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The mechanism of tolerance to the pyrogenic activity of Gram-negative 
bacterial endotoxins is most often attributed to a non-specific increase in the 
activity of the reticuloendothelial system (RES) (1). Recently, it was shown 
that Group A streptococcal exotoxins produced biphasic fever responses in 
rabbits (2). In contrast to the non-specific tolerance induced by endotoxins, 
three distinct toxins were identified based on their ability to induce specific 
pyrogenic tolerance; in addition, the pyrogenic activity was neutralized 
specifically with antiserum. 

These observations suggested that, in addition to the non-specific RES ac- 
tivity, specific immune mechanisms may contribute to pyrogenic tolerance to 
Gram-negative bacterial endotoxins. Because endotoxins from organisms of 
different species and families induce non-specific pyrogenic tolerance, it is 
assumed that specific immunological mechanisms are not involved. If, how- 
ever, there exist unsuspected common or cross-reactive antigens contributing 
to the pyrogenic activity, the non-specific nature of the mechanism would be 
more apparent than real. Our approach involved, therefore, an attempt to 
demonstrate specificity by the use of cross-tolerance tests as applied to the 
streptococcal pyrogenic toxins (2). Purified endotoxins were selected for this 
purpose on the basis of suspected chemical differences. 

In addition, there is evidence to implicate the immunological state of the 
host in many of the biological activities of endotoxins. From birth, animals are 
continually exposed to Gram-negative bacterial endotoxins derived from 
organisms growing in the gastrointestinal tract. Of particular interest is the 
enhanced susceptibility of animals to endotoxins after colonization with Gram- 
negative bacteria (3); here there was evidence of specificity because the in- 
duced susceptibility was greater when the endotoxin was derived from the 
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sensi t iz ing strain.  Too,  the  great  res is tance of young  an imals  to the  le thal  effect 

of endotoxin  wi th  the  gradual  increase in suscept ib i l i ty  wi th  age is compa t ib l e  

wi th  the  concep t  t h a t  an  acqui red  de layed  hyper sens i t iv i ty  p lays  a role in the  

modif ied  response (4, 5). 

Th is  pape r  presents  the  resul ts  f rom two re la ted  s tudies ;  one demons t r a t e s  

specif ici ty in pyrogenic  to lerance  by  the  use of selected endotoxins  and thei r  

de r iva t ives ;  t he  o the r  concerns the  role of hype r sens i t i v i t y  in var ious  biological  

ac t iv i t i es  of endotox in  inc luding pyrogen ic i ty ,  le tha l i ty ,  and  skin reac t iv i ty .  

These ,  wi th  addi t iona l  observat ions ,  f avor  an  immunolog ica l  i n t e rp re t a t i on  of 

pyrogen ic  to lerance  and  o the r  hos t  responses to bac ter ia l  endotoxins .  

Materials and Methods 

Animals.--Male and female American Dutch rabbits were used. They were supplied from 
a single source and maintained on a diet of Nutrena pellets. Animals were quartered in air- 
conditioned rooms and all experiments were performed in an adjoining laboratory at the 
same temperature. 

Tox~ns.~The endotoxins were generously donated by Dr. Westphal and Dr. Ltideritz 
of the Max Planck Institute for Immunobiology, Freiburg, West Germany. The following 
toxins were used and the designations in parentheses will be used throughout this paper: 
Eschodchia coli 08-COO8~1mS5 (COO8); Eschorichia coli 08-Lipid AIIMI (Lipid A); Salmonella 
abortus equi-AEl~S3 (AE); Chromobaaerium ~olaceum NCTC 9694 (CV). Salmondla typhosa 
0901 (ST0901) was obtained from Difco Laboratories, Inc., Detroit and Group A Streptococ- 
cus pyogenes type 18-C (T-18) was prepared in our laboratory (2). 

Preparation of stock solutions.--(a) Lipopolysaccharide ~lotoxins (LPS). 10 mg of purified 
LPS were dissolved in 1 ml of pyrogen-free sterile distilled water and heated in a boiling water 
bath for 2 minutes; this was then diluted with 9 ml of pyrogen-free sterile sodium phosphate- 
buffered saline, pH 7.0, 0.15 ~ to give 1 mg/ml. These solutions were stored at --20°C. (b) 
C008 Lipid A izMz (Lipid A). 10 mg were dissolved in 1 ml of pyfidine and centrifuged. The 
small amount of residue was washed with an additional 0.5 ml of pyridine. The Lipid .4.- 
pyridine solution was added dropwise to 10 ml of pyrogen-free distilled water while stirring. 
A nearly clear, stable suspension was obtained. Merthiolate was added to give a concentra- 
tion of 1/10,000. Pyridine was removed under vacuum at 30°C until the solution was reduced 
to a volume of 7 ml; an additional 5 ml of water was added and again reduced to 7 ml. Fi- 
nally the solution was brought to a volume of 10 ml with distilled water to give a concentra- 
tion of 1 mg/ml. This stock solution remained stable and active at 4°C for several weeks. 
It  is important not to freeze Lipid A preparations because the suspension will be broken and 
activity reduced. Pyridine, even if not removed, was not pyrogenic or toxic in rabbits at 
concentrations present in working solutions. 

Working Solutions.--Stock solutions were diluted with pyrogen-free sterile buffered saline 
to make the desired concentrations just before each experiment; these solutions were main- 
tained at 3-4°C. 

Reagents.--Low molecular weight dextran, merthiolate and all dlluents were not pyrogenic 
when tested in rabbits. 

Detorminaaon of Febrile Response.--All animals were conditioned 4 to 6 hours, 1 day be- 
fore use. For temperature determinations, an animal rack with a capacity for 15 rabbits 
designed by the Chemical and Pharmaceutical Industry Company, Inc., New York, was 
used in conjunction with the electric universal thermometer, TE-3. Thermocouples were 
inserted 2 to 3 inches into the rectum and remained there throughout the experiment. Animals 
were conditioned for at least 1 hour before the injection of toxin to establish the baseline 
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temperature of individual rabbits; those with a temperature greater than 103°F were not used. 
Temperatures were recorded at 30 minute intervals for a period of 5 hours or longer. Many 
control runs were made using this equipment to determine the normal variation under the 
conditions of the experiments. A rise of I°F is considered a significant response. The large 
variation in febrile response between individual animals makes it necessary to use at least 5 
animals for each preparation. 

Minimal Pyrogenic Dose-3.--Pyrogenic tolerance described by Beesou (1), concerns pri- 
marily the 3 hour portion of the fever curve, and it soon became apparent that in studies on 
tolerance, the minimal pyrogenic dose (MPD) (6), the fever index (FI) (1) and the newer 
fever index (FI~0) (7) are not the most satisfactory units for quantitating the pyrogenic dose 
when measuring tolerance. This was quite apparent to Moses and Atkins (8) when working 
with EP tolerance; there as here, the changes in the fever contours were more important 
than fever indices in establishing the tolerant state. In some cases, the areas under the curves 
remain unchanged despite real alterations in the reactivity of the host; this is especially 
evident in the tolerance produced by Noll and Brande (9) with chemically modified endotoxins. 
Where the standard MPD unit is used, the slope of the dose-response curves for two different 
toxins may be markedly different but the MPD will be the same; this is illustrated by Neter 
eta/. (10) where an endotoxin was treated with periodate and compared with the unmodified 
toxin. For these reasons, a new unit, MPD-3 (minimal pyrogenic dose-3 hours) is used in this 
investigation. I t  is defined as the smallest amount of toxin giving a mean rise of I°F, 3 hours 
after intravenous injection. Each toxin is tested at 3 to 6 concentrations and each concentra- 
tion is tested in at least 5 adult rabbits (1.0 to 1.2 kg). The mean febrile response at 3 hours 
is plotted against the log of the concentration. The best line is drawn to I°F and the quantity 
of toxin at the intercept represents the MPD-3. 

For each endotoxin there is a range of concentrations where a linear dose response can be 
obtained. If the concentration of toxin is too great, shock will be manifested in the animal 
by a rapid fall in temperature. A dose of 100 MPD-3/kg falls within the upper portion of the 
linear dose-respouse curve and therefore gives the maximal febrile response; this dose has been 
used in all of the cross-tolerance studies reported. To compensate for differences in the ac- 
tivity of different preparations, all toxins were titrated and adjusted to the desired MPD-3 
level. By this method, the MPD-3 of these toxins in /~g/kg were as follows: COO8, 0.008; 
AE, 0.004; CV, 0.003; Lipid A, 0.1; ST0901, 0.01; and T-18, 4.0. 

Pyrogenic Tolerance.--The following injection schedule was used to develop pyrogenic 
tolerance. After the control test with 100 MPD-3/kg on day 1, daily stepwise increasing doses 
(MPD-3/kg) were injected intravenously into adult rabbits (1.0 to 1.2 kg) as follows: 200, 
200, 400, 400, 600, 600; finally on day 8 or 9, pyrogenic tolerance to the homologous toxin 
was determined by testing with 100 MPD-3/kg. With Lipid A and CV toxins, maximal toler- 
ance was induced when they were suspended in 0.5 per cent pyrogen-free dextran. 

RESULTS 

A. Specificity of Pyrogenic Tolerance 

T h e  fol lowing exper iments  represen t  reciprocal  cross- tolerance tes ts  w i th  

three  pairs  of pur i f ied  endotoxins .  T h e  toxins in the  first pair ,  i sola ted f r o m  

E. coli 08 (COO8) and  S. abortus equi (AE) ,  are  k n o w n  t o  differ in  the i r  O 

specif ici ty;  those  in the  second, inc luding C. violaceum (CV) and  COO8, are  

t h o u g h t  to differ n o t  on ly  in O specifici ty b u t  in some o ther  po r t i on  of t he  

macromolecu le ;  t he  th i rd  pa i r  include the  p a r e n t  COO8 toxin  and  i ts  de r i va t i ve  

L ip id  A. 
1. AE and CO08.--Two groups of rabbi t s  were m a d e  to l e ran t  to 100 M P D -  
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3/kg d the homologous toxin. On the following day, 100 MPD-3/kg of the 
heterologous toxins were injected. Results given in Fig. 1 show nearly com- 
plete reciprocal cross-tolerance. These results confirm those of Beeson (1), and 
serve as controls for the following experiments. 

2. CV and COOg.--During our attempt to find endotoxins of different speci- 
ficities, Dr. D. A. L. Davies, Microbiological Research Establishment, Porton, 
England, recommended to us the endotoxin of C. doloz~m (CV). Crumpton 
and Davies (11) have reported the presence of D-fucosamine in the lipopoly- 
saccharide isolated from this species but whether or not this explains the results 
of this experiment is not known. As in the preceding experiment, two groups 
of rabbits were made tolerant with the CV and COO8 endotoxins. As given in 
Fig. 2 A, COO8-tolerant animals showed little tolerance when given the heter- 
ologous CV toxin. In the reciprocal cross-tolerance tests, animals made tolerant 
to the CV toxin were equally tolerant to the heterologous COO8 toxin (Fig 2 B). 
These results, in contrast to the previous experiment, show a significant 
specificity in tolerance and are consistent with results one might expect with 
classical immune systems involving non-reciprocal cross-reacting antigens. 

3. Lipid A and CO08.--Endotoxins prepared by the phenol method of 
Westphal et al. (12) contain mostly polysaccharide, lipid, and small quantities 
of peptide. Lipid A is obtained from the lipopolysaccharide by acid hydrolysis 
(13). Its chemistry is not completely known but its main components are 
D-glucosamine phosphoric acid ester, long chain fatty acids, and a considerable 
amount of fl-hydroxymyristic acid; this derivative is about one-tenth as active 
biologically as the parent lipopolysaccharide. 

When rabbits were made tolerant to Lipid A (Fig. 3 A) and given 100 MPD- 
3/kg of the parent COO8 toxin, the tolerance was slight. The same animals 
were not tolerant to exotoxin T-18 which confirmed our earlier results (2) on 
the failure of Gram-negative bacterial endotoxins to induce tolerance to the 
unrelated pyrogenic toxins of the Group A streptococci. Rabbits made tolerant 
to the parent COO8 toxin (Fig. 3 B) were partially tolerant to the derivative 
Lipid A. Again animals tolerant to the COO8 toxin were not tolerant to the 
streptococcal T-18 toxin. 

4. Anamnestic Response in Pyrogenic Tolerance.--The short duration of 
tolerance has been used as evidence against an immunological mechanism (1). 
It  should be noted, however, that in the induction of tolerance, animals are 
usually given the minimal number of injections to develop the tolerance; hyper- 
immunization in the usual sense is not attained. Also, the animals are tested 
by injecting the toxin intravenously and although animals may have a good 
recall mechanism, there is not sui~cient time for it to respond. The results given 
in Fig. 4 show that on the 8th day Mter repeated daily injections, the animals 
were tolerant and, as previously shown by Beeson (1), they appeared to have 
lost tolerance on the 35th day. A single injection of 100 MPD-3/kg of the 



430 MODII~ICATION OF HOST RESPONSES TO ENDOTOXINS 

C2. 

I,,, I I 

. ~_ . ~  

, 12 
~-~- 

~ ~ S o ~ 

~'~ 



DENNIS W. WATSON AND ~200N BERM KIM 431 

r n  

I ,,, 

0 

o. 

I ,,,', 
I 
I ,,> 

× l ~,i 

{ 
o. o. o. o 

o o. o. o 

~o 3~Nl~'~13dl~131 V 

0 
-t- 

i- 

o~ 

o 

. 

oo o 



432 MODIFICATION OF HOST RESPONSES TO ENDOTOXINS 

homologous toxin was sufficient to give nearly complete tolerance within 2 days 
The magnitude of this anamnestic response seems comparable to that observed 
with classical immune systems. 
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Fla. 4. Anamnestic response to endotoxin. Each curve represents the mean febrile response 
of 7 rabbits injected intravenously with 100 MPD-3/kg of COO8 endotoxin. 

B. Role of Hypersensitivity in Pyrogenicity, Lethality, and Skin Reactivity 

As stated previously, in view of the ubiquity of endotoxins in the gastro- 
intestinal tract, any investigation of the mechanisms of pyrogenic tolerance 
and other biological activities of endotoxins should take into consideration the 
possibility that acquired delayed hypersensitivity might modify the host re- 
sponse. In the following experiments, various biological activities of endotoxins 
are tested in young and adult rabbits in an attempt to understand the mecha- 
nisms of acquired host responses to endotoxin. 

1. Effect of Age on Lethal Effects of Endotoxins in Rabbits.--If young animals 
are resistant to endotoxins and become susceptible when adults as a result of 
the development of hypersensitivity to the endotoxin as postulated, it might 
be possible to prevent the enhanced susceptibility by inducing immunological 
paralysis in the sense of Felton (14). For this experiment, it was necessary to 
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determine the maximum amount of toxin that  young animals could resist in a 
single injection. Also, the lethal effect of endotoxin was determined in rabbits 
of various ages. 

The remarkable resistance of the young rabbit to endotoxin in contrast to 
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Fro. 5. Effect of age on lethality to endotoxin. 224 rabbits varying in age from newborn to 
over 6 months were injected with varying concentrations of ST0901 endotoxin intravenously. 
LDs0 calculated by the method of Reed and Muench (15). 

the great susceptibility of the adult is shown in Fig. 5. Susceptibility increased 
linearly with age; the LD60 in the resistant neonatal animal was greater than 
5.0 mg/kg  while in the susceptible adult the LDs0 was 50 gg/kg. These results 
are essentially the same as reported by Smith and Thomas (4) for rabbits, but 
more striking than those reported by Miler (5) for rats. 

2. Effect of Age on Pyrogenic Response to Endotoxins.--If the 3 hour portion 
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of the fever curve is influenced by the degree of hypersensitivity of the host to 
some part  of the endotoxin, as previously suggested, one would expect signifi- 
cant differences in the contours of the fever curves obtained in young and adult 
animals. Fig. 6 compares the mean fever responses of adult and young rabbits 
at two doses of endotoxin. Considerable differences in heights and contours of 
the fever curves, especially in the region of 3 hours were noted. 

Our results do not confirm Smith and Thomas (4) who showed little differ- 
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FIG. 6. Effect of age on pyrogenicity to endotoxin. Adult, each curve repesents the mean 
febrile response of 10 rabbits, 1.0 to 1.2 kg at 3 months. Young, each curve represents the 
mean febrile response of 10 rabbits, 0.3 to 0.4 kg at 3 weeks. Doses of CO08 endotoxin are 
given. O, adult 100 MPD-3/kg; A, adult 10 MPD-3/kg; O, young 100 MPD-3/kg; /X, 
young 10 MPD-3/kg. 

ence in the pyrogenic response in young and adult rabbits. Some of the dis- 
crepancy could be accounted for by differences in dose. They gave the young 
(0.5 kg) and the adult (2.4 kg) the same dose of toxin; in our experiments, the 
dose was always adjusted to the weight of the animal. In addition, the difference 
in susceptibility to lethality between their young and old rabbits was con- 
siderably less than reported here, indicating that their young rabbits were 
older than ours, and, therefore, perhaps more sensitized. We have found a close 
correlation between the intensity of the febrile response at 3 hours and the 
lethal effect of endotoxin. 

3. Modification of Pyrogenic Response in Adult Rabbits by Their Early Expo- 
sure to Massive Doses of Endotoxin.--As postulated previously, a massive dose 
of endotoxin given to the young animal might alter the development of hyper- 
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sensitivity. Several litters of young rabbits (0.3 to 0.4 kg) were mixed and then 
randomly divided into two groups. Half of the animals were injected with a 
LD~0 of ST0901 endotoxin 4 mg/kg and the remainder served as controls. In 
each of the five experiments, approximately half of the injected animals sur- 
vived; these, with litter mate controls, were raised under identical conditions 
until adult (1.0 to 1.2 kg) and all were injected with 100 MPD-3/kg of ST0901 
endotoxin. Those adult animals given a massive dose of toxin when they were 
young (B), when compared with the controls (A), showed a marked suppres- 
sion of the febrile response, especially at 3 hours (Fig. 7). Thus, a single massive 
dose of endotoxin, given to young rabbits at 3 weeks of age, can modify their 
febrile response when they become adults 2 months later. 

Because a LD60 dose was used to select the test animals at 3 weeks of age, 
the method is open to criticism. It  might be assumed that the more resistant 
animals had been selected and might be expected to give a suppressed febrile 
response as adults. If this were so, one would expect that at least half of the 
litter mate controls corresponding to the half which survived the 4 mg/kg dose 
would also show the same suppressed febrile response when given the 100 
MPD-3/kg as adults. To test this, we plotted the distribution of the febrile 
responses of individual rabbits taken at 3 hours after the injection of 100 
MPD-3/kg both for the controls and for the tests. The median response for the 
controls was 3.5°F in contrast to 1.2°F for the test group. If selection had been 
a factor, the median of the lower half of the controls should have approached 
1.2°F rather than the observed 3°F. Since there was no evidence of selection, 
we believe that the massive dose of toxin modified the febrile response by one 
of the two mechanisms suggested. 

4. Specificity of Pyrogenic Tolerance in Adult Rabbits Given an Early Exposure 
to a Massive Dose of Endotoxin.--In an earlier experiment, purified endotoxin 
(CV) from C. vio/aceum gave a non-reciprocal cross-reaction when tested against 
endotoxin (COO8) from E. coli; with the pyrogenic exotoxin from Group A 
streptococcus type 18, there was complete specificity. 

Adult animals, injected with massive doses of endotoxins when they were 
young, were tested with homologous ST0901 and the heterologous CV and 
T-18 toxins (Fig. 8 B); the controls were given the same toxins and represent 
litter mates of the test group (Fig. 8 A). Again, there was no difference in the 
1 hour portion of the curve with the three toxins in either group. In the 3 hour 
portion of the curve (Fig. 8 B), however, there was a considerable suppression 
of the febrile response to the homologous ST0901, but with the heterologous 
CV and 1"-18 toxins, there were no significant differences between the control 
and test groups. With this method, therefore, we have shown the same degree 
of specificity observed when the toxins were tested in animals made tolerant 
by the method of Beeson (1). 

5. Effect of Age and Endotoxin Treatment on the Skin Reactivity to Endotoxln. m 



438 MODIFICATION O~F HOST RESPONSES TO ENDOTOXIBIS 

Regardless of the mechanism, if hypersensi t iv i ty  is suppressed when young 
animals are given massive doses of endotoxin, i t  might  also modify  the host  
response to skin react ivi ty .  Such a skin test  has been used for quan t i t a t ing  

TABLE I 
Effect of Age and Endotoxin Treatment on Skin Reactivity to Endotoxin 

Group 

Endotoxin treated$ . . . . . . .  
Litter mate control of the 

above group . . . . . . . . . . .  
Young rabbit control . . . . .  
Adult rabbit control. 

Weight 

kg 

1.0to 1.2 

1.0 to 1.2 
0.3 to 0.4 
1.0 to 1.2 

Age 

mont~ 

3 

3 
0.8 
3 

 "d°t°xi° S T 0':  g'n 02' mi, i"trade___  'lYA" 

100 10 1 

Posi- ~ i Posi- p . P o s i :  ~ • 
' ttlo~ae/l' t~°Se " '  ttioV~/1 ' ti°vSl-- [i~/l ' t~°~" 

33/34'  97 10/'34] 29 0 / 3 4  0 

30/30 100 30/30 I 100 111/30 37 
4/8 5o 0/8 o 1o/8 [ o 

[15/15 100 [15/15 I 100 ' 7/18 t 39 

* Positive skin reactions were greater than 5 X 5 mm at 24 to 48 hours. 
Adult rabbits which had received ST0901 endotoxin 4 mg/kg when they were young 

(0.3 to 0.4 kg at 3 weeks). 

TABLE II 
Induced Resistance to the Lethal Effect of Endotoxin 

Experiment 

A* 

B 

Group 

Test 
Control 

Test 
Control 

Body weight 

kg 

1.0 to 1.2 
1.0 to 1.2 

1.0 to 1.2 
1.0 
1.2 

Endotoxin 
ST0901 

intravenously 

~g/kg 

4O00 
4000 

2000 
500 
250 

No. of 
animals 

10 
11 

9 
9 

11 

Results 

No. of 
deaths 

0 
11 

Mortality 

per cent 

0 
100 

0 
56 
45 

* A. Test, adult rabbits which had received 4.0 mg/kg of ST0901 endotoxin when they 
were young (0.3 kg). Control, normal adult litter mates of A (test). 

B. Test, adult rabbits made tolerant by repeated daffy injections of ST0901 eudotox/n as 
follows: 1, 2, 2, 4, 4, 6, and 6/~g/kg. Control, normal adult rabbits. 

endotoxin toxici ty  (16) and the reaction has been compared with tha t  seen in 
classical de layed- type  hypersensi t iv i ty  skin reactions (17). 

As summarized in Table  I ,  there is a considerable difference in skin reac t iv i ty  
between young and adul t  animals.  Although this correlates well with the pyro-  
genic ac t iv i ty  in these two groups, the failure of young rabbi t s  to react  to less 
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than 100 #g may be due to lack of physiological maturation of the skin as sug- 
gested by Sterzl and Hrubesova (18). The fact remains, however, that  a num- 
ber of these young animals did react to 100/zg, 

We could also suppress the skin reactivity in adults by injecting massive 
doses of endotoxin (4 mg/kg) when the animals were young. To demonstrate 
this, it was  necessary to fitrate the toxins in the skin as shown in Table I. 
Significant differences were evident at  1 and 10/zg levels, but  not at the 100/zg 
level. I t  is possible that  the primary toxicity was contributing to the skin test 
directly and also augmenting the hypersensitivity. Such a mechanism has been 
suggested for the Dick reaction where the Group A streptococcal exotoxins 
appear to enhance a hypersensitivity reaction in the skin of older rabbits (2). 
The inhibition of the skin reaction correlates with the suppression of the 3 hour 
febrile response in similarly treated animals (Fig. 7). 

5.0 

/ . . . .  I / 
f _ 2 o  /kg / 

U.  
o 3.0 

n.- 
: 3  
I --  

~ 2 .0  
a .  

ul  
I.- 

1.0 

1 0 I I , l I I 
I 2 3 4 5 6 7 

TIME IN HOURS 

FIG. 9. Resistance of pyrogenic tolerant rabbits to endotoxin lethality. Control, mean 
febrile response of 7 normal adult rabbits (1.0 to 1.2 kg) given ST0901 endotoxin 250/zg/kg 
4 hours after an initial injection of 100 MPD-3(I.0 #g)/kg. Tolerant, mean febrile response 
of 7 tolerant rabbits (I.0 to 1.2 kg) given the same dose of ST0901 toxin as the controls. 

6. Induced Resistance to the Lethal Effect of Endotoxin.--In addition to in- 
vestigating the modification of the host response to pyrogenicity and skin re- 
activity, resistance to endotoxin lethality was also studied. Animals made 
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tolerant by the method of Beeson (1) and those previously given a massive dose 
of endotoxin when they were young, were injected with several lethal doses of 
homologous end0toxin. Results given in Table II compare adult animals, 
which had been pretreated, with their normal litter mates at the same weight 
for lethal resistance to endotoxins; those that had previously received massive 
doses of endotoxin were all resistant to 4 mg/kg or 8 to 16 LD~0, while all the 
normal litter mates died (A). Likewise, adult animals made tolerant by repeated 
daily injections of endotoxin were also completely resistant to 2 mg/kg of 
toxin or 4 to 8 LDs0 (B). 

Resistance of pyrogenic tolerant animals to the lethal effect of endotoxin is 
shown by another approach given in Fig. 9. Here, both tolerant and control 
animals gave characteristic fever responses to 100 MPD-3/kg. After 4 hours, 
both groups were given an additional 250 #g/kg of the same endotoxin. The 
animals in the control group were immediately shocked and over 50 per cent 
died while the tolerant group gave a normal fever response and all survived. 
It should be emphasized that the febrile response in the tolerant group is that 
which would be given by 100 to 200 MPD-3/kg. The 250/~g/kg dose represents 
25,000 MPD-3/kg, and it is apparent, therefore, that these animals were able 
to inactivate most of the injected toxin. In these tolerant animals, the mecha- 
nism which initiated the normal pyrogenic response remained intact and un- 
modified as indicated by the typical biphasic fever response. 

DISCUSSION 

The results presented in this study suggest that immunological mechanisms 
play a role in pyrogenic tolerance and other biological activities of endotoxins. 

Based on these findings and those of others, the following concept is pre- 
sented for discussion: Endotoxins have two interdependent activities, a primary 
and a secondary toxicity. The latter is determined by the hypersensitive state 
of the host to some portion of the macromolecular endotoxin. There is evidence 
that these two activities are in different parts of the macromolecule. Endotoxin 
tolerance, therefore, can be induced in two ways: one, by inactivating the 
primary toxicity, and two, by desensitizing the animal to the sensitizing portion 
of the endotoxin. The sensitizing determinant represents a common configura- 
tion in most endotoxins and is present in the cell wall of many microorganisms. 
Hypersensitivity to this determinant develops in most "normal" animals from 
contact with intestinal flora, subclinical and clinical infections. The acquired 
hypersensitivity or secondary toxicity is manifested by an enhancement of the 
3 hour portion of the fever curve, enhanced susceptibility to the lethal effects 
and increased skin reactivity to endotoxins. The induction of pyrogenic toler- 
ance by the repeated injection of endotoxin suppresses the 3 hour portion of 
the febrile response which correlates with acquired lethal tolerance. This de- 
sensitization or tolerance develops concomitantly with the acquisition of circu- 
lating classical antibodies; these assist the normally functioning RES to destroy 
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the endotoxin before its reactive groups contact the hypersusceptible cells of 
the host. The principle of this concept is not unlike that  proposed by Cooke 
eta/ .  (19) where blocking antibodies prevent the antigen from reacting with 
the skin sensitizing antibodies. The results used to formulate this concept will 
be presented and discussed in the order given above. 

The existence of at least two activities associated with a single endotoxin macro- 
molecule is indicated by the cross-tolerance studies with COO8 endotoxin and its 
derivative, Lipid A. Animals made tolerant to Lipid A showed little tolerance to the 
parent lipopolysaccharide (Fig. 3 A). One might assume that Lipid A has a low con- 
tent of the major sensitizing portion of the parent toxin and a relatively high con- 
centration of the configuration responsible for primary toxicity. Thus, it is possible 
that the parent toxin COO8 has a sensitizing antigen of a different specificity than 
that present in Lipid A; perhaps a common antigenic determinant was destroyed 
during the cleavage. If this were true, Lipid A should not make animals tolerant to 
the parent COO8, but the parent COO8 should induce tolerance to Lipid A. The cor- 
relation is nearly complete but the parent toxin does not give the anticipated com- 
plete tolerance to Lipid A (Fig. 3 A and B). Perhaps the dissociation of the Lipid A 
from the lipopolysaccharide exposed new determinant groups ordinarily present but 
not exposed in the parent COO8 toxin. Nowotny (20) assumed that new configura- 
tions may be present in Lipid A that are not evident in the parent lipopolysaccharide; 
this is explained by the reorientation and modification of reactive groups resulting 
from acid hydrolysis used in the cleavage. Regardless of the interpretation, the ab- 
sence of complete cross-tolerance between these related toxins makes it difficult to 
attribute toxicity to a single configuration within the toxin. There is also evidence 
that primary toxicity may exist independently of that associated with hypersensitivity 
(3, 21-23). 

As shown in this investigation, the resistance of the young rabbit to pyrogenicity, 
lethality, and skin reactivity with the gradual increase in the susceptibility to all of 
these attributes of endotoxin activity suggests a role for hypersensitivity in the second- 
ary toxicity of endotoxins. Others have also presented evidence which could implicate 
hypersensitivity in one or more biological activities of endotoxin (3, 17, 24). 

If hypersensitivity is involved as postulated, then desensitization would correlate 
with the development of pyrogenic tolerance (17). The mechanism of desensitization 
in delayed hypersensitivity is not known but it has been suggested that repeated 
injections of the antigen eventually destroys all of the sensitized ceils. Evidence 
against this mechanism as applied to pyrogenic tolerance is given in Fig. 9. Animals 
made tolerant to i00 MPD-3/kg when injected with an overwhelming dose of toxin 
gave a biphasic fever response indicating that susceptible ceils were available for 
damage in the tolerant or desensitized animal. 

In the concept outlined here, desensitization as applied to pyrogenic tolerance 
involves the induction of a classical immune mechanism. We have assumed that the 
determinant groups responsible for the pyrogenicity observed in the 3 hour portion 
of the febrile response are mostly identical or related in the sense of cross-reacting 
antigens which account for the apparent non-specific nature of pyrogenic tolerance. 

Specificity of pyrogenic tolerance demonstrated by controlled cross-tolerance 
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tests with endotoxins from C. violaceum (CV) and E. coli (C008) (Fig. 2) suggests 
that endotoxins isolated from organisms belonging to more unrelated families may 
show greater antigenic differences. This observation is supported by the results of 
Mergenhagen and Jensen (25) concerning endotoxin tolerance in the mouse. Vac- 
cination of mice with killed Gram-negative cocci of the genus Veillonella increased 
the resistance of the animals to the lethal effect of an endotoxin from the homologous 
organism but not to an endotoxin isolated from the unrelated E. coli. 

These results were again confirmed by the suppression of the 3 hour portion of the 
febrile response in adult rabbits by their early exposure to massive doses of endotoxins. 
Thus, young animals given a LD~o of S. typhosa (ST0901) endotoxin, when tested as 
adults, 2 months later, were tolerant to the homologous toxin but not to the heterolo- 
gous CV toxin (Fig. 8). Again, these results suggest an immunological mechanism. 
Originally, we attributed this suppression to immunological paralysis. Further studies 
on lethality and skin reactivity revealed similarities to the tolerance developed in 
adults by the method of Beeson (1) (Tables I and II). We postulated that when rab- 
bits were given a large parenteral antigenic stimulation their classical antibody- 
forming mechanism was readily activated by small quantities of antigen• received 
later from natural exposure. Animals not stimulated by sufficient antigeni c mass 
may develop primarily delayed hypersensitivity induced by small quantities of anti- 
gen available from natural sources. The significant anamnestic response shown by 
the development of complete tolerance within 2 days after a single injection of en- 
dotoxin in animals which had lost their tolerance is also suggestive of a classical im- 
mune response (Fig. 4). 

Additional evidence to support this concept includes studies on the passive transfer 
of tolerance by serum or plasma (26-28). Freedman (27), who has done extensive 
work in this area, does not attribute these significant observations to the presence 
of antibodies; the results, however, are consistent with an  immunological mechanism. 
The factors involved could be the same as the opsonins, unrelated to O antibodies, 
which assist the RES in the destruction of certain Gram-negative bacteria (29). Jenkin 
and Rowley reported that such opsonins are removed non-specifically from the serum 
by colloidal carbon. The removal may be more specific than suspected since i t  has 
been shown that carbon from the same source (Special Biological Ink Cl l  1431a, 
Gunther Wagner, Germany, contains small quantities of pyrogens (30). Benacerraf 
and Miescher (31) have also discussed non-specific opsonins which were thought to 
be active against some unsuspected cross-reacting antigen present in most endotoxins. 

Certainly many investigators (32) agree, as originally shown by Morgan (33), 
that antibodies against the O specific polysaccharides play no role in this mechanism. 
Also one must agree that the RES plays an important part in destroying the endotoxin 
(1, 34-36) ; this is not unique for endotoxin and is equally applicable to many immune 
mechanisms where specific antibodies assist the normally functioning RES. Thus, 
the ability to break pyrogenic tolerance by blocking the RES with thorotrast does not 
preclude a specifically acquired immune mechanism. The recent results of Stuart and 
Cooper (37) question the exclusive role of the RES in the mechanism of pyrogenic 
tolerance as originally suggested (1). The results of Greisman et al. (28) support 
the concept under discussion. They proposed that the tolerant animal possesses a 
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dual mechanism which includes the RES and a humoral factor thought to prepare 
the endotoxins for phagocytosis. 

I t  is possible that some of the inconsistencies reported on the nature of 
endotoxins and their activities (38) can be explained on the basis of the two 
activities discussed. In addition to the complexity of the toxins, the host 
presents several additional variables. As shown in this investigation and 
stressed by others (3, 17), the importance of the immunological state of the 
host and its contributions to the various biological activities of endotoxin 
cannot be overemphasized. 

SUMMARY 

Evidence is presented suggesting that the apparent non-specificity of py- 
rogenic tolerance observed with Gram-negative bacterial endotoxins is due to 
related antigenic determinants associated with the macromolecular toxins. 
This is based on results obtained in rabbits from pyrogenic cross-tolerance 
tests with selected endotoxins. In these tests, purified endotoxins from 
Escherichia coli (COO8) and Chromobacterium violaceurn (CV) gave results 
one might expect with non-reciprocal cross-reacting antigens in classical im- 
mune systems. Additional evidence for an immune mechanism in tolerance 
is suggested by the highly significant anamnestic response observed. 

Lipid A, a toxic derivative of the purified COO8 endotoxin, failed to induce 
pyrogenic tolerance against the parent toxin. These results are explained by 
assuming that endotoxins have two interdependent activities associated with 
different portions of the macromolecule; one is assumed to be responsible for 
the primary toxicity, and the other is involved in secondary toxicity. The latter 
is dependent on the hypersensitive state of the host. Additional evidence for 
the role of hypersensitivity in secondary toxicity is based on the observation 
that adult rabbits are highly sensitive to the pyrogenic, lethal, and skin- 
reacting activities of endotoxin in contrast to young animals which are more 
resistant to all of these attributes of toxicity. 

In adults, the host responses to pyrogenicity, lethality, and skin reactivity 
could be partially inhibited by the early exposure of the animals to massive 
doses of endotoxin equivalent to a LDs0. The pyrogenic tolerance shown in 
these animals was specific indicating that the inhibition of the hypersuscepti- 
bility'to endotoxin involved an immunological mechanism. 

A mechanism of endotoxin tolerance is proposed and discussed based on the 
induction of specific antibodies capable of assisting the RES in the clearance 
and destruction of endotoxin. 

It is suggested that the present inconsistencies relative to the chemical 
nature and biological activities of endotoxins might be explained on the basis 
of these two activities and the failure to recognize the importance of the 
immunological state of the host in which the toxins are tested. 
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