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Abstract

During ovarian development, gonadal ridge epithelial-like (GREL) cells arise from the epi-

thelial cells of the ventral surface of the mesonephros. They ultimately develop into follicular

granulosa cells or into ovarian surface epithelial cells. Stromal fibroblasts arise from the

mesonephros and penetrate the ovary. We developed methods for isolating and culturing

fetal ovarian GREL cells and ovarian fibroblasts by expansion of colonies without passage.

In culture, these two cell types were morphologically different. We examined the expression

profile of 34 genes by qRT-PCR, of which 24 genes had previously been studied in whole

fetal ovaries. Expression of nine of the 10 newly-examined genes in fetal ovaries correlated

with gestational age (MUC1, PKP2, CCNE1 and CCNE2 negatively; STAR, COL4A1,

GJA1, LAMB2 and HSD17B1 positively). Comparison between GREL cells and fetal fibro-

blasts revealed higher expression of KRT19, PKP2, OCLN, MUC1, ESR1 and LGR5 and

lower expression of GJA1, FOXL2, NR2F2, FBN1, COL1A1, NR5A1, CCND2, CCNE1 and

ALDH1A1. Expression of CCND2, CCNE1, CCNE2, ESR2 and TGFBR1 was higher in the

fetal fibroblasts than in adult fibroblasts; FBN1 was lower. Expression of OCLN, MUC1,

LAMB2, NR5A1, ESR1, ESR2, and TGFBR3 was lower in GREL cells than ovarian surface

epithelial cells. Expression of KRT19, DSG2, PKP2, OCLN, MUC1, FBN1, COL1A1,

COL3A1, STAR and TGFBR2 was higher and GJA1, CTNNB1, LAMB2, NR5A1, CYP11A1,

HSD3B1, CYP19A1, HSD17B1, FOXL2, ESR1, ESR2, TGFBR3 and CCND2 was lower in

GREL cells compared to granulosa cells. TGFβ1 altered the expression of COL1A1,

COL3A1 and FBN1 in fetal fibroblasts and epidermal growth factor altered the expression of

FBN1 and COL1A1. In summary, the two major somatic cell types of the developing ovary

have distinct gene expression profiles. They, especially GREL cells, also differ from the

cells they ultimately differentiate in to. The regulation of cell fate determination, particularly

of the bi-potential GREL cells, remains to be elucidated.
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Introduction

Understanding the development of the mammalian ovary is important for identifying the ori-

gins of different ovarian cell types and ovarian diseases. Despite much research in this area, the

knowledge of ovarian development is still somewhat disjointed, particularly across species. It is

commonly accepted that the ovary arises from the mesonephros [1, 2], but the origins of

somatic ovarian cells is not clear. For instance, granulosa cells that are epithelial cells that sur-

round each oocyte in follicles have been proposed to arise from the rete ovarii [3–5], the ovar-

ian surface epithelium [6, 7] or a recently identified cell type, the gonadal ridge epithelial-like

(GREL) cell [8]. Based upon morphological observations GREL cells are not only a precursor

of granulosa cells but also of ovarian surface epithelial cells [8, 9]. Penetration of stromal fibro-

blasts from the mesonephros into the primordial ovary has consistently been observed in a

number of species [6, 8, 10, 11].

In the ovary, granulosa cells contribute supportive functions to the oocyte via gap junctions

[12–14] and they communicate with the thecal cells [15, 16] that surround them. They play an

important role in follicle selection and follicle development [17, 18]. Furthermore, enzymes

which are essential to convert androgens into oestrogens [19, 20] are highly expressed in gran-

ulosa cells late in follicular development. On the other hand, the ovarian surface epithelium is

a single layer of epithelial cells covering the surface of the ovary. It is involved in the recovery

of the ovarian surface following the rupture of follicles at ovulation by cell proliferation.

Lgr5-positive stem cells have been identified in the ovarian surface epithelium where they

function as stem/progenitor cells for the recovery of the ovarian surface after ovulation [21,

22]. The differences between the two cell types which GREL cells differentiate into could be

the result of regulation by oocyte-secreted factors such as growth differentiation factor 9

(GDF9) and bone morphogenetic protein 15 (BMP15) which play essential roles in regulating

the proliferation and differentiation of granulosa cells [23]. The ovarian surface epithelium, on

the other hand, is separated from oocytes by stroma and basal lamina and is likely not exposed

to oocyte-secreted factors.

Stroma in the ovary provides structural support to this organ, but it also plays active

roles. During the development of the ovary, stroma from the mesonephros penetrates into

the primordial fetal ovary, and branches as it does so. This branching thus partitioning the

GREL cells and oogonia thereby creates the ovigerous cords. The stroma further partitions

the ovigerous cords into smaller groups of cells which become primordial follicles con-

taining an oocyte, derived from oogonia, and granulosa cells, derived from GREL cells.

The stroma penetrates to just below the surface of the ovary and spreads laterally and the

GREL cells on the surface differentiate into ovarian surface epithelium [8, 24]. The stroma

continues to play significant roles in adult ovaries. In vitro culture of follicles demon-

strates that the strength and rigidity of an artificial matrix can influence the growth of fol-

licles [25], which suggests that in vivo the strength and rigidity of stroma surrounding

follicles can influence follicle development. The fibroblast is the major cell type in stroma,

and hormones and growth factors can regulate the proliferation and extracellular matrix

(ECM) production of fibroblasts [26].

To conduct the first examination of GREL cells and to compare them to fetal fibro-

blasts, we examined the expression of a range of genes related to epithelial cells, stromal

cells, steroidogenesis, signalling receptors, cell cycle and germ/stem cells. We also exam-

ined the expression of these genes in the adult cells that the GREL cells and fetal fibroblast

differentiate in to. We also examined potential regulators of expression of stromal-related

genes in fetal fibroblast.
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Materials and methods

Collection of bovine fetal and adult ovaries

Fetuses from pregnant Bos taurus cows and ovaries from non-pregnant Bos taurus cows were col-

lected at local abattoirs (Thomas Foods International, Murray Bridge, SA, Australia and Strath

Meats, Strathalbyn, SA, Australia) and transported on ice in Hank’s balanced-salt solution (HBSS)

with calcium and magnesium (HBSS+/+) to the laboratory. The gestational ages of the fetuses were

estimated from the crown-rump length (CRL) [27]. Fetuses with a CRL< 8 cm underwent a sex

determination as previously reported [8]. Samples of whole fetal ovaries throughout gestation

(n = 27) were from our previous study [28] and collected from The Midfield Group, Warrnam-

bool, VIC, Australia. The bovine ovaries used in this study were scavenged from animals that were

being processed for human consumption and were not owned by the authors or their institutions.

As such the University of Adelaide’s Animal Ethics Committee only requires notification of this.

Isolation of fetal ovarian GREL cells and fibroblasts

Ovaries were dissected from the fetus and rinsed once with 70% ethanol and twice with HBSS+/+.

Then the fetal ovaries were fully minced and digested in 10 ml HBSS+/+ containing 1 mg/ml colla-

genase type I (GIBCO, Carlsbad, CA, USA) and 50 μg/ml DNase I (Sigma-Aldrich, New South

Wales, Australia) at 37˚C and shaking at 100 rpm. Minced ovaries from fetuses (CRL� 20 cm)

were digested for 30 min and ovaries from fetuses (CRL> 20 cm) were digested for 45 min. The

cell suspensions were then passed through cell strainers and centrifuged at 1200 rpm for 5 min

and the supernatants were discarded. Subsequently, the cell pellets were washed with 5 ml HBSS+/

+ and digested with 1 ml red blood cell lysis solution (Sigma-Aldrich, New South Wales, Australia;

Cat # R7757) by gently pipetting up and down for 45 sec. Thereafter, cell pellets were resuspended

in 1 ml DMEM/F12 medium (Sigma-Aldrich, New South Wales, Australia; Cat # D8900) contain-

ing 5% fetal calf serum (Sigma-Aldrich, New South Wales, Australia), 100 IU/ml penicillin, 0.01%

streptomycin sulfate (GIBCO, Carlsbad, CA, USA; Cat # 15140122), 0.1% fungizone (GIBCO,

Carlsbad, CA, USA. Cat # 15290–018) and 3 ng/ml human epidermal growth factor (EGF; Sigma-

Aldrich, New South Wales, Australia; Cat # E9644). Total cell number was determined using try-

pan blue method and a Neubauer haemocytometer. Then 250 cells were seeded per wellin 24-well

plates which were pre-coated with collagen type I (Sigma-Aldrich, New South Wales, Australia) at

a density of 10 μg/cm2. The cells were then incubated at 5% CO2 and 38.5˚C. The culture medium

was changed every two days and the growth of purified GREL or fibroblast clusters was checked

every day by light microscopy (Olympus, Tokyo, Japan). Clusters with characteristic morphology

were observed from day 2 onwards (S1 Fig). The majority of wells contained cultures of mixed

cell types with fibroblast clusters and only one or two large purified GREL cell clusters in each

24-well plate. The largest purified and healthy clusters of GREL cells or fetal fibroblasts were

selected on day 3 and day 4 (S1 Fig). In case the clusters were surrounded by some cells of another

cell type (S1 Fig), these cells were discarded by scraping with a sterile blunt-ended glass Pasteur

pipette and subsequent culture medium change. When the cell clusters were confluent (S2 and S3

Figs), GREL cells and fibroblasts were collected. To collect pure GREL cell or fibroblast cultures

for subsequent RNA extraction, the clusters were scraped with a blunt-ended Pasteur pipette and

the culture media with the cells transferred into sterile Eppendorf tubes. After centrifugation at

1500 rpm for 5 min, the cell pellets were stored at -80˚C until required.

Isolation of adult ovarian fibroblasts

After collection, any connective tissue surrounding the adult ovaries was discarded and the

ovaries washed with 70% ethanol and HBSS+/+. Individual ovaries were cut into quarters and
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tissue areas devoid of visible follicles was cut to a depth of about 0.5 mm from the surface and

minced with sterile razor blades and digested with HBSS+/+ containing 1 mg/ml collagenase

type I and 50 μg/ml DNase I at 37˚C shaking at 100 rpm for 1 to 2 h. Subsequently, cell suspen-

sions were passed through 70 μm cell strainers (Sartorius, Dandenong South, VIC, Australia)

and centrifuged at 1500 rpm for 5 min. The cell pellet was resuspended in 5 ml 0.05% trypsin/

EDTA (GIBCO, Carlsbad, CA, USA/Life Technologies Australia Pty Ltd, Tullamarine, Vic,

Australia) in HBSS without calcium or magnesium (HBSS-/-) for digestion with pipetting, and

the digestion was stopped with DMEM/F12 containing 5% fetal calf serum, 100 IU/ml penicil-

lin, 0.01% streptomycin sulfate, 0.1% fungizone and 3 ng/ml EGF after 5 min. Total cell num-

ber was determined as described above for fetal cells and the adult fibroblasts seeded into

24-well plates and cultured in the same medium and way as the fetal ovarian cells. Purified

clusters were collected and cell pellets were stored at -80˚C for subsequent use.

Collection of adult ovarian surface epithelial cells

Individual adult ovaries were placed into a 60 mm culture dish and the connective tissues around

the ovary was removed with forceps and scissors. Subsequently, ovaries were moved to another

dish with 12 ml DMEM/F12 containing 5% fetal calf serum, 100 IU/ml penicillin, 0.01% strepto-

mycin sulfate and 0.1% fungizone and the surface of each ovary was scraped with the blunt side of

a scalpel blade. Ovarian surface epithelium from five to seven ovaries were pooled and transferred

into a 15 ml centrifuge tube and centrifuged at 1500 rpm for 5 min. Supernatant was discarded

and cell pellets were stored at -80˚C until required. In total 5 pools were collected.

Collection of adult granulosa cells

Granulosa cells were isolated from the largest healthy antral follicle (9–12 mm) from each adult

ovarian pair. The diameters of the follicles were measured with callipers. The follicles were cut out

with scissors and transferred to a dish containing 1 ml HBSS-/-. The follicles were cut open with

scissors and granulosa cells scraped from the follicle wall with a blunt-ended Pasteur pipette. The

cell suspension from each individual follicle was transferred into a 15 ml tube containing HBSS-/-

and centrifuged at 1500 rpm for 5 min. Then the cell pellets were resuspended in 1 ml HBSS-/-

and the ratio of alive/dead cells determined using the trypan blue method and a Neubauer haemo-

cytometer. Cell suspensions containing more than 70% live cells were centrifuged at 1500 rpm for

5 min, and cell pellets stored at -80˚C for subsequent use.

Treatment of fetal fibroblasts

Fetal fibroblasts were from a previous study and had been cultured and treated as described

previously [26]. Note that these cells were not cultured with EGF during their isolation culture.

Briefly, bovine fetal fibroblasts were seeded in 24-well plates at a density of 30,000 cells/well in

DMEM/F12 containing 5% fetal calf serum, 1% penicillin and streptomycin sulphate and 0.1%

fungizone. When cells were 60–70% confluent, cells were treated with different agents for 18 h.

After 18 h, cells were harvested and stored at -80˚C. Expression of NR2F2, FBN1, COL1A1 and

COL3A1 was subsequently measured. Cells that were treated with 24 different agents as listed

in S1 Table were from weeks 13, 14, 17, 19 and 33 of gestation (n = 5) and those treated with

TGFβ were from gestational weeks 19–26 (n = 6).

RNA isolation, cDNA synthesis and quantitative real-time PCR

RNA from granulosa cells, ovarian surface epithelial cells and adult fibroblasts was extracted

with TRIzolTM (Thermo Fisher Scientific, Waltham, MA, USA) according to manufacturer’s
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instructions. RNA from GREL cells and fetal fibroblasts was extracted with RNAqueousTM-

Micro Total RNA Isolation kit. Ten μg of RNA of each sample was treated with DNase I (Pro-

mega Australia, Alexandria, NSW, Australia/Life Technologies Australia Pty Ltd, Tullamarine,

Vic, Australia) for 20 min at 37˚C. Two hundred ng of DNAse-treated RNA was used for

cDNA synthesis as previously described [8, 29]. Based on available RNA sequences in NCBI,

PCR primers were designed to span introns using Primer3 plus and Net primer software (PRE-

MIER Biosoft Palo Alto, CA, USA) and primers are listed in S2 Table. Primer combinations

were tested as previously described [29]. No addition of reverse transcriptase was used to con-

firm no amplification of any potential genomic DNA contamination. The amplification condi-

tions were 95˚C for 15 sec, then 60˚C for 60 sec for 40 cycles using Rotor Gene 6000 cycler (Q

series, Qiagen GmbH, Hilden, Germany). Ct values were determined using Rotor Gene 6000

software at a threshold of 0.05 normalised fluorescent unit. Gene expression values were deter-

mined using 2-ΔCt method and ribosomal protein L32 (RPL32) and peptidylprolyl isomerase A

(PPIA) were used as housekeeping genes. The fold change of gene expression in fetal fibro-

blasts treated with different agents were presented as 2-ΔΔCt data with the same housekeeping

genes in 2-ΔCt method. We analysed the expression levels of 34 genes relating to cell junctions,

extracellular matrix, enzymes and transcription factors in order to characterise the cultured

GREL cells and fetal fibroblasts.

Statistical analysis

All statistical analyses were carried out using Microsoft Office Excel 365 (Microsoft Redmond,

WA, USA) and IBM SPSS Statistics for Windows, version 25 (IBM Corp., Armonk, N.Y.,

USA). Scatter plots and columns were made using GraphPad Prism version 8.00 (GraphPad

Software Inc., La Jolla, CA, USA). Pearson correlation test was used to analyse the correlation

between gene expression levels and gestational age. The differences between GREL cells and

fetal fibroblasts, the differences between fetal fibroblasts and adult fibroblasts, and the differ-

ences between fetal fibroblasts cultured with or without EGF were analysed with Student’s t-

test. To determine significant differences among adult fibroblasts, granulosa cells and ovarian

surface epithelial cells, and differences between GREL cells with adult ovarian surface epithelial

cells or granulosa cells, one-way ANOVA and Tukey’s post-hoc tests were conducted. To com-

pare the difference between the control and the treatments in fetal fibroblasts, one-way

ANOVA with Dunnett’s post-hoc tests were conducted.

Results

Morphology of GREL cells and fetal fibroblasts in culture

Early in culture (day 2 and 3), GREL cells in clusters appeared to be of irregularly polygonal

shape, with clear visible nuclei, and in some areas tightly packed (S1A and S1C Fig), as previ-

ously observed [8]. In the following days, cells appeared to be more tightly connected (S1E and

S1F Fig) and remained so until the cells were ready for harvesting (Fig 1A and S2 Fig). In con-

trast, fetal fibroblasts showed the typical spindle shaped appearance as also seen in adult fibro-

blasts (Fig 1B, S1B and S1D Fig, S3 Fig). The purified GREL and fetal fibroblast clusters

demonstrated that the current method of isolating GREL and fetal fibroblast was feasible. In

order to explore more characters of GREL cells and fetal fibroblasts and to make comparisons

with their adult counterparts, we conducted analysis of expression of genes including those

involved in cellular junctions, extracellular matrix, hormone production, transcription factors,

oestrogen and TGFβ signalling, cell cycle and stem and germ cells.
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Presentation of gene expression data

In Figs 2 to 7 we present expression data of the 34 genes examined and then group them based

upon the functionally of genes for each Figure. For each gene the expression across gestation is

presented, and for 24 of the 34 genes this had been published previously and is acknowledged

and reprinted in the current Figs for ease of comparison. The data from the other 10 genes are

new data presented in this manuscript. We then present the expression in fetal fibroblasts and

GREL cells and the statistical comparison between them. We then present the expression in

adult fibroblasts, granulosa cells and ovarian surface epithelial cells and the statistical compari-

son between them. The data for each gene from gestation and from isolated cells in Figs 2 to 7

is plotted on the same scale for direct comparisons. The mean levels of expression in isolated

cells and statistical comparisons of fetal and adult cells in presented in Table 1. The individual

data of expression in fetal fibroblasts and GREL cells across gestation is presented in a supple-

mentary figure. The data with correlations between the 10 new genes across gestation and age

of gestation is presented in a supplementary table and cannot be combined with previously

published data on the other 24 genes as the RNA used for the 10 new genes is from a different

collection of fetal ovaries.

Cellular junctions

In the fetal ovary, KRT19 (Fig 2A), OCLN (Fig 2D and S3 Table), CTNNB1 and (Fig 2G) were

expressed constantly throughout the gestation. Expression of DSG2 (Fig 2B), PKP2 (Fig 2C

and S3 Table) and MUC1 (Fig 2E and S3 Table) were negatively correlated with gestational

age, however, expression of GJA1 (Fig 2F and S3 Table) was positively correlated with gesta-

tional age. In GREL cells and fetal fibroblasts, expression of KRT19 (Fig 2A), PKP2 (Fig 2C),

OCLN (Fig 2D) and MUC1 (Fig 2E) was significantly higher in GREL cells than fetal fibro-

blasts. DSG2 (Fig 2B) did not exhibit significant differences between GREL cells and fetal fibro-

blasts, even though most GREL cells exhibited higher DSG2 expression (S4A2 Fig) than fetal

fibroblasts from the same fetus. GJA1 (Fig 2F) had significantly higher expression in fetal fibro-

blasts. Expression of CTNNB1 (Fig 2G) did not exhibit significant differences (P> 0.05)

between GREL cells and fetal fibroblasts. In adult cells, expression of KRT19 (Fig 2A), PKP2
(Fig 2C), OCLN (Fig 2D) and MUC1 (Fig 2E) was greater in ovarian surface epithelial cells,

Fig 1. Morphology of fetal somatic cells. Representative micrograph image of (A) GREL cells and (B) fetal fibroblasts. The cell types were isolated from fetal

ovaries with gestational ages of 56 days and 73 days, respectively. Bars: 100 μm.

https://doi.org/10.1371/journal.pone.0268467.g001
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whereas GJA1 (Fig 2F) was higher in granulosa cells. DSG2 (Fig 2B) was more highly expressed

in ovarian surface epithelial cells and adult fibroblasts than in granulosa cells. Additionally

expression of CTNNB1 (Fig 2G) was not significantly different between the three cell types.

Fig 2. mRNA expression levels of genes associated with cellular junctions. Scatter plots in each subfigure show gene expression levels in fetal ovaries at

different gestational ages (n = 27), and scatter plots for KRT19 (A), DSG2 (B) and CTNNB1 (G) are from our previous publications [30, 31]. Gene expression

levels in cultured GREL cells (n = 7; gestational ages are 51, 56, 73, 110, 110, 127 and 177 days) and fetal fibroblasts (n = 6; gestational ages are 51, 73, 101, 110,

110 and 177 days) are presented as mean ± SEM (normalised to PPIA and RPL32) in the middle graph of each subfigure. The differences between GREL cells

and fetal fibroblasts were analysed with Student’s t-test. Data of gene expression in adult fibroblasts (n = 4), granulosa cells (GC; n = 5) and ovarian surface

epithelium (OSE; n = 5) are presented as mean ± SEM (normalised to PPIA and RPL32) in the graph on the right side of each subfigure. Significant differences

among the three adult cell types were determined by one-way ANOVA with Tukey’s post-hoc test. � P< 0.05, �� P< 0.01, ��� P< 0.001.

https://doi.org/10.1371/journal.pone.0268467.g002
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Extracellular matrix

In the fetal ovary, expression of LAMB2 (Fig 3B and S3 Table), FBN1 (Fig 3C), COL1A1 (Fig

3D), COL3A1 (Fig 3E) and COL4A1 (Fig 3F and S3 Table) were positively correlated with the

gestational age. FBN1 (Fig 3C) and COL1A1 (Fig 3D) levels were significantly higher in fetal

fibroblasts than in GREL cells. LAMB2 (Fig 3B), COL3A1 (Fig 3E) and COL4A1 (Fig 3F)

Table 1. Relative gene expression levels (2-ΔCt) are presented as mean ± SEM for each cell type. Comparisons are between fetal fibroblasts (n = 6) with adult fibro-

blasts (n = 4), and then fetal GREL cells (n = 7) with adult ovarian surface epithelial cells (n = 5) or granulosa cells (n = 5).

Gene Fetal fibroblasts Adult fibroblasts Fetal GREL cells Adult ovarian surface epithelial cells Adult granulosa cells

KRT19 0.542±0.203 0.286±0.120 5.044±1.313 3.090±0.515 0.003±0.001��

DSG2 0.059±0.024 0.027±0.011 0.132±0.048 0.041±0.005 0.000±0.000�

PKP2 0.022±0.005 0.01±0.002 0.080±0.024 0.106±0.013 0.012±0.003���

OCLN 0.001±0.000 0.006±0.005 0.017±0.005 0.272±0.057��� 0.003±0.000��

MUC1 0.004±0.001 0.005±0.003 0.009±0.002 0.180±0.027��� 0.002±0.001���

GJA1 2.640±0.332 3.732±0.798 1.461±0.319 1.507±0.287 17.049±5.306��

CTNNB1 0.281±0.047 0.177±0.023 0.290±0.064 0.504±0.071 0.922±0.302�

LAMB2 0.193±0.026 0.130±0.037 0.165±0.037 0.856±0.191�� 0.650±0.107�

FBN1 0.913±0.103 1.425±0.161� 0.374±0.104 0.211±0.029 0.012±0.003��

COL1A1 16.111±2.289 14.009±2.382 4.653±1.984 3.907±0.640 0.043±0.021���

COL3A1 6.116±1.553 4.484±0.453 3.613±1.339 2.186±0.381 0.009±0.003�

COL4A1 1.797±0.845 0.329±0.081 0.752±0.418 0.301±0.129 0.441±0.127

NR5A1 0.061±0.009 0.028±0.006� 0.016±0.007 0.120±0.021�� 0.416±0.105���

STAR 0.038±0.011 0.007±0.002 0.018±0.005 0.009±0.002 0.002±0.001���

CYP11A1 0.005±0.002 0.039±0.017 0.001±0.001 0.127±0.077��� 3.758±1.128���

HSD3B1 0.000±0.000 0.000±0.000 0.000±0.000 0.005±0.002��� 0.316±0.116���

CYP19A1 0.001±0.000 0.000±0.000 0.000±0.000 0.056±0.051� 10.307±2.106���

HSD17B1 0.000±0.000 0.000±0.000 0.000±0.000 0.003±0.001��� 0.328±0.157���

INHBA 0.002±0.000 0.001±0.000 0.001±0.000 0.008±0.005 0.005±0.002

NR2F2 0.559±0.128 0.455±0.096 0.135±0.037 0.172±0.024 0.050±0.016

FOXL2 0.051±0.008 0.024±0.006� 0.012±0.006 0.028±0.006 1.015±0.280���

ESR1 0.001±0.001 0.002±0.001 0.014±0.007 0.570±0.094�� 0.116±0.010�

ESR2 0.007±0.001 0.003±0.000�� 0.009±0.006 0.022±0.003� 0.144±0.039���

TGFBR1 0.148±0.033 0.06±0.008� 0.153±0.036 0.136±0.013 0.088±0.015

TGFBR2 0.105±0.026 0.05±0.011 0.129±0.037 0.533±0.076� 0.007±0.006���

TGFBR3 0.195±0.058 0.065±0.038 0.125±0.027 0.483±0.096�� 0.325±0.083�

CCND2 0.096±0.011 0.018±0.003�� 0.038±0.011 0.111±0.032 0.480±0.156��

CCNE1 0.038±0.005 0.009±0.002�� 0.018±0.004 0.025±0.011 0.024±0.006

CCNE2 0.039±0.005 0.005±0.001�� 0.024±0.005 0.022±0.007 0.060±0.0170

ALDH1A1 0.095±0.026 0.102±0.030 0.019±0.003 0.038±0.011 0.008±0.002

LGR5 0.000±0.000 0.000±0.000 0.001±0.000 0.045±0.007� 0.000±0.000

OCT4 0.012±0.001 0.007±0.001� 0.011±0.003 0.039±0.006�� 0.014±0.003

DAZL 0.003±0.001 0.001±0.000 0.001±0.000 0.003±0.001 0.001±0.000

VASA 0.001±0.000 0.000±0.000� 0.001±0.000 0.001±0.001 0.000±0.000

Student’s t-tests were used to analyse the differences between fetal fibroblasts and adult fibroblasts. One-way ANOVA with Tukey’s post-hoc test was used to analyse the

differences between GREL cells with adult ovarian surface epithelial cells or granulosa cells

� P < 0.05

�� P < 0.01

��� P< 0.001 report significant differences between the corresponding fetal cells with the adult cells.

https://doi.org/10.1371/journal.pone.0268467.t001
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expression did not exhibit significant differences between GREL cells and fetal fibroblasts. In

adult cells, adult fibroblasts had significant higher expression of FBN1 (Fig 3C) and COL1A1
(Fig 3D) and significantly lower expression of LAMB2 (Fig 3B) than ovarian surface epithelial

cells and granulosa cells. Ovarian epithelial cells and adult fibroblast had higher expression of

COL3A1 (Fig 3E) than granulosa cells. COL4A1 (Fig 3F) did not have significant differences

among the three cell types.

Genes associated with hormone production

In the fetal ovary, expression levels of NR5A1 (Fig 4A), CYP11A1 (Fig 4C) and HSD3B1 (Fig

3D) were not significantly correlated with gestational age. STAR (Fig 4B and S3 Table),

HSD17B1 (Fig 4F and S3 Table) and INHBA (Fig 4G) were positively correlated with gesta-

tional age but CYP19A1 (Fig 4E) was negatively correlated with gestational age. Fetal

Fig 3. mRNA expression levels of extracellular matrix genes. Scatter plots in each subfigure show gene expression levels in fetal ovaries at different

gestational ages (n = 27), and scatter plots for FBN1 (B), COL1A1 (C) and COL3A1 (D) are from our previous publications [30, 31]. Gene expression levels in

cultured GREL cells (n = 7; gestational ages are 51, 56, 73, 110, 110, 127 and 177 days) and fetal fibroblasts (n = 6; gestational ages are 51, 73, 101, 110, 110 and

177 days) are presented as mean ± SEM (normalised to PPIA and RPL32) in the middle graph of each subfigure. The differences between GREL cells and fetal

fibroblasts were analysed with Student’s t-tests. Data of gene expression in adult fibroblasts (n = 4), granulosa cells (GC; n = 5) and ovarian surface epithelium

(OSE; n = 5) are presented as mean ± SEM (normalised to PPIA and RPL32) in the graph on the right side of each subfigure. Significant differences among the

three adult cell types were determined by one-way ANOVA with Tukey’s post-hoc test. � P< 0.05, �� P< 0.01, ��� P< 0.001.

https://doi.org/10.1371/journal.pone.0268467.g003
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Fig 4. mRNA expression levels of genes involved in hormone production. Scatter plots in each subfigure show gene expression levels in fetal ovaries at

different gestational ages (n = 27), and scatter plots for NR5A1 (A), CYP11A1(C), HSD3B1 (D), CYP19A1 (E) and INHBA (G) are from our previous

publications [30, 31]. Gene expression levels in cultured GREL cells (n = 7; gestational ages are 51, 56, 73, 110, 110, 127 and 177 days) and fetal fibroblasts

(n = 6; gestational ages are 51, 73, 101, 110, 110 and 177 days) are presented as mean ± SEM (normalised to PPIA and RPL32) in the middle graph of each

subfigure. The differences between GREL cells and fetal fibroblasts were analysed with Student’s t-tests. Data of gene expression in adult fibroblasts (n = 4),

granulosa cells (GC; n = 5) and ovarian surface epithelium (OSE; n = 5) are presented as mean ± SEM (normalised to PPIA and RPL32) in the graph on the

right side of each subfigure. Significant differences among the three adult cell types were determined by one-way ANOVA with Tukey’s post-hoc test. �

P< 0.05, ��� P< 0.001.

https://doi.org/10.1371/journal.pone.0268467.g004
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fibroblasts had higher expression of NR5A1 (Fig 4A) than GREL cells. Likewise, CYP11A1 (Fig

4C) and INHBA (Fig 4G) had also a significantly higher expression in fetal fibroblasts, even

though it was very low. STAR did not show significance differences between GREL cells and

fetal fibroblasts (Fig 4B), even if most GREL cells had higher STAR expression than fetal fibro-

blasts of the same age (S4C2 Fig). Expression of HSD3B1 (Fig 4D), CYP19A1 (Fig 4E) and

HSD17B1 (Fig 4F) exhibited no significant differences between GREL cells and fetal fibro-

blasts, and they were expressed at very low levels. In adult cells, CYP11A1 (Fig 4C), HSD3B1
(Fig 4D) and CYP19A1 (Fig 4E) were more highly expressed in granulosa cells. NR5A1 (Fig

3A) was more highly expressed in both granulosa cells and ovarian surface epithelium than

adult fibroblasts. Ovarian surface epithelial cells and adult fibroblast had higher expression of

STAR (Fig 4B) than granulosa cells. HSD17B1 (Fig 4F) and INHBA (Fig 4G) did not exhibit

significant differences among the three cell types.

Transcription factors, oestrogen receptors and TGFβ signalling pathways

In the fetal ovary, NR2F2 (Fig 5A), ESR1 (Fig 5C), TGFBR2 (Fig 5F) and TGFBR3 (Fig 5G)

were positively correlated with gestational age but ESR2 (Fig 5D) was negatively correlated

with gestational age. TGFBR1 (Fig 5E) and FOXL2 (Fig 5B) were expressed constantly during

the gestation. In GREL cells and fetal fibroblasts, ESR1 (Fig 5C) was expressed significantly

higher in GREL cells. ESR2 (Fig 5D) was hardly detectable in GREL cells or fetal fibroblasts.

FOXL2 (Fig 5B) and NR2F2 (Fig 5A) was expressed significantly higher in fetal fibroblasts.

GREL cells and fetal fibroblasts did not exhibit significant differences in expression of

TGFBR1 (Fig 5E), TGFBR2 (Fig 5F) and TGFBR3 (Fig 5G). In adult cells, ESR1 (Fig 5C),

TGFBR1 (Fig 5E) and TGFBR2 (Fig 5F) were more highly expressed in ovarian surface epithe-

lial cells and ESR2 (Fig 5D) and FOXL2 (Fig 5B) were more highly expressed in granulosa cells.

TGFBR3 (Fig 5G) was expressed more in both surface epithelial cells and granulosa cells than

in adult fibroblasts. Adult fibroblasts had significant higher expression of NR2F2 (Fig 5A) than

ovarian surface epithelial cells and granulosa cells.

Cell cycle genes

In the fetal ovary, expression of CCND2 (Fig 6A), CCNE1 (Fig 6B and S3 Table) and CCNE2
(Fig 6C and S3 Table) was negatively correlated with gestational age. CCNE1 and CCNE2 lev-

els reached to a peak around 100 days of gestation before declining. In GREL cells and fetal

fibroblasts, expression of CCND2 (Fig 6A) and CCNE1 (Fig 6B) was significantly higher in

fetal fibroblasts, but CCNE2 (Fig 6C) did not exhibit significant differences between the two

cell types. In adult cells, expression of CCND2 (Fig 6A) was higher in granulosa cells. CCNE2
(Fig 6C) was more highly expressed in both granulosa cells and ovarian surface epithelium

than in adult fibroblasts, however, there was no statistically significant difference between

adult ovarian surface epithelial cells and adult fibroblasts. Expression of CCNE1 (Fig 6B) was

not significantly difference among the three adult cell types.

Stem or germ cell genes

In the fetal ovary, expression of ALDH1A1 (Fig 7A) was positively correlated with gestational

age but OCT4 (Fig 7C) was negatively correlated with gestational age. LGR5 (Fig 7B), DAZL
(Fig 7D) and VASA (Fig 7E) were constantly expressed throughout the gestation. In GREL

cells and fetal fibroblasts, expression of ALDH1A1 (Fig 7A) was significantly higher in fetal

fibroblasts but LGR5 (Fig 7B) was significantly higher in GREL cells. OCT4 (Fig 7C), DAZL
(Fig 7D) and VASA (Fig 7E) were hardly detected in GREL cells and fetal fibroblasts as

expected. In adult cells, LGR5 (Fig 7B) and OCT4 (Fig 7C) had higher expression in the
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ovarian surface epithelium. Similarly, ALDH1A1 (Fig 7A) had higher expression in both ovar-

ian surface epithelium and fibroblasts than granulosa cells. DAZL (Fig 7D) and VASA (Fig 7E)

were hardly detectable in the three cell types.

Fig 5. mRNA expression levels of transcription factors, oestrogen receptors and TGFβ signalling pathways. Scatter plots left in each subfigure of gene

expression levels in fetal ovaries at different gestational ages (n = 27) are from our previous publications [30, 31]. Gene expression levels in cultured GREL cells

(n = 7; gestational ages are 51, 56, 73, 110, 110, 127 and 177 days) and fetal fibroblasts (n = 6; gestational ages are 51, 73, 101, 110, 110 and 177 days) are

presented as mean ± SEM (normalised to PPIA and RPL32) in the middle graph of each subfigure. The differences between GREL cells and fetal fibroblasts

were analysed with Student’s t-tests. Data of gene expression in adult fibroblasts (n = 4), granulosa cells (GC; n = 5) and ovarian surface epithelium (OSE; n = 5)

are presented as mean ± SEM (normalised to PPIA and RPL32) in the graph on the right side of each subfigure. Significant differences among the three adult

cell types were determined by one-way ANOVA with Tukey’s post-hoc test. � P< 0.05, �� P< 0.01, ��� P< 0.001.

https://doi.org/10.1371/journal.pone.0268467.g005
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Fetal versus adult cells

CCND2, CCNE1, CCNE2, ESR2 and TGFBR1 were more highly expressed in the fetal fibro-

blasts than in adult fibroblasts (Table 1) whereas FBN1 was lower in the fetal fibroblasts.

Expression of OCLN, MUC1, LAMB2, NR5A1, ESR1, ESR2 and TGFBR3 was lower in GREL

cells than ovarian surface epithelial cells (Table 1). Expression of NR5A1, CYP11A1, HSD3B1,

CYP19A1 and HSD17B1 was statistically lower in GREL cells than ovarian surface epithelial

cells but all were much lower than granulosa cells (Table 1). Expression of KRT19, DSG2,

PKP2, OCLN, MUC1, FBN1, COL1A1, COL3A1, STAR and TGFBR2 was higher in GREL cells

compared to granulosa cells whereas expression of GJA1, CTNNB1, LAMB2, NR5A1,

CYP11A1, HSD3B1, CYP19A1, HSD17B1, FOXL2, ESR1, ESR2, TGFBR3 and CCND2 was

lower (Table 1).

Regulation of genes in fetal fibroblasts

Fetal fibroblasts previously isolated and cultured without EGF [26] and treated with 24 of hor-

mones, stimulators and growth factors were analysed for the expression of NR2F2, FBN1,

COL1A1 and COL3A1 which are commonly considered as genes expressed by ovarian fibro-

blasts. Results showed that many of the treatments had no significant effect on the expression

of those genes (S5 Fig). However, results of treatment of doses of TGFβ1 (5 or 20 ng/ml) on

fetal fibroblasts (n = 6 from the second trimester of gestation) showed significantly increased

FBN1 expression in fetal fibroblast and significantly decreased the expression of COL1A1 and

COL3A1 (Fig 8).

Fig 6. mRNA expression levels of cell cycle genes. Scatter plots in each subfigure show gene expression levels in fetal ovaries at different gestational ages

(n = 27), and the scatter plot for CCND2 (A) is from our previous publication [31]. Gene expression levels in cultured GREL cells (n = 7; gestational ages are 51,

56, 73, 110, 110, 127 and 177 days) and fetal fibroblasts (n = 6; gestational ages are 51, 73, 101, 110, 110 and 177 days) are presented as mean ± SEM (normalised

to PPIA and RPL32) in the middle graph of each subfigure. The differences between GREL cells and fetal fibroblasts were analysed with Student’s t-tests. Data

of gene expression in adult fibroblasts (n = 4), granulosa cells (GC; n = 5) and ovarian surface epithelium (OSE; n = 5) are presented as mean ± SEM

(normalised to PPIA and RPL32) in the graph on the right side of each subfigure. Significant differences among the three adult cell types were determined by

one-way ANOVA with Tukey’s post-hoc test. � P< 0.05, �� P< 0.01, ��� P< 0.001.

https://doi.org/10.1371/journal.pone.0268467.g006
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We compared the fetal fibroblast cultured in EGF-containing medium (n = 6 from 51, 56,

73, 110, 127 and 177 days of gestation) isolated in the current experiments with fetal fibroblasts

cultured in EGF-free medium (n = 11 from the first, second and third trimester of gestation)

from a previous study [26]. The result showed that EGF significantly increased FBN1 expres-

sion, but decreased the gene expression of COL1A1 (S6 Fig).

Discussion

In this study we developed methods for isolating and culturing fetal ovarian GREL cells and

fetal ovarian fibroblasts by removal of contaminating cells during culture and expansion from

single colonies without passage. We had to adopt this approach because we had not identified

a specific antigen on the surface of GREL cells to allow us to utilise more direct cell isolation

Fig 7. mRNA expression levels of stem and germ cell genes. Scatter plots in each subfigure show gene expression levels in fetal ovaries at different gestational

ages (n = 27) and are from our previous publications [30, 31]. Gene expression levels in cultured GREL cells (n = 7; gestational ages are 51, 56, 73, 110, 110, 127

and 177 days) and fetal fibroblasts (n = 6; gestational ages are 51, 73, 101, 110, 110 and 177 days) are presented as mean ± SEM (normalised to PPIA and

RPL32) in the middle graph of each subfigure. The differences between GREL cells and fetal fibroblasts were analysed with Student’s t-tests. Data of gene

expression in adult fibroblasts (n = 4), granulosa cells (GC; n = 5) and ovarian surface epithelium (OSE; n = 5) are presented as mean ± SEM (normalised to

PPIA and RPL32) in the graph on the right side of each subfigure. Significant differences among the three adult cell types were determined by one-way

ANOVA with Tukey’s post-hoc test. � P< 0.05, �� P< 0.01, ��� P< 0.001.

https://doi.org/10.1371/journal.pone.0268467.g007
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methods such as the use of magnetic beads or fluorescence-activated cell sorting. We investi-

gated the expression of a variety of genes to identify properties of GREL cells and fetal fibro-

blasts and examined differences with their adult counterparts. It should be acknowledged that

culturing of GREL cells could have contributed to differences observed with the granulosa

cells or ovarian surface epithelial cells which were not cultured. Furthermore, we additionally

carried out a series of treatments to identify possible regulators of extracellular matrix in fetal

fibroblasts. This is the first study of GREL cells since their identification.

Fig 8. Normalised gene expression genes in fetal fibroblasts. Fibroblasts from bovine fetal ovaries (19–26 weeks,

n = 6) were treated with 5 or 20 ng/ml TGFβ1 for 18 h. Fold changes of gene expression to the control groups are

presented as mean ± SEM (normalised to PPIA and RPL32). Significant differences between groups were determined

by one-way ANOVA with Tukey’s post-hoc test. �� P< 0.01, ��� P< 0.001.

https://doi.org/10.1371/journal.pone.0268467.g008
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Of the 10 newly-examined genes and the 24 previously-examined genes in whole fetal ova-

ries across gestation [30, 31] that we examined here in in-vitro cultured GREL cells and fetal

fibroblasts, many were expressed early in gestation (MUC1, PKP2, CCNE1, CCNE2, CCND2,

CYP19A1, DSG2, ESR2 and OCT4) and were negatively correlated with gestational age. Others

were expressed late in gestation (ALDH1A1, COL1A1, COL3A1, ESR1, FBN1, INHBA, NR2F2,

TGFBR2, TGFBR3, STAR, COL4A1, GJA1, LAMB2 and HSD17B1) and were positively corre-

lated with gestational age. The expression of NR2F2, FBN1, COL1A1 and COL3A1 that were all

positively correlated with the gestational age, could be as a result of the increasing volume of

stroma in the fetal ovary [32]. Many of the 10 newly-examined genes were either negatively or

positively correlated with each other. These patterns of gene expression and correlations

between genes have been observed previously [28–31] and reinforce the major developmental

processes that the ovary undergoes during its development [8].

Many earlier studies of fetal ovaries focused on germ cells and often refer to the other cells

as somatic cells which to some degree creates the impression that they are one cell type. How-

ever, our earlier studies identified that stromal fibroblasts and GREL cells have different cellu-

lar origins and exist in the ovary in different cellular compartments separated by a basal

lamina [8]. In the current study the morphology of the cells, when cultured, differed substan-

tially. The fibroblasts had a classical elongated shape and the GREL cells were of irregular

polygonal shape and were tightly packed together in colonies. Their gene expression profiles

were also different. Fifteen out of the 34 genes examined were differentially expressed with

GREL cells having higher expression of KRT19, PKP2, OCLN, MUC1, ESR1 and LGR5 and

lower expression of GJA1, FOXL2, NR2F2, FBN1, COL1A1, NR5A1, CCND2, CCNE1 and

ALDH1A1. That FOXL2 was higher in the fibroblasts is at odds with our previous immunohis-

tochemistry data [8]. Our previous microarray data demonstrated that GREL cells in culture

had higher signal intensity of KRT19, DSG2 and PKP2 than cultured fibroblasts isolated from

the adult ovary [8] and this is consistent our current on KRT19 and PKP2. There was a trend

for higher DSG2 expression in GREL cells, but not significantly so. The elevated levels of

NR2F2, FBN1 and COL1A1 in stromal fibroblasts is in agreement with previous immunolocali-

sation studies [8, 32]. Thus fetal fibroblasts and GREL cells are clearly different somatic cell

types.

During development of the ovary the GREL cells, being the only somatic cells on the sur-

face, mature into surface epithelial cells once the stroma has penetrated to below the surface

and spread laterally below it [8, 9]. It is when the stroma underlies the cells on the surface that

GREL cells form into a mature epithelium overlaying an epithelial basal lamina that separates

the epithelium from the underlying stroma. The position of basal lamina and stroma on the

basal side of the surface epithelial cells is important for the apical-basal polarity of epithelia

and much has been written about the effects of stroma on adjacent epithelial cells both in

organ development and in diseases processes such as cancer [33]. From the current study, the

cells in the adult ovary most closely related in phenotype to the GREL cells were the surface

epithelial cells. However, the adult surface epithelial cells had higher expression of OCLN,

MUC1, LAMB2, NR5A1, ESR1, ESR2 and TGFBR3. DSG2, KRT19 and PKP2 were also highly

expressed in GREL cells and ovarian surface epithelial cells. It has been found that cytokera-

tins, desmogleins and plakophilins bind to E-cadherin to facilitate formation of desmosomes

[34–36], suggesting that desmosomes exist in both, GREL cells and the ovarian surface epithe-

lium. The higher expression of OCLN suggests that the epithelium on the surface of the adult

ovary has matured with tight junctions between the cells and the higher expression of MUC1
suggests that they are actively and directionally secreting mucins. Mucins are expressed in epi-

thelia contacting relatively harsh microenvironments and form a mucin layer on the apical

surface of those epithelia [37, 38]. As such the adult surface epithelium would have apical-basal
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polarity cued by its interface with underlying stroma. The GREL cells in the developing ovary

would not have developed that polarity until such time as the stroma has completed its pene-

tration and expanded laterally below the surface. This is completed by the end of gestation

[32].

GREL cells also have the bi-potential ability and develop into granulosa cells of the follicles

[8]. They are the only somatic cells in the ovigerous cords. The other somatic cells of the ovary

are outside the cords in stroma and are separated from the inside of the cords by a basal lam-

ina. In the current study there were many genes that differed between the GREL cells and gran-

ulosa cells suggesting that the GREL cells would need to change considerably to form

granulosa cells. It would not just be a process of gaining functions as GREL cells would need to

reduce expression of KRT19, DSG2 and PKP2 and thus differentiating into granulosa cells may

be more complex than the differentiation into ovarian surface epithelium. However, this

might possibly not be the case as the comparison we made was with granulosa cells from

mature antral follicles. By this stage the granulosa cells are replicating and forming a multilay-

ered membrana granulosa and are hormonally active. In fact five of the genes differentially

expressed between GREL cells and mature granulosa cells have been previously identified to

be differentially expressed (COL4A1, INHBA, STAR, CYP11PA1 and CYP19A1), even from

small antral to large antral follicle sizes [39]. In hindsight, a better comparison would have

been with granulosa cells derived from primordial follicles, which we have never been success-

ful at isolating.

The fetal ovarian fibroblasts were similar to adult fibroblasts in their gene expression pro-

files. However, in order to isolate them free from GREL cells we cultured them and compared

them with adult fibroblasts which were also cultured. We have previously observed that ovar-

ian fetal fibroblasts from fetuses in their first trimester of gestation express and secrete fibrillin

3 [8, 40], but they lose that ability rapidly in culture and instead express fibrillin 1 [26]. How-

ever, the cultured fetal fibroblasts did retain some fetal characteristics as TGFβ1 decreased

expression of COL1A1 and COL3A1, as happens with fetal fibroblasts and which is the oppo-

site of what adult fibroblasts do [41, 42]. We also examined the effects of 24 hormones, stimu-

lators and growth factors and analysed the expression of genes expressed in fibroblasts

(NR2F2, FBN1, COL1A1 and COL3A1). Only TGFβ1 altered the expression of three of these

genes. We were also able to compare the expression patterns of genes in fibroblasts isolated in

a previous experiment which were cultured with no added EGF [26] with those isolated in the

current experiments isolated with EGF. The result showed that EGF significantly increased

FBN1 expression, but decreased the gene expression of COL1A1. Thus fetal fibroblasts appear

to have limited number of regulators.

In this study NR2F2, FBN1, COL1A1 and COL1A3 were used as the marker genes for the

stromal fibroblasts in the ovary [30, 43, 44]. NR2F2 encodes COUP-TF2 and it is abundantly

expressed in the human fetal ovary, playing a role as a sex-determining factor in the female

gonad [45]. FBN1, COL1A1, COL1A3 which encode fibrillin 1, alpha 1 chain of collagen type I

and alpha 1 chain of collagen type , respectively, are three components in ECM. Fibrillin 1 is a

glycoprotein essential for the formation of microfibrils, which appear to provide a scaffold for

the tissues [46]. Moreover, fibrillin networks exhibit regulatory functions on cell signalling

and behaviour [47]. Collagens interact with fibres in ECM and regulate the cell morphology,

growth and migration [48, 49], and collagen type I and III are secreted by fibroblasts [48, 50].

The high expression of NR2F2, FBN1 and COL1A1 in fetal fibroblasts was consistent with the

higher expression in adult fibroblasts than ovarian surface epithelial cells and granulosa cells.

LAMB2 encodes the beta 2 chain of laminin, which is a major component in basal laminas and

essential to cell adhesion [51, 52]. Expression of LAMB2 and COL4A1 increased slightly across

gestation suggesting that more basal lamina is present in late gestational fetal ovaries, which
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was consistent with the formation and growth of follicles and maturation of the ovarian surface

epithelium.

In genes involved in steroidogenesis, NR5A1 encodes steroidogenic factor 1, and it could

regulate genes encoding enzymes for steroidogenesis by binding to the promoter regions of

genes encoding steroidogenesis enzymes, such as CYP11A1, CYP19A1 and HSD3B1 [53, 54].

STAR, also regulated by steroidogenic factor 1 [54], encodes steroidogenic acute regulatory

protein, which is a transport protein for the transfer of cholesterol for the production of pro-

gesterone [55]. Our current data showed that NR5A1 was predominantly expressed in adult

epithelial cells and granulosa cells, and this was consistent with the higher NR5A1 expression

in GREL cells than fetal fibroblasts, suggesting that GREL cells exhibited a similar pattern with

its adult counterparts in NR5A1 expression. CYP11A1, HSD3B1, CYP19A1 and HSD17B1
encode different enzymes in steroidogenesis, and they were predominantly expressed in gran-

ulosa cells. However, they were only minimally expressed in GREL cells.

Previous studies have demonstrated that oestrogens promote proliferation of ovarian sur-

face epithelium [56] and granulosa cells [57]. ESR1 and ESR2 encode oestrogen receptor α and

β, respectively. Our current data demonstrated that ESR1 was mostly expressed in the ovarian

surface epithelial cells and ESR2 was predominantly expressed in granulosa cells, consistent

with previous studies [58, 59]. The very low levels of expression of ESR1 and ESR2 in fetal and

adult fibroblasts suggested that oestrogens do not directly regulate fibroblasts in ovarian devel-

opment or function. Moreover, the weak expression of ESR1 and ESR2 in GREL cells suggested

that GREL cells in culture are not regulated by oestrogens.

TGFβ signalling regulates processes such as follicle growth, oocyte meiotic maturation and

luteinisation in the ovary [60, 61]. TGFBR1 and TGFBR2 encode TGFβ receptors 1 and 2, and

have different affinities to TGFβ1, TGFβ2 and TGFβ3 [62–64]. Unlike these receptors, the type

3 receptor, encoded by TGFBR3, does not have any kinase activity, and it functions as an acces-

sory receptor stabilising the complexes between type 1 and 2 receptors and modulating the

activity of TGFβ ligands [65, 66]. Compared with the fetal ovary, GREL cells and fetal fibro-

blasts in culture had higher expression levels of TGFBR1, however, the two fetal ovarian cells

did not have higher expression of TGFBR2 or TGFBR3 than the fetal ovary. Moreover, the

higher expression levels of TGFBR1, TGFBR2 and TGFBR3 in ovarian surface epithelial cells

suggests that they could be more sensitive to ligands of the TGFβ family than granulosa cells.

Similarly, this scenario also happens in other genes, such as KRT19, FBN1 and STAR, which

implies the difference of granulosa cell from ovarian surface epithelial cell and GREL cell.

Oocyte-derived factors, GDF9 and BMP15, regulate proliferation and differentiation of granu-

losa cells [23]. Therefore, oocyte derived factors would be more necessary in the differentiation

of GREL cell into granulosa cell.

CCND2, CCNE1 and CCNE2 encode cyclin D2, cyclin E1 and cyclin E2, respectively, and

activate cyclin-dependent kinases, which regulate cell cycle G1/S transition [67, 68] and

increase cell proliferation [69–71]. Our previous study demonstrated that the proliferating

index was decreasing in both, the non-stromal component and the stroma of the fetal ovary,

and the expression of CCND2 was decreasing across gestation [31, 32]. Consistent with the

previous studies, CCNE1 and CCNE2 in the fetal ovary were also negatively correlated with the

gestational age.

Aldehyde dehydrogenase 1 family member A1 is encoded by ALDH1A1 and functions as

an enzyme in the biosynthesis of retinoic acid which regulates cell functions, such as self-

renewal and differentiation. Furthermore, ALDH1A1 regulates both normal stem cells and

tumor-initiating cells, and it is often used as a marker for stem cells [72, 73]. Leucine-rich

repeat-containing G-protein coupled receptor 5 (LGR5) is encoded by LGR5 and it plays an

important role in cell self-renewal [74, 75]. LGR5-positive stem cells have been identified in
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the mouse ovarian surface epithelium [21]. OCT4 is required for the survival of primordial

germ cells [76], and its expression decreases at the onset of meiotic prophase I [77, 78].

Depending on the species, VASA and DAZL are essential for the survival or migration of pri-

mordial germ cell [79, 80]. The observed low expression of ALDH1A1, LGR5, OCT4, DAZL
and VASA in GREL cells and fetal fibroblasts indicated that the two cell types probably do not

have properties of stem/germ cells.

Conclusions

The two major somatic cell types of the developing ovary, GREL cells and fetal fibroblasts,

have different cellular origins and exhibited different morphologies in cell culture. They also

have distinct gene expression profiles. They also differ from the cells they ultimately differenti-

ate in to. GREL cells had more epithelial properties which were closer to ovarian surface epi-

thelial cells and less so to granulosa cells. Considering the regulation of the oocyte on

granulosa cells, perhaps oocyte secreted factors might be necessary to establish the granulosa

cell lineage. Fetal fibroblasts differed minimally from adult fibroblasts apart from higher

expression of cell cycle genes. TGFβ1 and EGF may remodel ECM by regulating gene expres-

sion in fetal fibroblasts. In summary, whilst we can conclude that there are at least two somatic

cells in the ovary with very different properties that also distinguish them from their adult

counterparts, the regulation of cell fate determination, particularly of the bi-potentiality of

GREL cells, remains to be elucidated.

Supporting information

S1 Fig. Behaviour of bovine fetal ovarian cells cultured on collagen type I coated plates.

After 2 days in culture, sporadic GREL cell clusters (A) and fetal fibroblasts (B) could be

observed. GREL clusters grew slowly and formed larger clusters (C) in the subsequent culture

days. GREL cells appeared polygonal, and in some areas tightly packed, as previously observed

[8]. (D) Fetal fibroblasts grew faster than GREL cells and showed the typical spindle shaped

appearance as seen in adult fibroblasts. (E) Alongside wells with pure GREL cells and pure

fibroblasts, wells with both cell types could be observed. In these GREL cells formed clearly dis-

tinguishable clusters surrounded by fibroblasts. A sterile blunt-ended glass pipette was used to

remove the fibroblasts and continue the culture to obtain GREL cells (F). Gestational ages

were: (A) 51 and (B-F) 110 days. Bars: A-B, D-F = 100 μm; C = 200 μm.

(PDF)

S2 Fig. Representative micrograph images of each isolate of GREL cells used for qRT-PCR.

GREL cell clusters were grown on collagen type I coated plates. All 7 GREL cell samples col-

lected for qRT-PCR were from passage 0. Gestational ages were (A) 51, (B) 56, (C) 73, (D, E)

110, (F) 127 and (G) 177 days. Bars: (A-G) = 100 μm.

(PDF)

S3 Fig. Representative micrograph images of each isolate of ovarian fetal fibroblast cells

used for qRT-PCR. Fetal fibroblasts were grown on collagen type I coated plates and collected

on the same day as the corresponding GREL cells for gene expression analysis. All 6 fibroblast

samples were from passage 0. Gestational ages were (A) 51, (B) 56, (C) 73, (D, E) 110, (F) 127

and (G) 177 days. Bars: (A-F) = 100 μm.

(PDF)

S4 Fig. Normalised gene expression of genes in GREL cells and fetal fibroblasts. Gene

expression levels in cultured GREL (n = 7) and fetal fibroblasts (n = 6) were normalised to
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PPIA and RPL32, and they are presented as scatter plots.

(PDF)

S5 Fig. Normalised gene expression of stromal genes in fetal fibroblasts in the presence of

different treatments. Fibroblasts from bovine fetal ovary (n = 5) were cultured with different

treatments for 18 h. Fold changes of gene expression to the control groups are presented as

mean ± SEM (normalised to PPIA and RPL32). Significantly different results among groups

were determined by one-way ANOVA with Tukey’s post-hoc test.

(PDF)

S6 Fig. mRNA expression levels of stromal genes in fetal fibroblasts cultured in presence

or absence of EGF. Columns in white colour and black colour show gene expression in fetal

fibroblasts cultured in the absence of EGF (n = 11) in a previous study [26] and in the presence

of EGF (n = 7) in the current study, respectively. Data of gene expression are presented as

mean ± SEM (normalised to PPIA and RPL32). Significantly different results between groups

were determined by Student’s t-test. �� P< 0.01.

(PDF)

S1 Table. Treatments of cultured bovine fetal ovarian fibroblasts.

(PDF)

S2 Table. List of genes and primers used for qRT-PCR.

(PDF)

S3 Table. Pearson correlation coefficients (R) of expression levels of 10 newly-examined

genes in bovine fetal ovaries and gestational age (n = 27).

(PDF)
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