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Abstract. obesity is a serious medical condition worldwide, 
and a major risk factor for type 2 diabetes, metabolic syndrome, 
cancer and cardiovascular disease. in addition to changes in 
dietary habits and physical activity, consuming supplements 
to maintain good health and prevent obesity is important in 
modern society. raspberry ketone (rK) is a natural phenolic 
ketone found in the european red raspberry (Rubus idaeus l.) 
and is hypothesized to prevent obesity when administered 
orally. The present study found that rK was reduced to rhodo‑
dendrol (roH) in human liver microsomes and cytosol. The 
present study investigated whether the metabolite roH had 
anti‑adipogenic effects using mouse 3T3‑l1 cells. The effects 
of roH or rK on lipid accumulation during differentiation 
of 3T3‑l1 pre‑adipocyte into adipocyte were determined 
using oil red o staining. ccaaT enhancer‑binding protein α 
(c/eBPα) and peroxisome proliferator‑activated receptor γ 
(PParγ) mrna and protein expression were examined using 
reverse transcription‑quantitative Pcr and western blotting 
analysis, respectively. The present study revealed that roH 
suppressed lipid accumulation in the cells, similar to rK. in 
addition, roH suppressed the mrna expression levels of 
c/eBPα and PParγ in 3T3‑l1 adipocytes. Furthermore, roH 
suppressed PParγ protein expression in 3T3‑l1 adipocytes. 
These findings suggested that ROH is an active metabolite 
with an anti‑adipogenic effect, which may contribute to the 
anti‑obesity effect of orally administered rK. The present 
study indicated that it is important to understand the biological 
activity of the metabolites of orally administered compounds.

Introduction

obesity is a major risk factor for type 2 diabetes, metabolic 
syndrome, cancer, and cardiovascular diseases (1‑3). at the 
cellular level, obesity is characterized by an increase in the 
number and size of adipocytes differentiated from pre‑adipo‑
cytes in adipose tissues. in addition, adipose tissues regulate 
energy homeostasis. an excessive accumulation of adipose 
tissue results from increased adipogenesis and adipocyte 
differentiation, leading to the conversion of pre‑adipocytes into 
adipocytes. adipogenesis and the differentiation of pre‑adipo‑
cytes into adipocytes are regulated by the expression and/or 
activation of adipogenesis/lipolysis‑related factors (4,5). These 
pre‑adipocytes are used to study the molecular mechanisms 
of adipogenesis and lipogenesis. Mouse fibroblast 3T3‑l1 
cells are an established model for obesity research (6). Many 
studies using 3T3‑l1 cells have demonstrated that various 
compounds suppress cell differentiation into adipocytes and 
downregulate ccaaT enhancer‑binding protein α (c/eBPα) 
and peroxisome proliferator‑activated receptor γ (PParγ). 
The action of these adipogenesis‑related factors during the 
differentiation of 3T3‑l1 cells into adipocytes results in the 
suppression of lipid droplet accumulation in these cells (7,8).

raspberry ketone (4‑(4‑hydroxyphenyl)‑2‑butanone; 
rK) is one of the major natural phenolic ketone compounds 
present in european red raspberry (Rubus idaeus l.) (9,10), 
and may possess lipolytic and anti‑obesity effects (Fig. 1). 
Several studies in mice have reported that rK prevents 
increases in body weight and the weight of the liver and 
visceral adipose tissues (epididymal, retroperitoneal, and 
mesenteric) induced by a high‑fat diet (11‑13). rhododendrol 
(4‑(4‑hydroxyphenyl)‑2‑butanol; roH) is present in Betula 
platyphylla and Acer nikoense Maximowicz (14,15). When 
administered orally to mammals, rK is metabolized via 
several pathways (16). roH, formed by the reduction of the 
ketone group of rK, is excreted as a major metabolite after a 
single oral administration in rats, guinea pigs, and rabbits (17), 
suggesting that rK is reductively metabolized in the small 
intestine or liver (first‑pass effect) (Fig. 1). 

carbonyl compounds, such as aldehydes and ketones, are 
converted into their corresponding alcohol metabolites in vivo. 
interestingly, many xenobiotic carbonyl compounds are 
metabolized into active reductive metabolites. For example, 
loxoprofen sodium, an anti‑inflammatory drug, is reduced to its 
active metabolite (18). Sennoside, a natural product, is reduced 
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to rhein anthrone, an active metabolite produced by intestinal 
bacteria in mice (19). We also found that ketone‑containing 
medicines, such as metyrapone, acetohexamide, and befunolol, 
were reduced to their active metabolites in mammals (20‑23). 
recently, Zhao et al reported that rK is rapidly absorbed and 
metabolized in mice. They also found that the total bioavail‑
ability (auc0‑12 h) of rK and its metabolites, including roH, as 
well as their accumulation in white adipose tissue, were higher 
in obese mice than in control mice when rK was administered 
orally (24). This suggests that the metabolism of rK, including 
its reduction, may differ depending on the pathophysiological 
stage of transition from non‑obesity to obesity. These experi‑
mental results imply that the anti‑obesity effect of rK may be 
an additive effect of roH, as rK is easily eliminated by the 
mammalian body. However, no information currently exists 
on the reductive metabolism of rK in humans, taking it as a 
supplement, or on the anti‑obesity effect of roH. Therefore, 
it is important to examine unmetabolized rK as well as rK 
metabolism and the anti‑obesity effects of its metabolites.

In this study, we clarified that RK is reductively metabo‑
lized to roH in humans and investigated whether roH and 
rK have anti‑obesity effects in 3T3‑l1 cells. We also investi‑
gated the effects of roH on the expression of c/eBPα, PParγ, 
and adipogenesis‑related genes.

Materials and methods

Chemicals. rK and isoproterenol were obtained from 
Tokyo chemical industry co. ltd. (Tokyo, Japan), and 
3‑isobutyl‑1‑methylxanthine was purchased from FuJiFilM 
Wako Pure chemical co. (Tokyo, Japan). insulin, dexa‑
methasone, Dulbecco's modified Eagle's medium (DMEM), 
and a penicillin/streptomycin solution were purchased from 
Sigma‑aldrich (St. louis, Mo, uSa). a glycerol assay kit 
(cat. ab133130) was purchased from abcam (cambridge, 
uK). a pool of 150‑donor mixed‑gender human liver micro‑
somes (cat. 45215) and cytosol (cat. 452117) was obtained 
from corning Gentest (corning, nY, uSa). a cytoTox 
96 non‑radioactive cytotoxicity assay kit (cat. G1780) was 
purchased from Promega (Madison, Wi, uSa). a lipid assay 
kit (cat. aK09F) was purchased from cosmo Bio co. ltd. 
(Tokyo, Japan). The reduced form of β‑nicotinamide adenine 
dinucleotide phosphate (nadPH) was purchased from oriental 
Yeast co. ltd. (Tokyo, Japan). Hyclone™ fetal bovine serum 
(FBS) was purchased from cytiva (Tokyo, Japan). Monoclonal 
antibodies against mouse c/eBPα (cat. #8187) and horse‑
radish peroxidase (HrP)‑conjugated secondary antibodies 
were purchased from cell Signaling Technology (danvers, 
Ma, uSa). Monoclonal antibodies against mouse PParγ 
(cat. sc‑7273) were purchased from Santa cruz Biotechnology 
inc. (dallas, TX, uSa). HrP‑conjugated anti‑mouse β‑actin 
antibody (cat. a3854) was purchased from Sigma‑aldrich.

Procedure for synthesis of roH. all commercial chemi‑
cals and solvents were of reagent grade and used without 
further purification. ROH was synthesized according to the 
method described by Kitayama et al (25). a mixture of rK 
(12 mmol) and sodium borohydride (48 mmol) in methanol 
(50 ml) was stirred at 22˚C for 3 h. The reaction progress 
was monitored by thin‑layer chromatography (Tlc) using 
commercially prepared silica gel 60 F254 glass‑backed plates. 

after the solvent had evaporated, the residue was added to 10% 
hydrochloric acid (50 ml). The mixture was extracted three 
times with ethyl acetate (50 ml). The organic layer was washed 
with H2o and brine, dried over anhydrous MgSo4, and evapo‑
rated under reduced pressure. The residue was purified using 
column chromatography on silica gel (n‑hexane/ethyl acetate). 
roH was obtained as a white powder after recrystallization 
from n‑hexane/ethyl acetate with a yield of 99%. The melting 
point of the purified ROH was determined using a Yanagimoto 
micromelting point apparatus (anaTec Yanaco co., 
Kyoto, Japan). infrared (ir) spectra were recorded using an 
FTir‑8400S spectrometer (Shimadzu co., Kyoto, Japan). 
The 1H nuclear magnetic resonance (1H nMr) spectrum was 
obtained using a JnM‑eca500 spectrometer (Jeol ltd., 
Tokyo, Japan). Proton chemical shifts were referenced to a tetra‑
methylsilane internal standard. The J values are given in hertz. 
High‑resolution mass spectrometry (HrMS) was performed 
using a JMS‑T100Gcv spectrometer (Jeol ltd.). elemental 
analysis was performed using a ce‑440 cHn/o/S elemental 
analyzer (exeter analytical inc., Ma, uSa), and the results 
were within ± 0.3% of the theoretical values: m.p. 71‑72˚C. IR 
(KBr) cm‑1: 3350, 3036 (oH). 1H nMr (500 MHz, cdcl3‑d) δ: 
7.01 (d, 2H, J=8.6 Hz, arH), 6.73 (d, 2H, J=8.6 Hz, arH), 3.81 
(m, 1H, ‑cH(oH)‑), 2.97 (brs, 1H, ‑cH(oH)‑), 2.60 (m, 2H, 
‑cH2cH2‑), 1.72 (m, 2H, ‑cH2cH2‑), 1.21 (d, 3H, J=6.3 Hz, 
‑cH3). HrMS (ei) m/z: [M]+ calcd for c10H14o2 166.0994; 
Found 166.0991. anal. calcd for c10H14o2: c, 72.26; H, 8.49; 
o, 19.25. Found: c, 72. 21; H, 8. 58; o, 19. 21.

Assay for RK‑reductase activity. The reaction mixture 
consisted of 1.0 mM rK, 10 mM nadPH and 0.2 mg 
protein/ml human pooled liver microsomes or cytosol in 0.1 M 
potassium/sodium‑phosphate buffer (pH 7.4) at a final volume 
of 2 ml. The reaction was performed at 37˚C for 20 min. After 
incubation, the mixture was extracted twice with 5 ml ethyl 
acetate containing 1 µM ethyl 4‑hydroxybenzoate (an internal 
standard). The extraction mixture was centrifuged, and the 
organic layer was collected and evaporated to dryness. The 
residue was dissolved in 0.2 ml acetonitrile, and a 20 µl sample 
was subjected to high‑performance liquid chromatography 
(HPlc) analysis using a Gl‑7450 Hitachi chromatograph 
equipped with a caPcellPaK c8 uG120 column (Shiseido 
co., ltd., Tokyo, Japan) and 5 µm (4.6x250 mm). The mobile 
phase was acetonitrile:0.1% acetic acid (3:7). The chromato‑
graph was operated at a flow rate of 1 ml/min at 40˚C, with 
detection at 280 nm. The amount of roH formed was deter‑
mined from the peak areas. The rK reductive activity was 
expressed as roH nmol/min/mg protein.

3T3‑L1 cell culture and differentiation. Mouse 3T3‑l1 
pre‑adipocytes were obtained from the Japanese collection 
of research resources cell Bank (osaka, Japan). The 3T3‑l1 
pre‑adipocytes were cultured and maintained in dMeM 
containing 10% FBS, 100 u/ml penicillin, and 100 µg/ml strep‑
tomycin (10% FBS‑dMeM) (maintenance Medium; MM) at 
37˚C in 5% CO2. The cells were seeded in 24‑well plates at 
a density of 5x104 cells/well and cultured in MM for 2 days 
until they reached semi‑confluence. differentiation to 
adipocytes was initiated by replacing the previous medium 
with MM containing 0.5 mM 3‑isobutyl‑1‑methylxanthine, 
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1 µM dexamethasone, and 1 mg/ml insulin (differentiation 
medium; dM) (day 0) and incubating for 48 h (days 0‑2). The 
dM was then replaced with MM containing 1 mg/ml insulin 
(adipocyte maintenance medium; aMM) and incubated 
for 48 h (days 2‑4). The cells were then maintained, and the 
MM was replaced every 2 days until day 8 (days 4‑8). The 
pre‑adipocytes and adipocytes were incubated with dM, 
aMM, or MM in the absence or presence of roH or rK 
(20‑100 µM) from days 0 to 8. The cells differentiated by 
incubation with dM/aMM/MM without roH or rK on day 8 
were used as mature adipocytes.

Cell viability assay. The cytotoxic effects of roH and rK 
on 3T3‑l1 cells were estimated using a cytoTox 96 non‑
radioactive cytotoxicity assay kit. Briefly, cells were seeded 
in 24‑well plates at a density of 5x104 cells/well. after 2 days, 
the cells were incubated with 10% FBS‑dMeM in the absence 
or presence of roH or rK (10‑200 µM). after treatment for 
24 h, lactate dehydrogenase (ldH) concentrations in the cell 
lysates were measured using the cytoTox 96 non‑radioactive 
cytotoxicity assay kit following the manufacturer's instructions.

Oil Red O staining. Following differentiation, the culture 
medium was removed, and the cells were washed with phos‑
phate buffered saline (‑) [PBS (‑)]. oil red o staining was 
performed using a lipid assay kit. Briefly, the cells were fixed 
with 10% formalin for 15 min at 22˚C and then stained with 
oil red o‑staining solution (60% isopropanol solution). This 
solution was prepared by diluting the oil red o stock solution 
to 60% with distilled water for 30 min at 22˚C. The cells were 
washed with 60% isopropanol and distilled water. images 
were captured using an olympus iX71 inverted microscope 
(olympus co., Tokyo, Japan). The stained lipid droplets were 
dissolved in isopropanol and quantified by spectrophotometry 
at a wavelength of 540 nm.

Glycerol release assay. Mature 3T3‑l1 adipocytes were incu‑
bated with dMeM containing 2% (w/v) fatty acid‑free bovine 
serum albumin in the absence or presence of various concen‑
trations of rK or roH (20‑100 µM). after incubation for 
24 h, the culture medium was collected, and glycerol release 
activity was measured using a glycerol assay kit (abcam Plc, 
cambridge, uK) according to the manufacturer's instructions.

RNA isolation and quantitative polymerase chain reaction 
(qPCR). Total mrna was isolated using iSoGen ii (nippon 
Gene co. ltd., Tokyo, Japan) following the manufacturer's 
instructions. rna was quantified using a Multiskan Sky 
High Microplate Spectrophotometer with a µdrop plate 
(Thermo Fisher Scientific inc., Waltham, Ma, uSa), and 
1 µg of rna was reverse‑transcribed using the reverTra ace 

qPcr rT primary mix (Toyobo co., ltd., osaka, Japan). 
Pcr amplification of mouse leptin, c/eBPα, PParγ, and 
β‑actin was performed using Thunderbird SYBr qPcr Mix 
(Toyobo co., ltd., osaka, Japan) and a Stepone™ real‑time 
PCR system (Thermo Fisher Scientific Inc., Waltham, MA, 
uSa). The following thermocycling conditions for qPcr were 
used: initial denaturation at 95˚C for 60 sec; and 40 cycles of 
denaturation at 95˚C for 15 sec, and annealing/extension at 
60˚C for 60 sec. The primer sequences used for PCR were as 
follows: leptin forward 5'‑caG GaT caa TGa caT TTc aca 
ca‑3'; leptin reverse 5'‑ GcT GGT GaG Gac cTG TTG aT‑3'; 
c/eBPα forward 5'‑Gca GGa GGa aGa Tac aGG aaG‑3'; 
c/eBPα reverse 5'‑aca Gac Tca aaT ccc caa ca‑3'; 
PParγ forward 5'‑GTG cTc caG aaG aTG aca Gac‑3'; 
PParγ reverse 5'‑GGT GGG acT TTc cTG cTa a‑3'; β‑actin 
forward 5'‑TGG aaT ccT GTG Gca Tcc aTG aaa c‑3', and 
β‑actin reverse 5'‑Taa aac Gca GcT caG Taa caG Tcc 
G‑3'. c/eBPα and PParγ mrna levels were calculated using 
the 2‑ΔΔcq method and normalized against the expression level 
of β‑actin as an internal standard (26). All quantifications were 
performed independently three times.

Western blot analysis. The mature 3T3‑l1 adipocytes were 
collected on day 8, washed twice with PBS (‑), and lysed 
in radioimmunoprecipitation assay (riPa) buffer (50 mM 
Tris‑Hcl, pH 8.0, 150 mM sodium chloride, 1% nP‑40, 0.5% 
sodium deoxycholate, and 0.1% sodium dodecyl sulfate) 
containing protease inhibitor cocktail set i (FuJiFilM 
Wako Pure chemical co., Tokyo, Japan) on ice for 10 min. 
Cell lysates were centrifuged at 12,000 x g for 15 min at 4˚C. 
The supernatant was collected from the lysates and protein 
concentrations were determined using the bicinchoninic 
acid (Bca) method, with bovine serum albumin as the stan‑
dard (27). Subsequently, 20 µg protein per lane was separated 
by 10% SdS‑polyacrylamide gel electrophoresis and trans‑
ferred to a polyvinylidene difluoride membrane (Millipore 
Sigma, Bedford, Ma, uSa). The membranes were incubated 
with Tris‑buffered saline (20 mM Tris‑Hcl, pH 7.4, 150 mM 
sodium chloride) containing 0.05% Tween 20 and 2% skim 
milk as blocking solution for 2 h at 22˚C. Membranes 
were then incubated with the indicated primary antibodies 
(mouse monoclonal anti‑mouse c/eBPα, 1:2,000; rabbit 
monoclonal anti‑mouse PParγ, 1:2,000; HrP‑conjugated 
anti‑mouse β‑actin, 1:200,000) for 2 h at 22˚C, further 
incubated with the HrP‑conjugated secondary antibodies 
(1:5,000) for 1 h at 22˚C and visualized using an enhanced 
immunoStar ld or immunoStar Zeta (both FuJiFilM 
Wako Pure chemical co.) with a luminoGraph i (aTTo, 
Tokyo, Japan). densitometric analysis was performed using 
the cS analyzer 4 software (aTTo, Tokyo, Japan) and 
normalized against the expression level of β‑actin as an 
internal standard.

Data analyses and statistics. all data are expressed as mean ± 
standard deviation of the mean (Sd). Statistical analyses were 
performed by using the unpaired Student's t‑test or one‑way 
anoVa followed by dunnett's post hoc test for multiple 
group comparisons. calculations were performed using r 
(R Development Core Team). Statistical significance was set 
at P<0.05.

Figure 1. reduction of rK in mammals. roH, rhododendrol; rK, raspberry 
ketone.
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Results

RK reduction to ROH in human liver microsomes or cytosol. 
To elucidate the metabolism of rK in humans, we examined 
the reduction of rK to roH in human liver microsomes and 
cytosol. rK was incubated with human liver microsomes or 
the cytosol in the presence of nadPH. an HPlc chromato‑
gram of the extract from the incubation mixtures containing 
liver microsomes revealed two peaks with retention times of 
5.0 and 5.9 min, which differed from those of rK (7.4 min) and 
the internal standard (13.1 min). However, the peak at 5.0 min 
was slight in the incubation mixtures containing human liver 
cytosol (Fig. 2a). When rK was incubated with a cofactor 
and boiled human liver microsomes or cytosol, two peaks 
(5.0 and 5.9 min) were not detected (data not shown). The peak 
at 5.9 min, but not that at 5.0 min, was identified as ROH based 
on the retention time of the synthesized roH (Fig. 2a). Both 

the microsomes and cytosol showed rK reduction activity in 
the presence of nadPH (Fig. 2B). These results suggest that 
rK is reduced in humans as well as in other mammals.

Effects of ROH and RK on cell viability. The anti‑adipogenic 
effect of rK at each maximum concentration of 10‑300 µM 
has been determined (28‑31). Here, 3T3‑l1 cells were treated 
with various concentrations of roH or rK (10‑200 µM) for 
24 h (Fig. 3) to evaluate cell viability. cell viability at 24 h after 
treatment with 10‑100 µM roH or rK was similar to that of 
the untreated controls. However, treatment with 200 µM roH 
resulted in only slight cytotoxicity. These results indicated that 
roH or rK at concentrations up to 100 µM did not have a 
significant cytotoxic effect on these cells. Hence, all experi‑
ments were performed with roH or rK at concentrations up 
to 100 µM.

Effects of ROH and RK on adipocyte differentiation in 3T3‑L1 
cells. leptin is predominantly expressed in adipose tissue and is 
considered an adipocyte marker protein (32,33). We measured 
leptin mRNA levels as adipocyte marker to confirm the forma‑
tion of adipocytes from 3T3‑l1 pre‑adipocytes. Treatment of 
pre‑adipocyte 3T3‑l1 cells with dM/aMM/MM for 8 days 
significantly increased leptin mRNA levels compared with 
untreated pre‑adipocytes (Fig. 4a). Therefore, we determined 
that pre‑adipocyte 3T3‑l1 cells were differentiated into 
mature adipocytes following dM/aMM/MM treatment for 
8 days. The effects of roH and rK on lipid accumulation 
during the differentiation of 3T3‑l1 cells into adipocytes were 
compared. oil red o staining revealed that the addition of 
roH (20‑100 µM) to the culture medium during differentia‑
tion (days 0‑8) decreased the number of lipid droplets in the 
cells in a dose‑dependent manner, and had effects similar to 
those of RK (Fig. 4B). Moreover, the significant inhibitory 
effect of roH, which was equivalent to that of rK, on lipid 
accumulation was confirmed by measuring Oil Red O levels in 
the cells (Fig. 4c). These results suggest that roH, a metabo‑
lite of rK, is an active metabolite that can inhibit lipid droplet 

Figure 2. Identification of ROH by HPLC and reductase activity for RK to 
roH in human liver microsomes or cytosol. rK (1.0 mM) and 10 mM nadPH 
were incubated with HlM or Hlc in 0.1 M potassium/sodium‑phosphate 
buffer (pH 7.4) at 37˚C for 20 min. The compounds, including ROH, were 
extracted from the incubation mixture, as described in the Materials and 
Methods. (a) HPlc chromatograms obtained after incubation with HlM 
or Hlc. (B) rK reduction activity in the presence of nadPH in HlMs and 
Hlcs. The data presented are the means of duplicate experiments. Hlc, 
human liver cytosol; HlM, human liver microsomes; roH, rhododendrol; 
rK, raspberry ketone.

Figure 3. effects of roH and rK on cell viability. 3T3‑l1 cells were treated 
with rK or roH at various concentrations (10‑200 µM), and cell viability 
was determined using a lactate dehydrogenase assay. other details are 
described in the Materials and Methods. each bar represents the mean ± 
standard deviation of three experiments. *P<0.05 vs. control. roH, rhodo‑
dendrol; rK, raspberry ketone.
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accumulation in 3T3‑l1 cells during their differentiation into 
adipocytes.

Effects of ROH and RK on glycerol release from mature 
3T3‑L1 adipocytes. We examined the release of glycerol 

into the culture medium after treatment with roH or rK 
(20‑100 µM) for 24 h to assess whether roH promoted 
lipolysis in mature 3T3‑l1 adipocytes. Treatment of the 
cells with 50 µM roH, 100 µM roH, or rK increased 
glycerol release into the medium by 1.18‑fold, 1.44‑fold 

Figure 4. effects of roH and rK on lipid accumulation during differentiation of 3T3‑l1 cells to adipocytes. (a) during differentiation of 3T3‑l1, cells 
were treated with or without dM/aMM/MM for 8 days. leptin mrna levels in mature adipocytes (day 8) were examined by qPcr as an adipocyte marker. 
each bar represents the mean ± Sd of three independent experiments. **P<0.01 vs. without dM/aMM/MM. (B) during the differentiation of 3T3‑l1, cells 
were treated with or without ROH or RK at various concentrations (20‑100 µM) for 8 days. Representative photomicrographs (magnification: x200, scale 
bar: 100 µm) are shown for each treatment group. oil red o reagent‑stained lipid droplets in the mature 3T3‑l1 adipocytes (day 8). (c) The amount of lipid 
accumulated in mature 3T3‑L1 adipocytes was quantified by measuring absorbance at 540 nm. Each bar represents the mean ± SD of three independent 
experiments. **P<0.01 vs. dM/aMM/MM alone. aMM, adipocyte maintenance medium; dM, differentiation medium; MM, maintenance medium; qPcr, 
quantitative Pcr; roH, rhododendrol; rK, raspberry ketone; Sd, standard deviation.
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and 1.43‑fold, respectively, compared with untreated cells 
(Fig. 5). Therefore, roH shows a lipolysis‑promoting effect, 
similar to that of rK.

Effects of ROH and RK on C/EBPα and PPARγ mRNA and 
protein levels in 3T3‑L1 adipocytes. as roH showed an 
inhibitory effect on lipid accumulation, we focused on how 
it might affect the regulation of the expression of adipogen‑
esis‑related genes such as c/eBPα and PParγ. The effects of 
roH on c/eBPα and PParγ mrna levels in mature adipo‑
cytes were investigated and compared with those of rK. When 
3T3‑l1 pre‑adipocytes were treated with roH (20‑100 µM) 
during their differentiation into adipocytes over 8 days, 
c/eBPα and PParγ mrna levels decreased in a concentra‑
tion‑dependent manner. Treatment with rK produced similar 
results (Figs. 6a and B). Furthermore, the expression levels of 
c/eBPα and PParγ proteins were monitored using western 
blot analysis (Fig. 7a). The treatment of the pre‑adipocyte 
3T3‑l1 cells with roH and rK (20‑100 µM) during differ‑
entiation downregulated PParγ protein expression in mature 
3T3‑l1 adipocytes on day 8 in a concentration‑dependent 
manner (Fig. 7c). However, the levels of c/eBPα protein 
remained unchanged (Fig. 7B). The anti‑adipogenic effects 
of roH and rK may be attributed to their PParγ lowering 
effects; however, it remains unclear as to why the lowering 
effects of roH and rK on c/eBPα mrna levels were not 
reflected in their protein levels.

Discussion

This study demonstrated that rK was reduced to roH in 
human liver microsomes and cytosol. Because the reduction 
of rK occurs in both human liver microsomes and the cytosol 
in the presence of nadPH, and other carbonyl compounds, 
such as warfarin and nabumetone, are also metabolized in 
this manner, multiple enzymes are thought to be involved in 
this reaction (34,35). additionally, our data showed a new 
peak for the rK metabolite with a retention time of 5.0 min 

after incubation with human liver microsomes. in addition to 
roH, the metabolites of rK include 4‑(3,4‑dihydroxyphenyl) 
butanone, which is generated by the hydroxylation of rK, 
and 4‑(2‑Hydroxyethyl) phenol (tyrosol), which is generated 
by decarboxylation of roH (24). However, when roH was 
incubated with human liver microsomes in the presence of 
nadPH, no unknown metabolites were detected, with a reten‑
tion time of 5 min (data not shown). Therefore, the metabolite 
with a retention time of 5 min in the chromatogram was not 
4‑(2‑hydroxyethyl) phenol (tyrosol). We are also interested in 
metabolites other than roH, and further studies should focus 
on the metabolic mechanisms that produce these molecules 
and how they affect the suppression of fat accumulation.

rK and various other compounds suppress the differentiation 
of 3T3‑l1 cells into adipocytes (7,8,30,31). our data revealed 
that rK suppressed the lipid accumulation‑induced differen‑
tiation of 3T3‑l1 pre‑adipocytes in a dose‑dependent manner, 
which is consistent with previous reports. in addition, this study 
showed that roH, a reductive metabolite of rK, suppressed 
lipid accumulation during the differentiation of pre‑adipocytes 
into adipocytes, suggesting that roH is an active metabolite. 
recently, a pharmacokinetic study of orally administered rK 
demonstrated that the accumulation of rK and its metabolites 

Figure 5. effects of roH and rK on mature 3T3‑l1 adipocytes glycerol‑
release activity. Mature 3T3‑l1 adipocytes (day 8) were treated with or without 
roH or rK at various concentrations (20‑100 µM) for 24 h. Glycerol‑release 
activity was quantified by measuring the absorbance at 540 nm. Each bar 
represents the mean ± standard deviation of three experiments. **P<0.01 vs. 
control. iP; isoproterenol; roH, rhododendrol; rK, raspberry ketone.

Figure 6. effects of roH and rK on the mrna levels of adipogenesis‑related 
genes in adipocyte differentiation. Various concentrations (20‑100 µM) of 
roH or rK were added to 3T3‑l1 pre‑adipocytes for 8 days. (a) c/eBPα 
and (B) PParγ mrna levels in mature adipocytes (day 8) were examined 
using quantitative Pcr. each bar represents the mean ± standard deviation of 
three independent experiments. *P<0.05, **P<0.01 vs. dM/aMM/MM alone. 
aMM, adipocyte maintenance medium; c/eBPα, ccaaT enhancer‑binding 
protein α; dM, differentiation medium; MM, maintenance medium; 
PParγ, peroxisome proliferator‑activated receptor γ; roH, rhododendrol; 
rK, raspberry ketone.



Molecular Medicine rePorTS  27:  51,  2023 7

in the white adipose tissue of obese mice was higher than that in 
normal mice (24). Therefore, roH produced when rK is orally 
administered during the development of obesity may act addi‑
tively with rK in pre‑adipose and adipose tissues to produce 
anti‑obesity effects. a dietary supplement mixture containing 
rK, capsaicin, caffeine, garlic, and citrus aurantium reduced 
the body weight and fat in overweight adults (36), but there is 
no information on their effects after oral administration of rK 

alone to human or human adipocytes. The present study will be 
a useful basis for investigating the anti‑obesity effects roH and 
rK in humans. Studies of foods containing active ingredients 
with anti‑obesity effects, such as health foods and supplements, 
have examined the ingredients that are ingested. The results of 
this study suggest that metabolites produced after oral inges‑
tion may also exhibit anti‑adipogenic and lipolysis‑promoting 
activities. Our findings may aid in the development of more 
effective anti‑obesity drugs and the prevention of visceral fatty 
obesity and fatty liver disease.

The regulation of the expression of adipogenesis‑related 
factors, including c/eBPα and PParγ, contributes to the 
differentiation of pre‑adipocytes into adipocytes (4,5). 
regulation of c/eBPα and PParγ gene expression is involved 
in adipogenesis, and their downregulation is related to 
adipogenesis suppression (37). in addition, activation (phos‑
phorylation) of aMP‑activated protein kinase (aMPK), which 
exerts anti‑obesity effects via regulation of the expression 
and activation of enzymes involved in lipid metabolism, is a 
critical event in lipolysis (38,39). Previous studies have demon‑
strated that several natural flavonoids suppress adipogenesis 
by activating aMPK and downregulating the c/eBPα and 
PParγ genes (40,41). The suppressive effect of rK on 3T3‑l1 
cell differentiation into adipocytes seemed to be caused by the 
downregulation of the mrna levels of c/eBPα and PParγ. 
in the present study, we also found that, similar to rK, roH 
suppressed the differentiation of cells and decreased the 
mrna levels of c/eBPα and PParγ and protein expression 
of PParγ, but not c/eBPα protein. our data suggest that 
the downregulation of PParγ by roH and rK contributed 
to their anti‑adipogenic effects. PParγ plays an important 
role in adipose differentiation through the regulation of the 
expression of adipocyte‑specific genes, such as adipocyte 
fatty acid‑binding protein‑2 (aP2) and fatty acid synthase 
(FaSn) (42). The roH‑ or rK‑suppressed PParγ expression 
may affect the regulation of their adipocyte‑related genes. 
Further study remains on the effects of roH and rK against 
the genes regulated by PParγ.

Park demonstrated that rK has a lipolysis‑promoting 
effect on glycerol release from 3T3‑l1 adipocytes (30). 
our data support this finding and suggest that roH has a 
lipolysis‑promoting effect similar to that of rK. Therefore, the 
suppressive effects of roH and rK on 3T3‑l1 cell differentia‑
tion into adipocytes may be caused by the downregulation of 
mrna and protein expression of adipogenesis‑related factors 
and lipolysis. if lipolysis is not involved, glycerol released 
from the cells may have a similar effect. Further studies are 
required to elucidate the mechanisms by which roH and rK 
promote lipolysis.

The chemical structure of rK is similar to those of 
capsaicin, 6‑gingerol, and synephrine, which are the prin‑
cipal components of hot red pepper, ginger, and citrus plants, 
respectively. These compounds have been shown to suppress 
lipid accumulation (43‑45). The anti‑adipogenic effects of 
roH and rK may be due to their structural similarities to 
these compounds. Whether there exists a structure‑activity 
relationship that contributes to the anti‑obesity effects of 
rK, capsaicin, 6‑gingerol, synephrine, and their metabolites 
is of considerable interest; studies to determine this are now 
underway.

Figure 7. effects of roH and rK on the protein expression of adipogenic 
transcription factor in adipocyte differentiation. Various concentrations 
(20‑100 µM) of roH or rK were added to 3T3‑l1 pre‑adipocytes for 
8 days. (a) c/eBPα and PParγ protein expression in mature adipocytes 
(day 8) was examined by western blot analysis. Quantification of the 
protein expression of (B) c/eBPα and (c) PParγ. each bar represents 
the mean ± standard deviation of three independent experiments. *P<0.05, 
**P<0.01 vs. dM/aMM/MM alone. aMM, adipocyte maintenance medium; 
c/eBPα, ccaaT enhancer‑binding protein α; dM, differentiation medium; 
MM, maintenance medium; PParγ, peroxisome proliferator‑activated 
receptor γ; roH, rhododendrol; rK, raspberry ketone.
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in conclusion, we showed that roH, a reductive metabolite 
of rK, has an anti‑adipogenic effect similar to that of rK 
in the differentiation of 3T3‑l1 cells into adipocytes. These 
results imply that both rK and roH might contribute to the 
anti‑obesity effects of orally ingested rK. our results suggest 
that the biological effects of natural compounds, including 
their anti‑obesity effects, may be due to their metabolites. 
Therefore, we propose that it is important to evaluate the 
biological activity of all detectable metabolites and consider 
their pharmacokinetics.
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