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Abstract

A multitude of aging-related factors and systemic conditions can cause lacrimal gland (LG)

or salivary gland (SG) hypofunction leading to degenerative dry eye disease (DED) or dry

mouth syndrome, respectively. Currently, there are no effective regenerative therapies that

can fully reverse such gland hypofunction due to the lack of reproducible in vitro aging mod-

els or organoids required to develop novel treatments for multi-omic profiling. Previously,

our research group successful developed three-dimensional (3D) bioassembly nanotech-

nologies towards the generation of functional exocrine gland organoids via magnetic 3D bio-

printing platforms (M3DB). To meet the needs of our aging Asian societies, a next step was

taken to design consistent M3DB protocols to engineer LG and SG organoid models with

aging molecular and pathological features. Herein, a feasible step-by-step protocol was pro-

vided for producing both LG and SG organoids using M3DB platforms. Such protocol pro-

vided reproducible outcomes with final organoid products resembling LG or SG native

parenchymal epithelial tissues. Both acinar and ductal epithelial compartments were promi-

nent (21 ± 4.32% versus 42 ± 6.72%, respectively), and could be clearly identified in these

organoids. Meanwhile, these can be further developed into aging signature models by

inducing cellular senescence via chemical mutagenesis. The generation of senescence-like

organoids will be our ultimate milestone aiming towards high throughput applications for

drug screening and discovery, and for gene therapy investigations to reverse aging.

1. Introduction

Craniofacial exocrine glands, such as lacrimal glands (LG) and salivary glands, are essential

organs that produce lubricating fluids from their acinar epithelia in the form of tears or saliva,

respectively [1, 2]. In humans, LG acinar cells are serous-mucous but predominantly have

mucous cells [2]. Meanwhile, humans have three major salivary glands—parotid, sublingual,

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0272644 August 5, 2022 1 / 12

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Rodboon T, Souza GR, Mutirangura A,

Ferreira JN (2022) Magnetic bioassembly

platforms for establishing craniofacial exocrine

gland organoids as aging in vitro models. PLoS

ONE 17(8): e0272644. https://doi.org/10.1371/

journal.pone.0272644

Editor: Li-Ping Liu, Affiliated Hospital of Jiangsu

University, CHINA

Received: March 8, 2022

Accepted: July 22, 2022

Published: August 5, 2022

Peer Review History: PLOS recognizes the

benefits of transparency in the peer review

process; therefore, we enable the publication of

all of the content of peer review and author

responses alongside final, published articles. The

editorial history of this article is available here:

https://doi.org/10.1371/journal.pone.0272644

Copyright: © 2022 Rodboon et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the paper and its Supporting Information

files.

https://orcid.org/0000-0001-6680-3701
https://orcid.org/0000-0002-4230-4593
https://doi.org/10.1371/journal.pone.0272644
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0272644&domain=pdf&date_stamp=2022-08-05
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0272644&domain=pdf&date_stamp=2022-08-05
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0272644&domain=pdf&date_stamp=2022-08-05
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0272644&domain=pdf&date_stamp=2022-08-05
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0272644&domain=pdf&date_stamp=2022-08-05
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0272644&domain=pdf&date_stamp=2022-08-05
https://doi.org/10.1371/journal.pone.0272644
https://doi.org/10.1371/journal.pone.0272644
https://doi.org/10.1371/journal.pone.0272644
http://creativecommons.org/licenses/by/4.0/


and submandibular glands (SMG)—but the latter are the relevant ones are mainly composed

of mucous cells to provide the mucous secretion and oral moisture at rest [1]. Overall, epithe-

lial secretory cells produce fluids that contain water, proteins, mucins, enzymes, and inorganic

compounds to maintain a functional homeostasis in the ocular and oral cavities [3, 4]. Like-

wise, primary secretory fluids are synthesized by acinar epithelial units and transported to the

external surfaces through an interconnected network of ducts, which is facilitated by the con-

tractile action of myoepithelial cells [1, 2]. In addition to the functional and phenotypic simi-

larities between LG and SMG, these two glands also share several clinical and pathological

signatures.

Dry eyes and dry mouth syndromes are common disabling conditions among the elderly,

resulting in epithelial dysfunction of the LG or SMG and a greatly reduced secretory fluids [5–

7]. These syndromes lead to poor lubrication and moisture, which negatively affects routine

daily activities (i.e. reading, speaking, chewing) and the quality of life of aging populations [5,

7]. In dry eyes syndrome (DES), long-term deficiency of tears may promote corneal epithelial

damage and increase the risk of secondary infection. Also, painful inflammatory lesions in the

oral mucosa linings occur in the oral cavity of patients with dry mouth syndrome (DMS) [6,

7]. DES and DMS involve cellular senescence-related factors due to biological aging; however,

such can be aggravated by risk factors including polypharmacy in the elderly, autoimmunity,

hormonal imbalances, radiotherapy modalities for head and neck cancers, among others [7–

11]. Epidemiological studies clearly noted the high prevalence of both DES and DMS and its

association with the aging phenomenon [11–13]. Hence, the age-related epithelial impairment

of both craniofacial glands is a topic of interest for researchers and clinicians in the fields of

dentistry as well as in head and neck pathology and oncology. Histological investigations on

the aged human LG and SG confirmed that aging causes parenchymal acinar atrophy, which is

associated with interstitial fibrosis and ductal hyperplasia [14, 15]. Though, preclinical transla-

tional models of LG/SG aging and effective treatment modalities to tackle it are lacking or

scarce. Preclinical animal models for DED and DMS include rodents and swine [16–18]. How-

ever, phenotypic and functional observations indicate that rodent models have many limita-

tions since they poorly represent pathophysiological mechanisms occurring in human

craniofacial glands [17, 19–21]. Previously, anatomical and histological similarities have been

reported between porcine and human LG and SG [22–24]. Also, the human resemblance of

vascular and immune systems (as well as pathogenesis processes) with their porcine counter-

parts is remarkable and make porcine models suitable towards future clinical studies targeting

DED or DMS therapies [22, 23, 25, 26]. Nonetheless, experimental research requires multiple

levels of reproducibility and consistency to address pathogenesis, which cannot be provided by

large scale in vivo animal models as these are time consuming, require substantial resources

and do not favor 3R’s principles in animal welfare (Replacement, Reduction and Refinement).

Yet, the biofabrication of functionally competent LG and SG cultures in vitro or ex vivo is chal-

lenging since organoid protocols are lacking to maintain the multi-omic biological complexi-

ties of the native glands [27, 28]. To overcome this challenge, it is important to establish a

consistent and reproducible in vitro organoid model to mimic epithelial cellular senescence

and advance research towards an effective clinical management of DES and DMS. Previous

murine studies have successfully shown the maintenance of epithelial progenitor and stem cell

markers in two-dimensional (2D) LG and SG cell culture systems [29, 30]. However, these

cells lack the ability to generate acinar and ductal compartments in 2D. Conversely, three-

dimensional (3D) organoid platforms possess such ability to produce different epithelial com-

partments [28]. These 3D systems can support long-term cell viability, maintain stem/progeni-

tor cell markers and potentially differentiate cells into mature epithelial organoids [28].

However, across most of the reported LG and SG organoid models, a large predominant ductal

PLOS ONE Developing aging signatures in exocrine gland organoids

PLOS ONE | https://doi.org/10.1371/journal.pone.0272644 August 5, 2022 2 / 12

Funding: This research is funded by Thailand

Science Research and Innovation Fund

Chulalongkorn University (Grant number:

CU_FRB65_hea (7)_013_32_08) to JNF and AM.

This project is funded by the National Research

Council of Thailand (NRCT), by a Mid-career

Research Grant (Grant number: NRCT5-

RSA63001-12) to JNF. Avatar Biotechnologies for

Oral Health and Healthy Longevity Research Unit is

funded by the Ratchadaphiseksomphot

Endowment Fund, Chulalongkorn University (Grant

number: 33/2565 : RU). TR is supported by a

Postdoctoral Fellowship, Ratchadapisek Somphot

Fund, Chulalongkorn University. The funders had

no role in study design, data collection and

analysis, decision to publish, or preparation of the

manuscript.

Competing interests: The authors declare the

following financial interests/personal relationships

which may be considered as potential competing

interests: Glauco R. Souza is employed by Greiner

Bio-One International GmbH which produces

NanoShuttle™ magnetic nanoparticles.

https://doi.org/10.1371/journal.pone.0272644


compartment is produced, which functionally undermines the action of the very limited clus-

ter of acinar secretory cells [28, 31].

Previously, our research group has established a successful strategy to assemble innervated

functional epithelial SG organoids expressing acinar and ductal epithelial markers using a

novel magnetic 3D bioassembly platforms with human and porcine primary cells [32, 33]. One

of these nano-based platforms is named magnetic 3D bioprinting (M3DB) and can also be

applied in the biofabrication of consistent and scalable LG organoids with high cell viability

[24]. One of our research groups have also generated aging models using etoposide treatment

to induce chemical mutagenesis and cellular senescence [34]. Herein, an optimized protocol is

provided to develop an enriched acinar secretory LG/SG organoid with a ductal compartment,

and amenable to cellular senescence induction towards future aging models. Such models will

potentially enable novel gene therapies to reverse the aging phenomena in the LG and SG.

2. Material and methods

The protocol described in this peer-reviewed article is published on protocols.io. [https://dx.

doi.org/10.17504/protocols.io.b5ttq6nn] and is included as a supporting information file with

this article (S1 File).

3. Expected results

This protocol was developed to biofabricate LG or SG organoids that express parenchymal epi-

thelial cell markers and can be used to investigate aging-related diseases in these glands. Fur-

ther, this laboratory protocol can be divided into 3 steps as illustrated (Fig 1): 1) LG/SG cell

isolation and epithelial cell differentiation; 2) organoid establishment; and 3) induction of cel-

lular senescence in the organoid.

3.1 Primary cell isolation from porcine gland biopsies

This protocol was established for the LG and SG organoids. Although for a clear presentation of

the preliminary data, LG organoid datasets are mainly displayed. Firstly, primary cells are isolated

from LG/SG of a 3- to 5-month-old swine and an initial 2D monolayer culture is developed in

expansion media (EM). To generate a LG with an aging signature, cells are cultured until reaching

70%-80% confluency, then such are sub-cultured for 3 passages while cell heterogeneity is still

present (Fig 2). Within 4–6 culture days, epithelial clusters underwent growth and expansion, and

2 main phenotypes can be clearly observed: a large polygonal-like epithelial phenotype with pre-

dominant granular cytoplasm and a cell size diameter>20 μm (Fig 2), and a small polygonal-like

epithelial phenotype with a limited cytoplasmic compartment and a cell size�20 μm (Fig 2). In

addition, epithelial spherules were formed suggesting an ectodermal morphological origin often

observed with human monolayer LG cells (Fig 2), as well as a dendritic cell population (Fig 2).

However, these populations can be overtaken by fibroblast-like cells (Fig 2) after 3 passages (S1

Fig). To prevent this potential scenario, the monolayer culture system was enriched with epithe-

lial-like cells by splitting the cells in EM for 2 days and then switch to a serum-free DKSFM sup-

plemented with EGF, FGF-7 and FGF-10 for 7 days. Under this culture conditions, the numbers

of epithelia-like cells are constantly increasing meanwhile the spindle-like cells are rapidly declin-

ing. Thus, we termed this media the “epithelial enrichment media” or EEM.

3.2 Epithelial profiling in 2D systems

Monolayer SG/LG cells were characterized by immunofluorescence assays against pro-acinar/aci-

nar secretory (Aquaporin 5 or AQP5), myoepithelial/ductal progenitors (Cytokeratin 14, KRT14
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or K14) and ductal epithelial markers (Cytokeratin 19, KRT19 or K19) (Fig 3) according to previ-

ous reports [31–33, 35, 36]. Based on their morphological features, most of AQP5 positive cells

are small polygonal-like epithelial cells while the large polygonal-like epithelial cells mostly express

ductal epithelial markers. Next, we investigated the number of epithelial cells after culture in EEM

for 7 days by immunostaining the dissociated cells, and then quantifying such cell populations

using a Countess 3 fluorescence automated cell counter. EEM-cultured LG cells retained the aci-

nar (AQP5), myoepithelial/ductal progenitors (KRT14) and ductal epithelial populations

(KRT19) predominantly (Fig 3). Cells expressed higher AQP5, KRT14, and KRT19 markers than

in EM conditions (Fig 3), suggesting that EEM efficiently retained the acinar and ductal epithelial

populations in 2D culture systems. Thus, the cell culture was designed to use epithelial-enriched

2D cells from passage 1 to passage 3 for further organoid biofabrication according to their mor-

phological heterogeneity and population doubling time (S1 Fig).

3.3 LG organoid establishment

Next, the LG organoid was produced from the epithelial enriched LG cells by using our M3DB

strategy. Herein, cells are dissociated and magnetized with a specific volume of magnetic

Fig 1. Lab protocols for lacrimal gland (LG) and salivary gland (SG) organoid biofabrication via M3DB and induction of cellular senescence. Created

with BioRender.com.

https://doi.org/10.1371/journal.pone.0272644.g001
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nanoparticle solution (MNP) before assembling them into an organoid by using a magnetic

spheroid drive (Fig 4 and S1 Movie). After organoids were cultured in EEM, there was a 5-fold

increase in organoid size from 173 ±17.64 μm to 628 ±24.26 μm during 8 days of culture (Fig 4).

3.3.1 Organoids displayed secretory and ductal epithelia. Epithelial cell phenotype and

polarization in LG organoids was assessed in the M3DB platform. Organoids exhibited acinar

secretory epithelial cells (AQP5-positive) and also ductal epithelial cells (KRT19-positive) and

myoepithelial/ductal progenitor cells (KRT14-positive) (Fig 5). Though, AQP5 was identified

as a pro acinar marker in murine SG/LG, but the expression of such marker was showed in a

population of cells on native SG of adult human [35, 36]. These cells were functionally respon-

sive to parasympathetic stimulation with 10 μM of carbachol (Fig 5). In addition, to evaluate

epithelial cell polarization in the organoids, the trans-epithelial electrical resistance (TEER)

can be assessed after carbachol stimulation. The presence of a polarized epithelial compart-

ment in M3DB-derived organoids can enhance the TEER (Fig 5). Overall, these findings indi-

cate that the organoid have functional and polarized epithelial compartments in the LG

organoid.

3.4 Induction of cellular senescence in organoids

To induce the cellular senescence in LG organoids, etoposide treatment (5–25 μM) was per-

formed according to previous reports [34, 37, 38]. Next, cellular senescence in the organoids

can be determined by measuring β-galactosidase activity, a known marker for senescent cells

(Fig 6). Also, cellular senescence markers for genomic profiling include P16, P21, II6, Mcp1,

Cxcl1, and Gdnf and the replication independent endogenous DNA double strand breaks

(RIND-EDSBs), which can be performed in the organoid platform (Fig 6) using the Minerva

software suit after GeoMx Digital Spatial Profiling imaging (Nanostring, Seattle, WA, US), and

transcriptome output plot from region of interest [39, 40]. Treatment with 10 μM etoposide

generated a 50% reduction in cellular metabolism and was ideal to induce cellular senescence

in the organoids without greatly compromising cell viability (Fig 6).

Overall, this protocol provides a feasible step-by-step comprehensive strategy to produce

functional LG or SG organoids and their aging counterparts in the swine proof-of-concept

Fig 2. Morphological heterogeneity of primary LG cells in monolayer cultures. Primary cells isolated from porcine

LG are cultured in expansion media for 7 days. The populations of large polygonal-like epithelial cells (A), small

polygonal-like epithelial cells (B), epithelial spherule (C), dendritic cells (D), and fibroblast-like cells (E) are observed

under phase-contrast microscopy at 20X of magnification. Scale bar: 200 μm.

https://doi.org/10.1371/journal.pone.0272644.g002
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model. Furthermore, the organoids exhibited prominent acinar and ductal epithelial

compartments.

4. Discussion

Aging involves a gradual and systemic impairment of organ and cellular physiology and has

important repercussions in secretory epithelial functions of craniofacial exocrine glands lead-

ing to DES or DMS [11, 13, 15]. These pathological features are caused by genomic instability,

a downstream pathway triggered by epigenetic modifications [41]. Previously, our team mem-

bers reported a key epigenetic marker and offered the possibility to switch such key marker

with gene therapy to reverse the aging process [42, 43]. Yet, certain challenges remain due to

the lack of preclinical disease models to investigate such aging reversal process and its cellular

senescence pathways and mechanisms. In vivo animal models can be timely aged, but this

implies the consumption of several resources and time constraints. In the last decade, organoid

models have offered relevant advantages in this regard as per comprehensive investigations

done by Hans Clevers and his colleagues and deemed as feasible alternatives in line with the

3R’s animal welfare principles.

Fig 3. Morphological and proteomic profiling of LG cells in 2D systems. Acinar, ductal and myoepithelial/ductal

progenitor compartments of the LG in 2D culture while in expansion media or EM (A). Differentiated cells after 7 days

(C) showing numbers of epithelial-like cells (arrow), spindle shape cells (arrowhead) and dendritic cells (asterisk).

Scale bar: 200 μm. AQP5, KRT14, and KRT19 protein markers were profiled and compared in both media conditions

(EM versus EEM). Protein markers are quantified and displayed as a heat map with values as average % ±SE.

https://doi.org/10.1371/journal.pone.0272644.g003
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Fig 4. Micrograph morphologies of cells or organoids from LG 2D culture system to organoid stages. Differentiated LG cells in 2D were magnetized with

magnetic nanoparticle solution (MNP) and then 3D assembled by M3DB (A). Organoids were cultured and their morphology was profiled via light microscopy

and high throughput scanning analysis for 8 days. Scale bar: 200 μm.

https://doi.org/10.1371/journal.pone.0272644.g004

Fig 5. Epithelial compartments and representation of functional datasets in LG organoids. Expression of acinar,

ductal and progenitor epithelial markers (A). Epithelial function evaluated by Ca2+ uptake assays after parasympathetic

stimulation with carbachol (B) and trans-epithelial electrical resistance (TEER) (C) in LG organoids. Scale bar: 200 μm.

https://doi.org/10.1371/journal.pone.0272644.g005
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Previously, our research groups have successfully generated reproducible and functional

epithelial LG- or SG-like organoids via M3DB platforms [24, 32]. Herein, a protocol is pro-

posed for creating preclinical disease models with aging multi-omic signatures for LG/SG

organoids. As part of this novel biofabrication strategy, we established 3D organoids from epi-

thelial enriched cells in 2D culture systems and perform cell sorting accordingly to the epithe-

lial compartment that we need. Primary cells provided a phenotypic heterogeneity until

passage 3 and this is a hallmark of human LG cells alike previous report [44]. More impor-

tantly, organoids displayed functional acinar and ductal compartments together with epithelial

progenitors, in response to parasympathetic stimulation. Thus, this bio-printed exocrine gland

organoid platform can be utilized as an avatar model with an aging signature and cellular

senescence features resembling those observed in DES and DMS. These aging LG/SG models

constitute a unique opportunity to investigate the senescence multi-omic markers such as β-

galactosidase, p16, p21, II6, Mcp1, CxCl1, and Gdnf at genomic, proteomic, and even mito-

chondrial levels using spatial biology imaging strategies. Spatial biology profiling approaches

have recently been used to generate publicly available resources such as online organ atlas [40,

45]. These resources allow researchers to unveil the molecular, physiologic, and pathological

mechanisms in human epithelial organs though only limited to the pancreas, colon and kid-

ney. In addition, only human and mouse spatial organ atlas exist, porcine multi-omics panels

(for transcriptome and proteome) have not been validated. Hence, the validation of porcine

high-plex spatial molecular imaging platforms is a key step towards the establishment of swine

preclinical models.

Fig 6. Multi-omics profiling of cellular senescence-induced LG organoids. Senescence markers are evaluated

including β-galactosidase activity (A), gene expression arrays (B), and levels of RIND-EDSBs (C) after inducing the

organoid with etoposide. For inducing cellular senescence in the organoid, the concentration of etoposide required to

create a 50% reduction in metabolism was 10 μM as determined by ATP-luciferase activity with CellTiter-Glo1 3D kit

from Promega, USA (D). Abbreviations: CTL LGO–control LG organoid with normal epithelial function; Eto-induced

LGO–etoposide-induced LG organoid with impaired epithelial function.

https://doi.org/10.1371/journal.pone.0272644.g006
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Regarding aging models, a novel senescence marker called RIND-EDSBs has been proposed

by one of our research groups led by Mutirangura and colleagues [43]. These endogenous

DNA double-strand breaks are enriched in the methylated heterochromatic areas of the

human genome and can be repaired by ATM-dependent non-homologous end-joining path-

way. As part of our ongoing work, these pathways are currently being targeted to switch or

reverse the aging phenomena by gene therapy strategies focused on halting the genomic insta-

bility and cellular senescence.

Supporting information

S1 File. Step-by-step laboratory protocol. This protocol was developed at protocols.io, which

can be assessed via this DOI: [https://dx.doi.org/10.17504/protocols.io.b5ttq6nn].

(PDF)

S1 Movie. Bioprinting of magnetized LG cells via M3DB. Cells were magnetized and bio-

printed over a magnetic dots located under the 96-well plate.

(MOV)

S1 Fig. LG cell morphology in expansion media. The morphology of LG cells in expansion

media (EM) and epithelial enrichment media (EEM) up to passage 4.

(TIF)
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