
was performed. In the end, 1,307,505 identifications coming
from 6956 PRIDE experiments formed the basis for the
present study. In this data set, IPI was by far the most
commonly used database for performing searches compris-
ing 59.5% of all valid identifications reported (see Table III).
The second one was UniProtKB (20.1%) followed by TAIR
(10.6%), Ensembl (5.6%), and NCBI nr (4.2%). Even though
10.6% of all processed identifications came from TAIR, it
was not included in the detailed analysis as all these
identifiers came from only two TAIR releases (see
supplemental Fig. S1). Thus, there were not enough time
points to perform a detailed analysis.

As previously stated, two different protein mapping ap-
proaches were used: the PICR service and an algorithm
based on logical database mappings. Both approaches suc-

TABLE III
Mapped protein identifiers per searched database and mapping algorithm. “PRIDE PICR Mapped Ident.” refers to the mapping service as it is

performed in the PRIDE database (see main text)

Search Database
PICR Service Mapped

Ident.
Logical Mapped Ident.

PRIDE PICR Mapped
Ident.

Total Number of Ident.

ENSEMBL 73,559 (100%) – 67,057 (91.2%) 73,559
IPI 777,848 (100%) 777,848 (100%) 609,345 (78.3%) 777,848
NCBI gi – 54,225 (97.8%) – 55,423
TAIR 137,958 (100%) – 114,410 (82.9%) 137,958
UniProtKB 253,658 (96.6%) 253,658 (96.6%) 211,111 (80.4%) 262,717
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cessfully mapped virtually all proteins from supported data-
bases (see Table III). PICR successfully mapped 100% of
Ensembl, IPI, and TAIR protein identifiers. The logical map-
pings achieved the same for IPI. There was a small percent-
age (about 3%) of UniProtKB protein identifiers that could not
be mapped using the two approaches. This was caused by
the existence of protein identifiers that most probably came
from other databases but were reported to be UniProtKB
entries. In addition, �2% of NCBI gi protein identifiers could
not be mapped using the logical mapping algorithm. In all of
these cases nucleotide instead of protein identifiers were
submitted and thus caused the protein identifier mapping to
fail.

As explained in Experimental Procedures, both approaches
returned four different possible states for the mapped protein
identifier: entry is active, entry was deleted, entry was re-
placed and entry was demerged (see Table IV). Overall, Uni-
ProtKB was the database with the highest percentage of
active entries (over 90% in both mapping algorithms). Uni-
ProtKB was furthermore the resource with the fewest entries
deleted (around 1%) and changed (between 4 and 5%). Uni-
ProtKB was the only database to contain demerged entries
(around 0.5%). It is important to mention that the results
presented in Table IV are based on all the protein identifica-
tions processed. Thus, large data submissions using one
database release alter the overall results for the respective
database.

IPI contained the lowest fraction of active entries (from 65.2
to 77.8% for the logical and PICR mapping algorithms, re-
spectively) and the highest proportion of deleted entries (10.1
and 30.0%, respectively). The number of processed identifi-
cations using NCBI gi numbers was considerably smaller
compared with UniProtKB and IPI. As previously described,
NCBI gi numbers were just processed with the logical map-
ping approach. Only 75.0% of processed NCBI gi entries
were active whereas 8.1% were deleted and 14.0% changed.
Ensembl protein identifiers were only processed using the
PICR based mapping algorithm and 67.4% of submitted en-
tries using Ensembl were still active, 17.3% deleted and
10.1% changed.

Change of Protein Identifiers Over Time—The processed
protein identifiers were used to analyze the stability of protein

identifiers from the different searched databases in the test
data set over time. Out of the five databases processed using
the PICR service mapping algorithm, only IPI and UniProtKB
contained sufficient entries to allow a detailed interpretation
(see supplemental Fig. S1). As described above, the logical
mapping algorithm processed IPI, UniProtKB, and NCBI gi
entries. The number of entries processed per species and
database are shown in supplemental Fig. S1. Other databases
were not supported, as the test data set did not contain
sufficient entries for a detailed analysis.

The analysis of protein identifier changes over time revealed
distinct differences between the investigated protein data-
bases. Fig. 2 shows the relative number of active, changed,
deleted, and demerged entries per database and database
release date for all species.

UniProtKB—As stated before, UniProtKB showed to be the
most stable database over time. For instance, in experiments
reporting UniProtKB entries from releases before 2005, over
85% of entries were still active compared with 45 and 55%
from IPI and NCBI gi, respectively. More importantly, apart
from three data outliers (see below) virtually all UniProtKB
entries were either active or could still be mapped to an
alternative active entry (see Fig. 2 and Fig. 3).

Both mapping algorithms produced comparable results for
UniProtKB entries, apart from the three outliers mentioned
below. Identifications reported as demerged using the logical
mapping algorithm are included in the portion of changed
identifiers in the PICR mapping results. The three outliers
were caused by submissions from less well characterized
species: in March 2004 (all dates refer to the used searched
database’s release, not the submission date) a submission on
rat (PRIDE experiment accessions 99–107, 3866–7954 (19)),
in January 2005 a submission on chicken (PRIDE experiment
accessions 1621–1626 (20)), and in August 2009 a submission
on Drosophila (PRIDE accession number 8170). As expected,
these outliers disappeared when only human submissions
were considered (see Fig. 3).

NCBI gi Identifiers—As mentioned before, NCBI gi numbers
were only mapped using the logical mapping algorithm. The
analysis on all species contained several outliers (see Fig. 2).
The low fraction of active entries in October 2004 was caused
by a rather big submission on chicken data (PRIDE accession

TABLE IV
Total number of identification for every status and database per mapping algorithm

Database
Active Deleted Changed Demerged

Logical PICR Logical PICR Logical PICR Logical PICR

ENSEMBL – 49,597 – 12,695 – 8,060 – –
(67.4%) (17.3%) (11.0%)

IPI 605,376 508,926 78,344 233,787 94,128 35,135 – –
(77.8%) (65.4%) (10.1%) (30.1%) (12.1%) (4.5%)

NCBI gi 41,945 – 4,512 – 7,768 – – –
(77.4%) (8.3%) (14.3%)

UniProtKB 238,418 236,613 3,149 2,333 10,427 13,400 1,664 1,312
(94.0%) (93.3%) (1.2%) (0.9%) (4.1%) (5.3%) (0.7%) (0.5%)
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numbers 1654–59). The observed peak in June 2005 was
caused by a submission on mouse containing only one map-
pable identification (PRIDE accession number 2381 (21), see
supplemental Fig. S3). The last drop observed in October 2008
was caused by one large submission on Indian rice (PRIDE
accessions 10726–10740 (22), see supplemental Fig. S2).

Irrespective of these outliers, NCBI gi numbers are less
stable than UniProtKB entries as can be seen in the analysis
on human data alone (see Fig. 3). Only 55% of NCBI entries
from mid 2003 were still active with 32% deleted completely.
The portion of deleted entries decreased considerably until
2006. In submissions using 4-year-old or younger database

FIG. 2. The combined protein identifier mapping result for all species. Some of the outliers were caused by very small submissions only
consisting of a limited number of identifications. The number of identifications available from certain database release dates was normalized.
Thus, the graph represents the proportion of active, replaced, deleted, and demerged identifications for specific release dates and databases.
Different scales were used for the different searched databases to provide a more detailed view on the data.

FIG. 3. The combined protein identifier mapping result for human data only. For a detailed description see Fig. 2. Different scales were
used for the different searched databases to provide a more detailed view on the data as in Fig. 2.
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versions, only a few percent of identifiers were deleted. The
portion of changed identifiers varied considerably across the
different species. For human data, the portion of replaced
identifiers decreased linearly from 15% in January 2005 to 0%
in October 2007. From that date onwards, human NCBI gi
numbers in PRIDE experiments were stable.

2.3. IPI—The results retrieved for IPI using the two mapping
algorithms differed considerably (see Fig. 2). As mentioned
before, IPI identifiers showed to be significantly less stable
than UniProtKB or NCBI gi identifiers. Only 46% of logically
mapped identifiers from mid 2003 were still active. This im-
proved to about 75% active entries in mid 2004. Experiments
reporting IPI entries continued to contain at least 5% of de-
leted identifiers until mid 2008. The results retrieved process-
ing all identifications and the results from human identifica-
tions were similar (see Fig. 2 and Fig. 3).

The PICR service returned about 10% more deleted iden-
tifiers for IPI releases before 2005 compared with the logical
mapping algorithm. From then onwards, the number of de-
leted identifiers became comparable between the two map-
ping approaches. PICR mapped identifiers contained one
significant outlier. This large increase of deleted identifiers in
August 2007 was caused by a very large submission on
zebrafish (PRIDE accession numbers 3386–3532 (23), see
supplemental Fig. S1).

The detailed analysis of two projects using the IPI database
confirmed the above mentioned results: the data from the
Human Proteome Organization (HUPO) Plasma Proteome
Project (PPP) (PRIDE accession numbers 4–98 (24)) and
the data from the HUPO Brain Proteome Project (BPP) (PRIDE
accession numbers 1669–1750 (25)) (see supplemental
Fig. S4). The HUPO PPP using an IPI release from July 2003
contained only 44.7% active identifiers. The HPO BPP data
using an IPI release from April 2005 had 83.5% active iden-
tifiers for both the mouse and the human data.

Impact of Changing Protein Sequences on Peptide Identi-
fications—In addition, we investigated the impact of changed
protein sequences on the original peptide identifications using

two distinct approaches. As previously described, all se-
quences of protein identifications processed using the logical
mapping algorithm were downloaded. The identified peptides
were then checked whether they were still part of the protein’s
sequence. Out of the 996,107 identifications that had not
been deleted (“active entries”) 72,037 identifications (7.2%)
contained at least one peptide that no longer fitted the protein
sequence (see Table V). Identifications reported using NCBI gi
numbers contained a significantly higher portion of proteins
with not fitting peptides (20.5%). This was caused by the fact
that the investigated NCBI gi entries were dominated by less
characterized species (see supplemental Fig. S1): 42.6% and
15.5% of active identifications from chicken and Indian rice
contained nonfitting peptides, respectively.

As a second approach to investigate the percentage of
nonfitting peptides we used the method currently applied in
the PRIDE database to create and maintain protein identifier
mappings. This method uses the PICR service but only ac-
cepts a returned identifier if all the identified peptides fit the
returned protein sequence. This approach is more stringent
than using logical mappings and thus seems most suited to
be used for data repositories like PRIDE. This approach re-
turned 10–20% more deleted identifiers compared with the
results obtained with the PICR mapping algorithm (see Table
III and supplemental Fig. S5). Two additional outliers were
observed: an increase of deleted identifiers in March 2004
caused by two submissions on rat (PRIDE accession numbers
99–107 and 3866–7963(19)) and an increase of active entries
in May 2005 caused by only one mapped identifier on human
(PRIDE accession number 1647).

Peptide Score Distribution of Nonfitting Peptides—We were
able to retrieve the search engine peptide scores for 55.7% of
peptides fitting and 15.6% of peptides not fitting the protein
sequence (see Table VI and supplemental Fig. S6). For this
analysis only peptides where the underlying protein sequence
changed were considered. The fraction of peptides for which
we were able to retrieve the search engine scores was signif-
icantly lower for peptides that did not fit the protein sequence.
Many of the nonfitting peptides belong to old data sets that
were submitted before the PRIDE Converter (26) submission
tool was introduced. Through PRIDE Converter the presence
of peptide scores in data submissions became the general
rule.

The average peptide score of peptides no longer fitting the
protein sequence was significantly lower than the average

TABLE V
Portion of peptides fitting the protein sequence for active entries

Database Active Entries Missing Peptide Mapping

UniProtKB 248,404 18,899 (7.6%)
NCBI gi 49,680 10,162 (20.5%)
IPI 698,023 42,976 (6.2%)

TABLE VI
Number of peptides and average peptide scores (� standard deviation) of peptides fitting and not-fitting the protein sequence per search

engine. Numbers refer to peptides where the search engine score was retrieved successfully

Mascot Peptide Prophet Sequest SpectrumMill X!Tandem

No. Fitting peptides 1380884 38008 21827 47860 95231
No. Nonfitting pep. 48440 4031 21536 498 24168
Av. score fitting peptides 40.63 � 19.80 7.87 � 11.56 2.40 � 1.28 13.34 � 3.24 21.22 � 8.81
Av. score Nonfitting peptides 40.78 � 22.36 2.35 � 6.06 1.66 � 0.52 11.66 � 3.75 13.31 � 5.18
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peptide score of peptides still fitting the protein sequence for
all search engines but Mascot (Student’s t test, p � 0.01, see
supplemental Fig. S6). Mascot scores showed no significant
difference between peptides that fitted the protein sequence
and peptides that no longer fitted the sequence (p � 0.1473,
see Table VI).

Rate of Change of Complete Protein Databases—As an
independent analysis we investigated the rate of change in
time of complete releases of IPI, UniProtKB and Ensembl (see
Experimental Procedures). The overall rate of change of the
species specific builds of IPI and UniProtKB is comparable to
the rate of change found in the respective identifiers from
PRIDE (the PRIDE centric analysis did not contain sufficient
data points for a detailed analysis on Ensembl, see Fig. 3, Fig.
4, and supplemental Fig. S3).

There were no significant differences between the results
retrieved using the PICR mapping algorithm and the logical
one (see Fig. 4 and supplemental Fig. S7). Consistent with the
results presented above, IPI again showed to be less stable
than UniProtKB with more than twice as many identifiers
deleted at any point in time. As expected, identifiers from the
two investigated species changed at different rates. In IPI
identifiers from mouse were slightly less stable than identifiers
from human (28.5% deleted mouse identifiers compared with
22.5% deleted human identifiers at the beginning of 2004).
This changed at the end of 2007 when suddenly mouse
identifiers became more stable than human ones (13.5% de-
leted human identifiers compared with 9.0% deleted mouse
identifiers June 2008). Surprisingly, in UniProtKB mouse iden-

tifiers were always more stable than human identifiers. Al-
though, for example, about 10% of human identifiers were
deleted from the January release in 2010 virtually no mouse
identifiers changed.

DISCUSSION

In this study, we analyzed the influence of the searched
database on the long-term storage of proteomics data. We
found distinct differences in the stability of protein identifiers
between the investigated protein databases: UniProtKB, the
only database that contains a high proportion of manually
curated records (UniProtKB/Swiss-Prot), proved to be signif-
icantly more stable than IPI and NCBI gi numbers. As men-
tioned above UniProtKB/Swiss-Prot and UniProtKB/TrEMBL
were treated as one unique searched database in this study
(UniProtKB).

Given the fact that IPI was by far the most commonly used
database in PRIDE submissions, the stability of IPI identifiers
seems especially problematic. For example, already 10% to
20% (depending on the mapping algorithm) of the reported
protein identifications were deleted after only two years. A
concerning and, at the same time, surprising point is that
several of these investigated experiments were published in
2010 and thus contained a considerable amount of basically
outdated or invalid data already at the time of publication—
data that is published and immediately perished (2, 22, 27).
One such example would be a study done by Gammulla et al.
in Indian rice (22) (PRIDE accessions 10726–10740) using the
NCBI nr database from August 2008. This study contained

FIG. 4. Rate of change of identifiers in complete releases of UniProtKB, IPI, and Ensembl for human and mouse (PICR mappings).
Two releases per year were considered from 2005. The UniProtKB database contains the species specific identifiers from UniProtKB/SwissProt
and UniProtKB/TrEMBL.
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18.8% deleted identifiers when it was published in August
2010 (see above). This effect of changing protein identifiers on
published data increased considerably over time. For in-
stance, another study (28) published in May 2009, already
contained 33.0% of deleted protein identifiers at the time of
investigation (November 2010, PRIDE accessions 3706–
3714). A representative example of a much older project is the
data from the HUPO PPP project: at the time of the here
presented study data from the HUPO PPP only contained
44.7% active identifiers (see above). These results are not
caused by any misconduct of the respective authors but
reflect the instability of certain protein databases for specific
species.

The primary focus of this study was the quantification of
changing protein identifiers from different databases over
time. The results presented in Fig. 2, Fig. 3, and Fig. 4 do not
fully reflect the true impact of changing protein databases on
the long-term storage of proteomics data. To correctly ap-
proximate this effect the consequences of changing protein
sequences on the actual peptide identifications need to be
taken into consideration. Based on our results when investi-
gating the fraction of peptides no longer fitting the current
protein sequences we expect that the fraction of deleted
identifiers is actually twice as high. Comparing the distribution
of peptide scores between fitting and nonfitting peptides, we
found that the scores of the still fitting ones were statistically
significantly different (higher) than the scores of the nonfitting
ones (except for Mascot). It thus seems probable that the
fraction of nonfitting peptides contains more false-positive
identifications than the fraction of fitting peptides. However,
without carefully considering how the protein inference (29)
was done in each particular case it is impossible to reach
further conclusions.

Deleted identifiers are the worst but not the only problem
caused by changes in protein databases. Cases where pro-
tein identifiers from UniProtKB are demerged into several new
identifiers may also alter the original significance of the data.
UniProtKB/Swiss-Prot has historically “merged” 100% iden-
tical protein sequences from different genes in the same
species into one single record. However, UniProt recently
started to demerge entries containing multiple individual
genes coding for 100% identical protein sequences into indi-
vidual UniProtKB/Swiss-Prot entries containing a single gene
(see UniProt release 2010_09 notes, http://www.uniprot.org/
news/2010/08/10/release). This development might cause
significant problems when comparing old and more recent
data. For example protein P05209, identified in several PRIDE
experiments, was demerged and currently maps to 13 differ-
ent identifiers. For human, mouse, and rat there are even two
different mappings for each species. Another problematic
example is protein P59641, identified in an experiment per-
formed on human (PRIDE accession number 1645). Currently,
P59641 maps to four UniProtKB/Swiss-Prot entries but none
of which is human. The time when UniProtKB identifiers were

demerged into entries for every species can clearly be seen in
Fig. 2. The majority of these cases could be resolved based
on the investigated species and thus have only a limited
negative effect on the stored data.

After studying the stability of the protein identifiers stored in
PRIDE, we decided to compare these findings with the total
rate of change of the underlying protein databases. For this
analysis we used at least two releases of UniProtKB, IPI, and
Ensembl per year since 2005 (human and mouse only). The
overall rate of change was comparable to the one found when
only the identifiers reported in PRIDE experiments for Uni-
ProtKB and IPI were taken into account (see Fig. 3, Fig. 4, and
supplemental Fig. S3). The different identifier stability of IPI
and UniProtKB as well as the different stability of mouse and
human identifiers was also reflected in the analysis of the
complete database builds. A possible reason for the higher
instability of IPI is the varying quality (based on the improve-
ments of genome annotation) of the source databases’ re-
cords that are used to create the “clustered” IPI protein en-
tries: UniProt, Ensembl, RefSeq, TAIR, H-inv (30), and Vega
(31).

Surprisingly, human identifiers were significantly less stable
than mouse identifiers in UniProtKB even though human is
considered the “more stable” species. This might be caused
by a stronger curation effort put into human than in mouse
data. Nevertheless, the constant number of about 6% deleted
human identifiers compared with about 2% deleted mouse
identifiers until the middle of 2010 is striking.

The instability of protein identifiers is not only a problem for
published data but can furthermore cause unforeseen prob-
lems in long-term projects as, for example, clinical studies. In
these cases, samples are generally collected over several
years but often need to be processed immediately. If the raw
data from these experiments is not reprocessed before the
final overall data interpretation, invalid results may be re-
trieved. In such cases, the observed variation in results
caused by changing protein databases will be considerably
higher than the here reported numbers as we could only
assess the loss of data. When reprocessing MS data the
changes in protein databases do not only cause a potential
loss of data but will also result in new findings. If this effect is
not taken into consideration long-term studies might produce
invalid results.

The instability of certain protein databases reported in this
study does not only influence the storage of “pure” proteo-
mics data. Other biological resources such as Reactome (32),
that process and curate proteomics data from publications
need to find ways to handle these changes of protein se-
quence databases. The two protein identifier mapping algo-
rithms produced significantly different results. Although the
PICR mapping algorithm seems more stringent it sometimes
reported twice as many IPI identifiers deleted compared with
the logical mapping algorithm when mapping protein identifi-
ers retrieved from PRIDE (see Fig. 2). This difference was not
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observed when mapping whole database releases (see Fig. 4
and supplemental Fig. S7). These results clearly suggest that
it is imperative to carefully pick the used protein identifier
mapping algorithm for specific applications and thoroughly
test its effect. The logical mapping approach seems more
suited for applications that are focused on extracting biolog-
ical knowledge from proteomics data. Especially in manually
curated databases like UniProtKB/Swiss-Prot, protein identi-
fier changes are curated according to the biological meaning.
Thus, the logical mapping approach seems most likely to
maintain the biological significance. A striking example of the
differences between the two mapping algorithms can be
found when looking at the results from less characterized
species. The PICR service, for instance, reported 50% of
UniProtKB identifiers deleted from the submission of chicken
data in January 2005 (see above) compared with little more
than 10% reported deleted by the logical mappings. A similar
example is the submission of data on zebrafish in August
2007 (see above) where the PICR service reported virtually all
of the identifiers to be deleted compared with 20% based on
the logical mappings. Nevertheless, PICR’s approach seems
to be more stringent and thus better suited for data reposito-
ries like PRIDE.

In this study we could show that changing protein identifiers
are a risk for the long-term storage of proteomics data as well
as the evaluation of long-term proteomics studies. There is a
significant difference between the different protein databases
concerning identifier stability. Based on the here presented
findings UniProtKB seems the best database for applications
that rely on the long-term storage of proteomics data. Never-
theless, there are several applications were UniProtKB cannot
be used. This is the case when, for example, investigated
species are not present in UniProtKB. It is therefore impera-
tive to take the effect of changing protein identifiers into
consideration when performing proteomics experiments and
evaluating proteomics data. The results from the two protein
identifier mapping algorithms used in this study differed con-
siderably. These differences have to be taken into consider-
ation when choosing a protein database and mapping algo-
rithm for a specific task to prevent the misinterpretation of
proteomics data.
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