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Monitoring of dialysis sessions is crucial as different stress factors can yield suffering or critical situations. Specialized personnel
is usually required for the administration of this medical treatment; nevertheless, subjects whose clinical status can be considered
stable require different monitoring strategies when compared with subjects with critical clinical conditions. In this case domiciliary
treatment or monitoring can substantially improve the quality of life of patients undergoing dialysis. In this work, we present a
Computer Aided Detection (CAD) system for the telemonitoring of patients’ clinical parameters. The CAD was mainly designed to
predict the insurgence of critical events; it consisted of two Random Forest (RF) classifiers: the first one (RF

1
) predicting the onset

of any malaise one hour after the treatment start and the second one (RF
2
) again two hours later. The developed system shows an

accurate classification performance in terms of both sensitivity and specificity.The specificity in the identification of nonsymptomatic
sessions and the sensitivity in the identification of symptomatic sessions for RF

2
are equal to 86.60% and 71.40%, respectively, thus

suggesting the CAD as an effective tool to support expert nephrologists in telemonitoring the patients.

1. Introduction

Uremia is likely to occur when a person reaches the final
stage of End Stage Renal Disease (ESRD) as in the presence
of renal failure, urinary waste products, such as nitrogenous
substances and in particular urea, accumulate in the blood. In
these cases hemodialysis is the medical treatment replacing
(but not restoring) the kidney function, thus allowing the
extracorporeal removal of free water and waste products
from the blood. For hemodynamically unstable patients
hemodialysis is conducted in a dialysis outpatient facility.
However, for hemodynamically stable patients the dialysis
treatment can be also performed at home, for example, with
the assistance of a trained person, the patient himself, or a
family member.

ESRD is associated with premature mortality, decreased
quality of life, and increased healthcare costs [1]. It is worth-
while to note that today dialysis patients represent only 1% to
2% of the population affected by chronic kidney disease [2];
nonetheless over the past three decades, the incidence of the
ESRD has rapidly grown. Accordingly, this “silent epidemic”
represents a huge burden on the national healthcare systems.
In Europe, dialysis alone takes up about 2%of healthcare bud-
gets with only a small proportion (<0.1%) of the population
needing treatment [3]. These estimates are going to double
its value within the next 5 years, not even considering other
costs related to additional medical expenses, increased rate of
morbidity, hospitalization, reduction in work capability, and
life expectancy [4].
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In particular, in Italy the annual hemodialysis cost per
patient ranges between 35000 and 45000 euro. ESRD patients
represent only 0.083% of the Italian population; on the
contrary the overall treatment cost per year is about 2.5%
of the national healthcare budget (2,5 billion euro). As a
consequence, there is a compelling necessity for appropriate
healthcare policies and novel management solutions. With
this aim, it is fundamental to encourage the development
of protocols and methods granting the patients indepen-
dence and decision-making power in order to mitigate the
national healthcare burden. As an example, the Department
of Health in London has shown how the dehospitalization
policy of the hemodialysis patients can be a key solution:
(i) yielding significant cost reductions (approximately 30–
40%) and (ii) improving life quality [5]. A robust teleassis-
tance/telemonitoring system, providing medical support to
discharged patients at home, is a first fundamental step in this
direction.

Home telemonitoring/assistance is a healthcare manage-
ment approach based on remotemonitoring of the patients. It
consists of several sensor units collecting medical data, man-
aging and sending it to the Call Center Server where trained
staff perform data monitoring and support teleassistance
services. In such a context, we designed and deployed a fully
automated Computer Aided Detection (CAD) system, which
is integrated into the telemonitoring platform. The CAD is
designed to predict the insurgence of critical phenomena
such as hypotension during each hemodialysis session. The
CAD main result is a warning signal that suggests qualified
personnel to directly inspect primary clinical parameters,
eventually to provide adequate intervention.

During a dialysis session, in fact, several conditions
related to intradialytic hypotension such as nausea, muscle
cramps, and dizziness may occur. Intradialytic hypotension
can be defined as a reduction of systolic blood pressure
exceeding 20mmHg or as a reduction of the average pressure
of 10mmHg [6]. It attains from 5% to 30% of hemodialysis
sessions [7], with this variability depending mostly on the
heterogeneity of clinical conditions, and it can occur at least
one time for 75% of patients [8]. Occurrences higher than
50% have also been reported [9]. Dialysis hypotension is
caused by a decrease of blood volume due to the imbalance
between the ultrafiltration rate and the plasma refilling
rate [10]. Furthermore in case of hypotension, it is mostly
impossible to reach the dryweight leading to a state of chronic
overhydration [11–14].

The occurrence of hypotensive phenomena could be
lessened by performing hemodialysis at home, but in this case
the forecast ofmalaise conditions is of paramount importance
in order to grant patients the same care standards they would
benefit from in a dialysis outpatient facility. In the last 20
years the prevention of intradialytic hypotension phenomena
and the related causes have been deeply investigated [10],
in particular exploring the use of innovative noninvasive
techniques for the patient monitoring. These techniques are
mostly based on themonitoring of the Relative BloodVolume
(RBV), which varies during the hemodialysis session and
should maintain an adequate intravascular value [15–17]. A
large amount of clinical and biochemical data is available

but difficult to interpret because of noise acquisition or
data heterogeneity, just to mention a few possible causes.
In principle, supervised machine learning techniques could
be able to tackle these difficulties and accurately model the
occurrence of malaise during hemodialysis [18–21]. However,
the methods proposed in the literature elaborate numerous
variables known or supposed to influence the risk of hypoten-
sive phenomena according to clinical experience, but hardly
detectable for patients in session at home.

On the contrary, in this workwe present here a supervised
CAD based on primary clinical parameters that patients
can easily collect at home. In particular, the CAD is based
on the monitoring of systolic and diastolic blood pressure,
heart rate, and weight loss. This choice is motivated by
expert nephrologists keeping in mind the goal which is
not secondary to prevent the occurrence of potentially high
risk situations. For example, both high and low levels of
systolic and diastolic blood pressure are associatedwith organ
damage and serious vascular complications, such as cerebral
infarction and cardiac and mesenteric ischemia [22, 23];
therefore these parameters must be monitored to effectively
assist patients undergoing home hemodialysis. The CAD
was developed on data collected in a sample of patients
characterized by a stable clinical picture suitable for home
hemodialysis. A Random Forest [24] classifier was adopted
for both its robustness to failure and its computational
efficiency. To improve the monitoring quality the CAD was
designed to predict the onset of any malaise already one hour
after the treatment start and again after 120 minutes.

2. Materials

Data used in preparation of this paper were appositely
collected as part of an experimental study from May to
October 2014 on a total of 10 patients (7 men and 3 women)
undergoing hemodialysis at the Nephrology Department of
Bari University. Patients selected for home dialysis presented
a stable clinical picture, that is, with their clinical parameters
not showing significant variations during the sessions.

The treatments were performed three times a week, with
each treatment lasting up to 240 minutes. We acquired data
at several times 𝑇𝛼 from the session start (𝑇0) up to the end
with an interval of 30 minutes (𝑇1, 𝑇2, 𝑇3, 𝑇4, 𝑇5, 𝑇6, 𝑇7,
and 𝑇8). We monitored and recorded the clinical parameters
of interest as follows:

(i) systolic blood pressure (SBP),
(ii) diastolic blood pressure (DBP),
(iii) heart rate (HR),
(iv) weight.

In clinical practice, physicians set the weight that the patient
should reach at the end of the hemodialysis session and,
consequently, theweight loss per hour on themachine. Table 1
lists the parameters basic information measured for the ten
patients.

Accordingly, the data included an overall amount of 200
sessions, each of them including the parameters described
above. 8.8% of the sessions (17 sessions) were characterized
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Table 1: Basic information about the parameters measured for the ten patients.

Subjects Age Sex Critical
events

Average
weight (kg)

Average
SBP (mmHg)

Average
DBPe (mmHg)

Average
HR (bpm)

Sbj 1 66 M 0 80.6 ± 3.3 143.2 ± 8.2 70.4 ± 4.2 68.6 ± 3.5
Sbj 2 65 M 3 93.7 ± 3.8 118.2 ± 8.3 64.6 ± 3.7 58.1 ± 4.1
Sbj 3 65 M 5 72.1 ± 3.1 111.9 ± 10.8 54.5 ± 6.2 78.0 ± 4.5
Sbj 4 65 M 6 80.0 ± 3.3 117.4 ± 9.3 65.0 ± 5.8 67.4 ± 5.3
Sbj 5 37 M 2 60.2 ± 3.0 109.5 ± 7.3 71.9 ± 4.9 66.5 ± 4.6
Sbj 6 47 M 0 47.9 ± 2.4 130.5 ± 4.7 74.5 ± 3.4 72.8 ± 3.3
Sbj 7 52 M 0 82.7 ± 5.2 116.4 ± 6.5 75.9 ± 4.3 67.2 ± 4.2
Sbj 8 67 F 0 62.0 ± 2.9 131.3 ± 7.9 82.5 ± 4.0 69.8 ± 3.1
Sbj 9 69 F 1 61.8 ± 2.6 151.6 ± 8.7 84.2 ± 5.6 69.3 ± 4.6
Sbj 10 68 F 0 92.0 ± 3.7 124.3 ± 7.9 59.5 ± 4.1 70.3 ± 3.8

Table 2: Differences between the average values of systolic blood
pressure (SBP) and diastolic blood pressure (DBP) registered in the
two classes of sessions, for each time 𝑡 of detection.

Parameters
SBP (mmHg) DBP (mmHg)

𝑇0 −7.86 −4.43
𝑇1 −9.34

∗
−5.92

∗∗

𝑇2 −7.33 −4.68
𝑇3 −12.53

∗∗
−6.01

∗

𝑇4 −13.80
∗∗

−7.22
∗∗

𝑇5 −16.69
∗∗

−8.80
∗∗

𝑇6 −16.43
∗∗

−8.21
∗∗

𝑇7 −22.70
∗

−12.97
∗

𝑇8 −21.52
∗∗

−7.39
∗

∗
𝑝 value < 0.05; ∗∗𝑝 value < 0.01.

by malaise (nausea, muscle cramps, and dizziness), and, in
particular, for 14 sessions the symptoms occurred in the last
hour of treatment. The statistical evidences emerging during
the study are shown and discussed in the following.

2.1. Statistical Data Analysis. Dividing the observations in
two samples of patients, presenting or not hypotensive
phenomena, we also performed the hypothesis tests on the
average to eventually outline the presence of significant
differences. In fact, statistical Student’s 𝑡-test for independent
samples showed that after 30 minutes (𝑇1) from the begin-
ning of the session, after 90 minutes (𝑇3), and then until the
end, the average values of SBP and DBP of the sample of
symptomatic sessions were significantly different from those
found in the sample of nonsymptomatic sessions (Table 2).
This observation suggested a possible correlation of SBP and
DBP with the malaise onset.

Also, we found a significant difference between the aver-
age weight loss measured at 𝑇7 and 𝑇6, which is indeed the
time interval presenting the highest number of hypotensive
phenomena (Table 3).

Throughout the hemodialysis treatment it was not pos-
sible to detect any significant difference between the mean

Table 3: Differences between the average values of weight loss
recorded in the two classes of sessions, for each time 𝑡 of the
detection.

Parameter 𝑇0 𝑇1 𝑇2 𝑇3 𝑇4 𝑇5 𝑇6 𝑇7 𝑇8
Weight
loss (Kg) — 0.10 0.09 0.14 0.01 0.06 0.05 0.14∗ −0.78

∗
𝑝 value < 0.05.

values ofHR.However, it should be emphasized that the heart
rate is a parameter characterized by a more dynamic trend
than blood pressure, because it rapidly responds to metabolic
demands of the individual. As a consequence a 30-minute
time window could not probably be an optimal choice to
detect symptomatic changes, although one of the defensive
mechanisms of the cardiovascular system is sinus (or not)
tachycardia, when the blood pressure is dropping.

Interestingly, we found a linear relation between the
recorded parameters in each of the two groups. In particular,
statistical Student’s 𝑡-test on the Bravais-Pearson correlation
coefficient showed a significant correlation between SBP,
DBP, HR, and the patient’s weight recorded at the same time
(Table 4) for patients with no symptoms, except for𝑇0 and𝑇1
cases. On the contrary, in presence of symptoms, it is worth
noting that such a linear relationwas not significant (Table 5).

In line with the CAD purpose, we included two other
variables potentially useful in predicting the onset of malaise.
The first variable we added was the interdialytic weight gain.
Indeed, one of the possible causes of malaise during the
session could be likely attributed to an excessive initial weight
yielding a too fast removal of fluids in relation to the time
set for the dialysis [25, 26]. The interdialytic weight gain was
measured as the variation in percentage between the weight
at the beginning of the session (𝑇0) and the final weight of the
previous session (𝑇8󸀠) divided by the estimated dry weight:

Δ peso =
Weight (𝑇0) −Weight (𝑇8󸀠)

WeightDry
. (1)

The second variable we included was calculated by the values
of SBP at the beginning of the treatment. We observed how
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Table 4: Bravais-Pearson correlation coefficients between weight and systolic blood pressure (SBP), diastolic blood pressure (DBP), and heart
rate (HR) recorded during the asymptomatic sessions.

Weight (Kg) versus SBP (mmHg) Weight (Kg) versus DBP (mmHg) Weight (Kg) versus HR (bpm)
𝑇0 0.04 −0.49

∗∗
−0.25

∗∗

𝑇1 −0.11 −0.45
∗∗

−0.29
∗∗

𝑇2 −0.15
∗

−0.50
∗∗

−0.25
∗∗

𝑇3 −0.15
∗

−0.55
∗∗

−0.25
∗∗

𝑇4 −0.16
∗

−0.49
∗∗

−0.23
∗∗

𝑇5 −0.22
∗∗

−0.45
∗∗

−0.29
∗∗

𝑇6 −0.28
∗∗

−0.47
∗∗

−0.35
∗∗

𝑇7 −0.33
∗∗

−0.46
∗∗

−0.33
∗∗

𝑇8 −0.30
∗∗

−0.64
∗∗

−0.30
∗∗

∗
𝑝 value < 0.05; ∗∗𝑝 value < 0.01.

Table 5: Bravais-Pearson correlation coefficients between the weight and systolic blood pressure (SBP), diastolic blood pressure (DBP), and
heart rate (HR) recorded during the symptomatic sessions.

Weight (Kg) versus SBP (mmHg) Weight (Kg) versus DBP (mmHg) Weight (Kg) versus HR (bpm)
𝑇0 −0.59

∗∗
−0.63

∗∗
−0.53

∗∗

𝑇1 −0.22 −0.35 −0.46
𝑇2 −0.22 0.13 −0.47
𝑇3 −0.13 −0.04 −0.43
𝑇4 −0.18 −0.15 −0.34
𝑇5 −0.06 −0.19 −0.47
𝑇6 −0.31 −0.16 −0.54

∗

𝑇7 0.23 0.06 −0.29
𝑇8 −0.15 −0.16 −0.34
∗
𝑝 value < 0.05; ∗∗𝑝 value < 0.01.

acute hypotensive phenomena were a nonsymptomatic event
frequently occurringwhen the patient SBP at the beginning of
session resulted higher than 100mmHg, then dropping below
90mmHg during the treatment [27]. Accordingly, for each
session 𝑖 and for each time detection 𝑗 after the initial time,
we defined the normalized critical indicators PP

𝑖𝑗
ranging

between 0 (minimumcriticality) and 1 (maximumcriticality).
Whenever a patient showed an initial SBP value higher than
100mmHg the relative PP

𝑖𝑗
values were computed according

to the formula:

PP
𝑖𝑗
= 1, SBP (𝑇

𝑖𝑗
) ≤ 90mmHg,

PP
𝑖𝑗
= 1 −

SBP (𝑇
𝑖𝑗
) − 90

100 − 90

,

90mmHg < SBP (𝑇
𝑖𝑗
) < 100mmHg,

PP
𝑖𝑗
= 0, SBP (𝑇

𝑖𝑗
) ≥ 100mmHg.

(2)

On the contrary, for patients having an initial SBP <
100mmHg the critical PP

𝑖𝑗
value was set to zero.

3. Methods

We observed that 𝑇1 values of SBP, DBP, and HR are signif-
icantly associated with a malaise condition. Besides, with an

incoming crisis phenomenon, these values did not show any
correlationwith the patient weight. Hence, we concluded that
a one-hourmonitoring window could be sufficient to provide
a first robust alert. This warning signal was considered as a
preliminary measurement of the session trend; however it
was inevitably affected by important fluctuations (Figure 1)
caused by the session start. Accordinglywe designed theCAD
to provide a second warning one hour before the end of the
treatment. This design decision was also motivated from the
fact that most hypotensive phenomena occurred during this
particular time interval.

The recorded parameters and the previously mentioned
auxiliary variables were included as input features of a
Random Forest (RF) classifier. The RF is a well-known
ensemble classification method consisting of a randomized
set of stochastic tree classifiers. Each tree develops an
independent classification for the same example; then the
final classification is obtained by majority voting. The RF is
characterized by a generalization error that converges as the
number of trees in the forest becomes larger [28, 29]. The
use of a random feature selection for the training of each
tree grants RF an outstanding robustness and classification
performance higher than or comparable to those obtained
by other classifiers, such as AdaBoost, but more robust with
respect to noise [30, 31]. Moreover, it allows managing a large
number of features, maintaining its efficiency even in case
of missing data and in the presence of outliers. Thus it is
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Session start

After 60 minutes

After 180 minutes

After 240 minutes

Acquisition features
from time T0 to time T2

End of session

Acquisition features
from time T0 to time T6

Binary indicator of
the session trend

warning
Binary indicator of

Classifier RF1

Classifier RF2

Figure 1: Timeline flowchart of themonitored hemodialysis session.
The patients’ monitoring yielding the measurement of features after
60 and 180minutes is emphasized; in particular twoRandomForests
(RF) are used to detect the session trend and eventually a malaise
warning.

a classification algorithm suitable for clinical data analyses
[32, 33].

The first RF
1
classifier calculated a first risk likelihood

for the hemodialysis session only considering the values
of SBP, DBP, HR, and weight, measured at the beginning
of the session and after 60 minutes. It also considered the
values of weight loss per hour (the weight that should be
reached at the end of the treatment). Additional features
were the interdialytic weight gain and the critical indicators
of PP at 30 and 60 minutes. A label vector, indicative of a
symptomatic session (value 0) or nonsymptomatic session
(value 1), was used for training. In this first phase, the binary
vector considered all of the 17 sessions characterized by
malaise. Analogously, the second RF

2
classifier used the same

clinical parameters measured at the beginning of the session
and after 180 minutes. For this second model the label vector
used for training did not consider the crises occurring during
the past three hours of the treatment.The scores generated by
the second classifier were averagedwith the first ones in order
to increase the power and strength of the final prediction.

As the dataset mainly consisted of nonsymptomatic
sessions (183/200), it was necessary to balance the groups
for the two classifiers’ training. Undersampling the dataset
would have yielded a very limited sample training (∼30
observations). Thus, to solve this problem we preferred

Table 6: Bravais-Pearson correlation coefficients between systolic
blood pressure (mmHg) and diastolic blood pressure (mmHg)
recorded during symptomatic dialysis sessions.

𝑇0 𝑇1 𝑇2 𝑇3 𝑇4 𝑇5 𝑇6 𝑇7 𝑇8

0.76
∗∗
0.76
∗∗
0.83
∗∗
0.83
∗∗
0.84
∗∗
0.80
∗∗
0.85
∗∗
0.57
∗∗
0.70
∗∗

∗∗
𝑝 value < 0.01.

an oversampling strategy. We generated new examples for
the minority class to balance the two-class problem with
the addition of random noise to the observed features as
suggested in [34].

Specifically, we simulated 166 new sessions on the basis
of the statistical constraints previously emerging. We veri-
fied the normal distribution hypothesis for all the detected
parameters and for each acquisition time 𝑇𝛼, at 1% signif-
icance level, by means of the nonparametric Kolmogorov-
Smirnov test. Then we randomly generated the parameters
for the new sessions, adding a white Gaussian noise. Finally,
we combined these variables in order to reproduce the
correlation between the parameters. In fact, some parameters
are evidently correlated to each other and, for example, we
found a significant correlation (1% significance) also between
the following:

(i) weight to be reached at the end of the treatment and
weight at the beginning of the treatment (Bravais-
Pearson coefficient of 0.99),

(ii) weight loss and absolute weight loss after one hour
(coefficient of Bravais-Pearson equal to 0.99),

(iii) interdialytic weight gain and weight loss per hour
(Bravais-Pearson coefficient of 0.48),

(iv) weight at the beginning of session and weight of any
other detection (Bravais-Pearson coefficient of 0.99
for each detection time),

(v) SBP and DBP of any detection (Table 6).

Moreover, given the significance of the normal distribution
hypothesis for all the detected parameters, first we randomly
generated the parameters for the new sessions, adding a
whiteGaussian noise, and thenwe reproduced the correlation
between the parameters, by combining these variables.

In general, given two variables 𝑢 and V with mean equal
to zero and variance equal to one and with Bravais-Pearson
correlation coefficient 𝜌, the variables

𝑢
󸀠
= 𝑢√1 − 𝜌

2
+ V𝜌,

V󸀠 = V
(3)

still have an average of zero and a variance of one, but their
correlation coefficient is equal to 𝜌.

Accordingly, we assumed that 𝜎
𝑥
and 𝜎

𝑦
were the stan-

dard deviations and 𝜇
𝑥
and 𝜇

𝑦
the averages found in the

symptomatic sessions of two parameters 𝑥 and 𝑦. Once the
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the new treatments

Detection time<
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Score RF2

Score RF1<

RF1 and score RF2

Figure 2: The figure shows a comprehensive overview of the training (blue box) and the prediction algorithm (yellow box).

variables 𝑢󸀠 and V󸀠, correlated by a coefficient 𝜌
𝑥𝑦
, were

generated, we defined the two new variables 𝑥󸀠 and 𝑦󸀠 as

𝑥
󸀠
= 𝜇
𝑥
+ 𝑘𝜎
𝑥
𝑢
󸀠
,

𝑦
󸀠
= 𝜇
𝑦
+ 𝑘𝜎
𝑦
V󸀠

(4)

with standard deviation 𝑘𝜎
𝑥
and 𝑘𝜎

𝑦
, averages 𝜇

𝑥
and 𝜇
𝑦
, and

the same correlation 𝜌
𝑥𝑦

of the two parameters 𝑥 and 𝑦 of the
examined sample. The coefficient 𝑘 was the proportionality
factor of the standard deviation in the Gaussian noise. The
validation of the model was performed with a leave-one-out
cross-validation technique [35]. The decision to adopt this
approach is derived from the small number of critical events
in the class of interest.

In summary, as shown in Figure 2, the system was
developed in two phases, the training phase (blue box) and
the prediction phase (yellow box): two distinct predictions
were available for the test session, on the basis of the two
previously trained classifiers. The described classification
system was implemented by means of a MATLAB statistical
software.

The classification performance of the two classifiers was
evaluated in terms of accuracy, sensitivity, and specificity and
by means of the Area Under the Curve (AUC). By varying
the threshold on the classification output, different values of
sensitivity and specificity and, therefore, of accuracy were
defined. The Receiver Operating Characteristic (ROC) curve
summarized the classification performance along the entire
range of the possible threshold values. The AUC of the ROC

was used to express the “predictive power” of the classifier
[36].

4. Results

The stability and the performance of the two classifiers were
evaluated in terms of the AUC, by varying the constant 𝑘 in
the Gaussian noise formula. The classification performance
was robust for both classifiers as shown in Figure 3. Besides,
AUC results were not different (𝑧 test [37] significant at level
1%). The following results were obtained by simulating the
sessionswith events, setting the proportionality factor 𝑘 equal
to 1.

The classifier trained on the parameters of the first hour
of hemodialysis and the other trained to predict the crisis in
the last hour of treatment were moderately accurate [38]. In
particular, the AUC of the first classifier was equal to 0.76
with an error of 0.05 (Figure 4(a)); the AUC of the second
was equal to 0.73 with an error of 0.05 (Figure 4(b)). Using
Youden test [39], it was possible to identify the best cutoff,
that is, the optimal threshold that maximizes the predictive
power of a classifier, as the difference between true positives
(sensitivity) and false positives (1 − 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦).

The best cutoff maximizing the difference between true
positives and false positives for the first classifier was equal
to 0.42, associated with an overall accuracy of 86.50%. The
best cutoff for the second classifier was 0.37 associated with
an overall accuracy of 85.00% (Table 7). It is worth noting
that the sensibility of the secondwas significantly higher, thus
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Figure 3:TheAUC comparison of both classifiers for different values of the proportionality factor 𝑘 of the standard deviation in the Gaussian
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Figure 4: ROC curve of the first (a) and the second (b) classifier.

Table 7: Performance indicators of the two classifiers.

Classifier
RF
1

RF
2

AUC ± SE 0.76 ± 0.05 0.73 ± 0.05
Accuracy 86.50% 85.00%
Specificity 88.50% 86.00%
Sensitivity 64.70% 71.40%

resulting in a more desirable situation in which more cases of
malaise were detected.

It should be emphasized that the training of the two clas-
sifiers may be impaired by the presence of hypotensive non-
symptomatic phenomena. In fact, in these cases, important

variations of the clinical parameters do not match the onset
of malaise. Both classifiers had a high predictive power
on sessions without critical events, respectively, accounting
for 96.40% and 97.60%, but low predictive power on ses-
sions with crisis events, respectively, equal to 34.40% and
27.80%.

5. Conclusions and Discussions

ESRD patients which regularly undergo hemodialysis may
present malaise during the treatment eventually inducing
severe risk situations. This is why the development of
methodologies and analysis tools preventing the insurgence
of critical events during the dialysis treatments deserves
dedicated effort. Moreover, the successful development of
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strategies allowing the patients’ dehospitalization would have
a significant impact on both the quality of life of patients and
the economic burden national healthcare systems have to face
nowadays.

In this regard, many previous studies have investigated
the adoption of noninvasive devices to monitor and to
modify various parameters associated with the pathogenesis
of malaise. Essentially, current research and clinical practice
devices involve a complex instrumentation intended to mon-
itor the volume of blood. However, there seems to be no
direct control over some easily detectable clinical parameters,
such as BP and HR, strongly associated with the occurrence
of critical events. The pathogenic mechanism underlying
the intradialytic hypotension (a progressive hypovolemia
associated with an inadequate neuroadrenergic cardiovas-
cular response) occurs progressively over time. It could be
possible to hypothesize that the primary clinical parameters
(blood pressure, body weight, and heart rate), along with the
ultrafiltration volume measurement provided on the dialysis
screen, can result in a robust base of knowledge for the
design of an automatic prediction system for hypotensive
phenomena.

Accordingly, we propose a CAD system that, starting
from such easily detectable clinical parameters, is able to fore-
cast the risk of hypotensive phenomena during a hemodialy-
sis session.Themodel presented here is an innovative tool for
remote monitoring and support for home dialysis patients.
We demonstrated how this tool can reliably monitor the
patients and effectively forecast the insurgence of hypotensive
phenomena. The data heterogeneity and the class imbalance
made could significantly lower the performance of whatever
classification model; nonetheless we found our results more
than satisfactory. It should also be noted that the problem is
intrinsically imbalanced as the CAD is designed for hemo-
dynamically stable patients, thus resulting in subjects with
poor propensity to malaise. Further studies on independent
datasets should be led in the future.

The performed analyses confirmed the relevance of some
clinical parameters, such as the SBP and DBP levels, the HR
and the body weight, and the dry weight and weight loss per
hour to predict the insurgence of hypotensive phenomena.
In particular we found that early alterations in SBP and
DBP, probably due to the physical stress, can yield a crisis
event. Interestingly, when these parameters did not stabilize
within the first 90 minutes, we frequently observed a crisis
event. In particular, our results would suggest that linear
correlations among these variables and the weight could be
good predictors.

On the basis of such information, we designed the
CAD system, using a well-known ensemble method named
Random Forest. The system provided two different warnings
during a session. A patient undergoing hemodialysis eventu-
ally received a first signal alert after one hour of treatment, as
a preliminary measure of the dialysis session. This warning
was used to notify qualified personnel of the evidence
of an abnormal condition (e.g., when patients needed to
be stabilized). Since most of the hypotensive phenomena
occurred 30 minutes before the session ends, a second signal
was provided one hour before the end of the treatment.

The results of this first experimental study for hemodial-
ysis telemonitoring were encouraging. Indeed, the perfor-
mance of the two classifiers, evaluated by leave-one-out cross-
validation technique, resultedmoderately accurate, with both
an AUC equal to 0.76 ± 0.05 and 0.73 ± 0.05 and an overall
accuracy of 86.50% and 85.00%, respectively. It is worth
noting that the first classifier was able to reach a higher
AUC value; nevertheless the sensibility of the second one
was significantly higher, thus resulting in a more desirable
situation where fewer cases of malaise were not detected.
The misclassified sessions resulted the same for both models,
thus suggesting further investigation of these events in order
to understand if misclassification is yielded, for example,
by missing information (other clinical features could be
considered in case) or they represented cases of asymptomatic
malaise. Thus, about two-thirds of the alarm signals were not
followed by any malaise event, probably because they were
hypotensive nonsymptomatic phenomena.

The performance and strength of the designed system can
be improved by increasing the dataset especially in case of
hemodialysis sessions with new events of malaise, but also
by the identification of a third class represented by non-
symptomatic hypotensive phenomena. In the present study,
nonsymptomatic hypotensive phenomenawere considered as
a subsample of latent asymptomatic sessions, but it is rea-
sonable to assume that they may have introduced distortions
in the training phase of the designed model. Moreover, the
identification of this other class should be useful to early
diagnose and to reduce these kinds of phenomena, harmful
for the patients.

Future developments of this study may relate the def-
inition of a forecasting model specific for each patient,
trained on his own historical data or on the data of patients
with similar physical and clinical characteristics. The trained
model, when properly integrated on telemonitoring and
teleassistance platform, allows the patients to be monitored
in real time, in order to favor the timely remote intervention
of doctors in prevision of malaise.
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