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Abbreviations
AC  Adenylyl cyclase
β-AR  Beta adrenergic receptor
cAMP  Cyclic adenosine monophosphate
HCN  Hyperpolarization-activated cyclic nucleo-

tide-gated channels
If  Funny current (HCN)
IVC  Inferior vena cava
M2R  Muscarinic receptor type 2
NCX  Calcium-sodium exchanger
PKA  Protein kinase A
RA  Right atrium
RyR  Ryanodine receptor
SAN  Sinoatrial node
SVC  Superior vena cava

Introduction

On average, the human heart beats 100,000 times a 
day. Every heartbeat starts with a subtle electrical 
spark inside the sinoatrial node, a small and highly 
specialized tissue located next to the right atrium also 
known as the cardiac pacemaker. The automaticity 
of the cardiac pacemaker relies on the unique abil-
ity of its cells to continuously generate action poten-
tials, starting very early during embryonic develop-
ment and working non-stop until the moment we die. 

Abstract The cardiac pacemaker ignites and coor-
dinates the contraction of the whole heart, uninter-
ruptedly, throughout our entire life. Pacemaker rate is 
constantly tuned by the autonomous nervous system 
to maintain body homeostasis. Sympathetic and para-
sympathetic terminals act over the pacemaker cells 
as the accelerator and the brake pedals, increasing or 
reducing the firing rate of pacemaker cells to match 
physiological demands. Despite the remarkable reli-
ability of this tissue, the pacemaker is not exempt 
from the detrimental effects of aging. Mammals expe-
rience a natural and continuous decrease in the pace-
maker rate throughout the entire lifespan. Why the 
pacemaker rhythm slows with age is poorly under-
stood. Neural control of the pacemaker is remodeled 
from birth to adulthood, with strong evidence of age-
related dysfunction that leads to a downshift of the 
pacemaker. Such evidence includes remodeling of 
pacemaker tissue architecture, alterations in the inner-
vation, changes in the sympathetic acceleration and 
the parasympathetic deceleration, and alterations in 
the responsiveness of pacemaker cells to adrenergic 
and cholinergic modulation. In this review, we revisit 
the main evidence on the neural control of the pace-
maker at the tissue and cellular level and the effects 
of aging on shaping this neural control.
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Despite the remarkable reliability of this tissue, the 
pacemaker is not exempt from the detrimental effects 
of aging [1]. Mammals, including humans and mice, 
experience a natural and continuous decrease in the 
intrinsic pacemaker rate throughout their entire 
lifespan (Fig. 1) [2, 3]. The intrinsic pacemaker rate 
declines linearly from birth at a rate of ~ 0.8 bpm/year 
in humans and ~ 4 bpm/month in mice [3]. The slow-
down of the intrinsic pacemaker rate is the main cause 
for the accompanying decline in maximum heart 
rate, playing a significant role in the loss of aerobic 
capacity in older adults. In pathological cases, this 
slowdown results in arrhythmia and sometimes sud-
den death as part of a group of idiopathic disorders 
known as Sick Sinus Syndrome [4]. This syndrome is 
the main cause for more than 600,000 artificial pace-
maker implantations carried out annually in the world 
[5]. Hence, aging is the leading risk factor for heart 
pacemaker dysfunction, which justifies the urgency 
of understanding the pacemaker’s age-dependent 
decline. Although some of the mechanisms behind 
the pacemaker slowdown are being elucidated, there 
are still many unanswered questions.

Heart rate is finely tuned through neural control 
to maintain body homeostasis in constantly changing 
conditions. Slight internal changes in blood volume, 
 CO2 levels, or pH trigger the activation of autonomic 

reflexes that directly modulate the intrinsic firing 
rate of pacemaker cells. In addition, pacemaker rate 
is abruptly changed in response to external stimuli 
as part of the fight-or-flight response activated under 
acute stress [1, 6]. Neural control of the pacemaker 
is achieved by a dense innervation, making the pace-
maker the most innervated region of the heart [7]. 
The direct action of autonomic innervation on the 
firing of the pacemaker was first visualized by Otto 
Hutter and Wolfgang Trautwein in 1955, pioneers in 
the pacemaking field. Hutter and Trautwein photo-
graphed, for the first time ever, traces showing vagal 
stimulation depressed the pacemaker firing while 
stimulation with atropine accelerated it [8]. Since 
then, questions regarding pacemaker modulation, 
its pattern of innervation, and the disease-related 
changes in the neural control of the pacemaker have 
been further researched.

As shown in Fig.  1, heart rate varies with age, 
with a rapid decrease in resting heart rate from birth 
till late childhood, and a parallel linear decline in the 
maximum and the intrinsic pacemaker rate through-
out the entire life [2, 9]. Age-associated changes in 
the resting heart rate depend mainly on the remod-
eling of the pacemaker’s neural control. During the 
first years after birth, there is a predominant sympa-
thetic drive that maintains high resting rate values. 

Fig. 1  Comparison of 
maximum, intrinsic, and 
resting heart rates along 
human lifespan, illus-
trating the effect of age 
on the sympathetic and 
parasympathetic drive. The 
Intrinsic heart rate declines 
linearly from birth at a rate 
of ~ 0.8 bpm/year in humans 
[3]. Data to build the graph 
was obtained from Marcus 
et al. [9], Ostchega et al. 
[2], and the AHA
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However, throughout childhood, the parasympa-
thetic tone increases and becomes predominant, set-
ting lower resting rates that remain relatively stable 
throughout the lifespan.

In contrast, the age-associated linear decline in the 
intrinsic heart rate has been proposed to be caused 
by a combination of intrinsic and extrinsic mecha-
nisms. Some of the identified intrinsic mechanisms 
behind the slowdown of the intrinsic pacemaker 
rate include (i) the reduction in the activation of the 
funny current (If) carried by HCN channels, which is 
one of the main ionic currents sustaining the pace-
maker automaticity [3, 10], (ii) a tissular remodeling 
driven by the loss of pacemaker cells [11–13], and 
(iii) a reduction in the sensitivity of pacemaker cells 
to adrenergic modulation. We refer the readers to a 
comprehensive review recently published by Peters 
et al. [1] covering these three main aspects. Extrinsic 
mechanisms linked to the age-associated pacemaker 
slowdown include an increase in tissue fibrosis and 
changes in the sympathetic/parasympathetic balance. 
There is evidence that aging causes an important 
remodeling in the sympathetic and parasympathetic 
modulation and the response of pacemaker cells to 
it. Despite the evident remodeling of the neural con-
trol of pacemaker function, little is known about how 
aging affects the innervation of the pacemaker and 
the neuro-pacemaker communication. Here, we will 
revisit the main evidence on the neural control of the 
pacemaker at the tissue and cellular levels and the 
effects of aging on shaping this neural control.

Pacemaker anatomy and structural alterations 
during aging

The cardiac pacemaker was anatomically identified 
in 1907 by Arthur Keith and Martin Flack. Only a 
select group of studies have such an impressive list 
of materials like that from Keith and Flack’s original 
paper [14]. By analyzing hearts from eels, salmon, 
frogs, lizards, turtles, moles, mice, cats, a kangaroo, 
a dolphin, humans, and even a whale, Keith and Flack 
identified inside the sino-auricular junction a con-
served region of characteristic primitive wavy fibers 
which exhibited a close connection with the terminals 
innervating the heart. This led them to hypothesize 
that this region was the origin of the heart’s rhythm 
and the main target for the heart’s neural control; 

further studies would prove them right [15–17]. The 
pacemaker is located next to the right atrium and 
delimited to the left by the crista terminalis, to the 
bottom by the inferior vena cava, and to the top by 
the superior vena cava (Fig.  2). Size and position 
vary between species, but it is always delimited to the 
intercaval region [18]. Occupying only about 3% of 
the heart surface area [19], the pacemaker drives the 
contraction of the whole heart. Opposite to the large 
and highly organized cells that form the ventricles 
and atria, the pacemaker is formed by small wavy 
cells with poor content of myofibers immersed into a 
dense connective tissue network [20, 21]. The proper 
function of the pacemaker relies on its architecture 
[18]. Far from being a homogeneous structure, the 
pacemaker is formed by at least three morphologi-
cally different cell types, classified as spindle, elon-
gated, and spider cell-types [22–24]. These cells are 
organized into a complex tridimensional structure 
divided into a head and a tail region (Figs. 2 and 3A). 
Although it is not yet clear how these three cellular 
subtypes organize inside the pacemaker or if they 
play different roles in the generation and conduction 
of the electrical signals, there is evidence in rabbits 
[25], dogs, and humans [26] that spindle cells inside 
the head of the pacemaker organize to form the pace-
maker lead. The lead initiates the electrical signal 
that propagates through the pacemaker and travels 
along the electrical conduction system of the heart 
to trigger the contraction of the heart chambers [27]. 
The pacemaker tail, also called the peripheral area, 
is composed of less packed pacemaker cells running 
in a caudal direction (Fig.  2 and 3A). In some spe-
cies, there is a gradual transition with pacemaker cells 
interspersed with atrial-like cells [18]. The tail plays 
an important role in the propagation and the exit of 
the electrical signal towards the right atrium. Electri-
cal continuity is important for the conduction of the 
electrical signals. As such, pacemaker cells are con-
nected through gap junctions formed by connexins 
45, 40, and 30.2 to secure the rapid spread of the sig-
nal [18, 28–30]. Interestingly, cells at the center of the 
pacemaker do not connect to a vast extent, suggesting 
that they have a very specialized and efficient electri-
cal coupling [31]. Given the high metabolic activity 
of this tissue, the pacemaker is highly vascularized, 
being supplied directly by the sinoatrial node artery 
and a vast arteriole and capillary network (Fig. 3B).
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Architectural remodeling of the pacemaker tissue 
has been suggested as one of the factors leading to its 
dysfunction during aging. The main age-associated 

changes include changes in cell size, cell number, 
and fibrosis. Both cell atrophy [13] and hypertrophy 
[3, 32, 33] have been observed in old animals, so 

SVC

RA RA

IVC

Head

Tail

200 μm

HCN4
a b c

Fig. 2  a Anatomical localization of the cardiac pacemaker 
next to the right atrium (RA). b Representation of the ventral 
view of the cardiac pacemaker delimited by the crista termi-
nalis, the superior (SVC), and inferior vena cava (IVC). c. 
Representative super-resolution image of a cleared pacemaker 

from a 6-month-old mouse. Tissue was immunostained with 
the anti-HCN4 marker for pacemaker cells. Positive labeling is 
depicted in the inverted gray-scale image. The head and the tail 
regions of the pacemaker are indicated with the arrows
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Fig. 3  Representative 10X AiryScan super-resolution recon-
struction of the mouse pacemaker. The pacemaker was iso-
lated from a 4-month-old animal and immunostained against 
a the pacemaker marker HCN4 channel (blue), b the vascu-
lar marker CD31 (orange), and c the sympathetic marker TH 
(magenta). d Magnification of the sinoatrial node (SAN) artery 

(orange) and the sympathetic innervation of the vasculature 
(magenta). e Magnification to show the sympathetic axonal 
varicosities (magenta) in close contact with the pacemaker 
cells (blue). f–g 63X magnifications of two pacemaker regions 
to show the intricate contacts between the sympathetic termi-
nals, the vascular tree, and the pacemaker cells
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the association between cell size and dysfunction is 
still inconclusive. The number of pacemaker cells is 
inversely proportional to age [11, 34], and, in some 
cases, the amount of fibrotic tissue is positively cor-
related with age [11–13, 35]. However, fibrosis has 
also been observed in healthy individuals, suggesting 
that fibrosis does not necessarily lead to pacemaker 
dysfunction [35, 36]. Another common age-associ-
ated architectural change is the infiltration of fatty 
tissue, but its role in pacemaker dysfunction remains 
unknown [13]. Given the high metabolic demand of 
the pacemaker, another important and unexplored 
aspect is how aging affects the vascularization of the 
pacemaker.

Autonomic heart rate modulation and aging

In order to understand the heart rate neural control, it 
helps to visualize the pacemaker as a car driving at a 
constant speed that can be overridden by pressing the 
accelerator or the brake. In the absence of any exter-
nal input, the constant speed of the car is equivalent 

to the so-called intrinsic heart rate, which is dictated 
by how fast the pacemaker cells can fire action poten-
tials. The accelerator pedal represents the sympathetic 
neurons innervating the pacemaker, which, by the 
release of noradrenaline, accelerates the pacemaker 
up to the maximum heart rate. The brake represents 
the parasympathetic nerve terminals, which, through 
the release of acetylcholine, decreases the intrinsic 
rate to reach the minimum level, commonly referred 
to as the resting heart rate. Humans have a tonic par-
asympathetic activity that explains why our resting 
heart rate is about 70 bpm, even though human pace-
maker cells have an intrinsic rate of approximately 
100 bpm. Intrinsic, resting, and maximum heart rate 
varies between species, but the age-associated pro-
gressive decline is a common denominator (Fig. 4).

Pacemaker innervation

The pacemaker is the most innervated region of the 
heart, being innervated 3–4 times more than the sur-
rounding atrial area [37, 38]. It receives sympathetic 
and parasympathetic terminals coming from neurons 
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Fig. 4  Species-specific heart rate ranges, autonomic tone, and evidence of age-associated slowdown. Data for the different species 
were obtained from [1, 122–138]. Figure created with Biorender
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located in extracardiac and intracardiac ganglia [39]. 
While the extracardiac ganglia run parallel to the spi-
nal cord and contain exclusively sympathetic neurons, 
the intracardiac ganglia are located in the interatrial 
surface [40] and contain a pool of afferent sensory 
neurons, interneurons, and efferent sympathetic and 
parasympathetic neurons [41]. We will not discuss in 
detail the morphology and function of the intracar-
diac nervous system here since a recent review on this 
topic by Fedele and Brand covers it extensively [42]. 
The dense nerve network interlaces with the complex 
pacemaker vascular bed and with the pacemaker cells 
(Fig.  3C and D). The sympathetic and parasympa-
thetic axons have abundant varicosities (Fig.  3D), 
where the release of noradrenaline and acetylcholine 
occurs [43]. In contrast to most neurons, autonomic 
nerve terminals form “en passant” synapses, which 
lack any post-synaptic pacemaker counterpart [43]. 
However, there is still a debate on the exact nature of 
the neuro-pacemaker communication interphase.

The pacemaker innervation is remodeled from 
birth to adulthood. In infants, sympathetic innervation 
is predominant, which correlates with the higher heart 
rates observed at that stage (Fig. 1). Parasympathetic 
nerve density increases during childhood until reach-
ing a similar abundance to that seen for sympathetic 
nerves during adulthood [38]. Aging causes a reduc-
tion in both sympathetic and parasympathetic nerve 
density of the pacemaker [38]. Loss of sympathetic 
innervation has also been observed in other target tis-
sues, including the pineal gland [44] and the spleen 
[45]. The remaining sympathetic nerves in these 
organs are swollen and contain aggregates and degen-
erating organelles. In the pineal gland, for example, 
the ratio of dystrophic axons to target pinealocytes 
increased by 30-fold in 5-months-old to 23-months-
old male rats and by 200-fold in female rats. Inter-
estingly, gender differences have been observed at 
the functional and morphological levels in the pineal 
gland [44]. More studies are needed to understand 
how aging affects the neuroanatomy of the sympa-
thetic terminals directly in the pacemaker. Regarding 
the parasympathetic innervation, there is evidence of 
a loss of parasympathetic preganglionic neurons in 
the dorsal vagal nucleus and nucleus ambiguus on 
the right side of the medulla, which are the nuclei 
innervating the heart [46]. Although the number of 
intracardiac parasympathetic neurons does not change 
with age [47], a 45% reduction in the synaptic-like 

contacts in old animals has been reported [48]. More 
studies are needed to understand the effects of aging 
on the neuroanatomy and communication of the para-
sympathetic network with the sympathetic terminals, 
the vasculature, and the pacemaker cells.

Pacemaker’s sympathetic acceleration

Heart rate is accelerated by the direct action of 
noradrenaline released from sympathetic neurons 
that innervate the cardiac pacemaker. This positive 
chronotropic modulation is controlled by the cardio 
motor pathway (Fig.  5), starting with the activation 
of sensory neurons coming from extracardiac ganglia. 
These mechano- and chemoreceptors sense various 
stimuli, including changes in pH,  CO2, blood levels, 
and blood volume. Information is conveyed to excita-
tory neurons in the nucleus tractus solitarius located 
in the brain stem. From here, inhibitory and excita-
tory neurons synapse to the caudal and rostral vent-
rolateral medulla to control preganglionic excitatory 
neurons located in the intermediolateral nucleus at the 
spinal cord. The ultimate target is the postganglionic 
neurons residing in the sympathetic cervical and stel-
late ganglia [49, 50]. These postganglionic neurons 
directly innervate the pacemaker cells and release the 
noradrenaline that accelerates the pacemaker intrinsic 
firing rate.

With age, the sympathetic nervous system becomes 
hyperactive. Microneurographic recordings have 
shown that the characteristic bursting activity of sym-
pathetic nerves increases with age, from 40 bursts/100 
heartbeats in 20-year-old men to 65 bursts/100 heart-
beats in 65-year-old men [51–53]. The age-dependent 
increase in sympathetic activity is more prominent 
in women, being 2.5-fold more pronounced than in 
men [54]. The increased firing activity of sympathetic 
nerves results in increased basal levels of noradrena-
line in plasma. Noradrenaline levels increase with 
age, from 200 pg/ml in 20-year-old men to 400 pg/ml 
in 65-year-old men [53, 55–57]. In conclusion, aging 
leads to increased activity of the sympathetic nerv-
ous system, resulting in more noradrenaline released 
from the nerve terminals into target organs, includ-
ing the pacemaker. Since the increase in the release 
of noradrenaline from the nerve terminals does not 
stop the slowdown of the pacemaker, it has been sug-
gested that sympathetic hyperactivity is a response 
to the loss of pacemaker sensitivity to the adrenergic 
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drive. The reason for this hyposensitivity might be a 
combination of reduced innervation and changes in 
the molecular mechanisms that sense the adrenergic 
signaling inside the pacemaker cells [58, 59].

Pacemaker’s parasympathetic deceleration

In an antagonistic manner, heart rate is decelerated 
in response to the activation of the parasympathetic 
nervous system (Fig.  5) [60]. Opposite stimuli from 
those activating the sympathetic pathway also come 
from extracardiac mechano- and chemoreceptors, 
activating parasympathetic preganglionic neurons 
located in the medulla oblongata, specifically at the 
dorsal vagal nucleus and the nucleus ambiguous, 
from which the parasympathetic vagus nerve arises. 
The axons traveling through the vagus nerve directly 
innervate parasympathetic postganglionic neurons 
located at the intracardiac ganglia on the surface of 
the interatrial region. Parasympathetic terminals 
form synapses directly with sympathetic neurons to 
inhibit noradrenaline release through the release of 

acetylcholine. In addition, acetylcholine also acts over 
pacemaker cells to reduce their intrinsic firing rate.

Aging has an effect on pacemaker parasympathetic 
modulation. A reduction in the parasympathetic tone 
occurs with age and it has been suggested to compen-
sate for the pacemaker intrinsic slowdown [61, 62]. 
Heart rate variability, which is largely accepted to 
reflect the parasympathetic modulation of the heart, 
decreases by more than 60% from 20-year-old to 
60-year-old subjects [63–65], suggesting a loss of par-
asympathetic tone with age. Interestingly, a biological 
model has been proposed to explain the decrease in 
heart rate variability. The Neuron-Immune-Senes-
cence Integrative Model links brain degeneration of 
the central parasympathetic regions with a decreased 
activity in the peripheral parasympathetic nerves that 
innervate targets including the heart, leading to a 
reduced heart rate variability [66]. Interestingly, this 
model goes beyond the effect on the heart and sug-
gests that reduced activity of the parasympathetic 
nervous system results in increased production of pro-
inflammatory cytokines IL-6 and TNFα, leading to 
cellular senescence and affecting the whole organism 

Fig. 5  Representation of 
the cardio-motor pathway 
controlling heart rate. 
Mechano- and barorecep-
tors in carotid and aortic 
sinuses sense changes in 
pH, blood levels, and 
blood volume, and transmit 
information to nuclei in the 
medulla oblongata. Sym-
pathetic innervation on the 
pacemaker originates from 
postganglionic neurons in 
the sympathetic ganglion 
chain. The parasympathetic 
pathway via the vagus nerve 
synapses with intracar-
diac ganglia (ICG) on the 
interatrial region to finally 
innervate the pacemaker
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and, therefore, influencing multiple disorders associ-
ated with aging. We consider it noteworthy to point 
out that parasympathetic activity predominates in 
younger subjects, while in older ones sympathetic and 
parasympathetic tones are equilibrated by a simulta-
neous hyperactivation of sympathetic neurons and the 
hypoactivation of the parasympathetic ones [67]. It is 
expected that these concomitant changes in the auto-
nomic inputs have a profound effect on the modula-
tion of heart rhythm as we age.

Aging and pacemaker acceleration 
and deceleration at the molecular level

The autonomic nervous system controls pacemaker 
action potential rate through a cascade effect of sec-
ondary pathways where the modulation of ion chan-
nels and calcium handling are the final pieces. The 
automaticity of the pacemaker is driven by diastolic 
depolarizing mechanisms that include the activation 
of HCN channels at hyperpolarized voltages, the 
spontaneous release of calcium from the sarcoendo-
plasmic reticulum through ryanodine receptors (RyR) 
coupled with L-type channel activation [68, 69], and 
the increase in the activity of the calcium sodium 
exchanger (NCX) [60, 70, 71]. The initial activation 
of the HCN channels together with the local rise in 
calcium depolarizes the cell enough to recruit  CaV3.1 
(T-type) and  CaV1.3 (L-type) calcium channels; this 
further depolarization brings the membrane potential 
to the threshold to activate  CaV1.2 L-type calcium 
channels, which together with  CaV1.3 channels sus-
tain the spike of the pacemaker action potential [72, 
73]. Repolarization is mediated by the activation of 
potassium channels, mainly the delayed rectifier 
K + (KCNQ1) [1] and the ERG channel [74, 75].

At the molecular level, sympathetic accelera-
tion starts by the binding of noradrenaline released 
from the sympathetic fibers to beta-adrenergic 
receptors (β-AR) located in the plasma membrane 
of pacemaker cells [60]. β-ARs are Gαs-coupled 
receptors. Their activation triggers the dissociation 
of the Gαs subunit that activates adenylyl cyclase 
(AC) to increase the production of cAMP [70]. It is 
important to note that both, β1-AR and β2-AR, are 
expressed in a 1:1 ratio in pacemaker cells, indicat-
ing high expression of β2-AR in these cells com-
pared to ventricular cardiomyocytes [76]. While 

β1-AR has been the most researched, β2-AR is also 
crucial to study as it activates the same stimula-
tory pathway and may have additional functional 
responses [76–78]. Evidence showing that β1-AR 
stimulation raises global cAMP levels while β2-AR 
stimulation raises local cAMP levels further sug-
gests that these two pathways might have differen-
tial roles in pacemaker rate modulation [79].

The cAMP elevation caused by the activation 
of the adrenergic stimulation increases pacemaker 
firing rate through direct and indirect mecha-
nisms [70]. cAMP directly binds to HCN channels, 
increasing their open probability and shifting their 
activation curve to less hyperpolarized voltages [18, 
71, 80]. cAMP also acts indirectly, as a second mes-
senger, activating protein kinase A (PKA), which 
phosphorylates and modulates many target proteins 
such as the α subunit of L-type calcium channels, 
increasing their open probability [71, 81]; β-AR 
receptors, decreasing desensitization; the sarcoplas-
mic reticulum handling protein phospholamban, 
increasing the rate of calcium accumulation and 
total storage capacity of the sarcoplasmic reticulum 
[82, 83]; and RyR, increasing their open probabil-
ity [84]. Another important target is the phospho-
rylation of Ser-27 in the KCNQ1 channel, which 
increases the repolarization velocity, shortening the 
pacemaker action potential duration [85, 86].

Although phosphorylation of L-type calcium 
channels was proposed as the main mechanism to 
explain the adrenergic calcium channel facilita-
tion [87], recent studies in ventricular cardiomyo-
cytes have proposed an alternative mechanism for 
this modulation. A recent study by Liu et  al. [88] 
showed that beta-adrenergic regulation persists on 
transgenic murine hearts expressing PKA phos-
phorylation-site-deficient mutant  CaV1.2 channels. 
Therefore, they propose a new mechanism that 
involves the PKA-mediated phosphorylation of the 
calcium channel inhibitor protein Rad that is toni-
cally inhibiting calcium channels under resting con-
ditions. Another mechanism involving the fusion of 
endosomes containing  CaV1.2 in response to β-AR 
stimulated PKA phosphorylation to increase the 
availability of channels at the plasma membrane has 
been recently proposed for ventricular cardiomyo-
cytes by Del Villar et  al. [81]. However, whether 
these alternative mechanisms are also present in 
pacemaker cells is still unknown.
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On the other hand, pacemaker deceleration at the 
molecular level is mediated by the release of acetyl-
choline from parasympathetic fibers. Acetylcholine 
binds to type 2 muscarinic (M2R) receptors coupled 
to Gαi proteins that inactivate the adenylyl cyclase 
pathway, reducing cAMP formation and counter-
balancing sympathetic drive [60]. The reduction in 
cAMP production causes a shift in the activation-
curve of HCN channels to more negative voltages 
and a reduction in RyR open probability as a result 
of the lack of PKA-mediated phosphorylation [89, 
90]. Additionally, activation of G-protein regulated 
potassium channels by Gβγsubunits results in a deep 
hyperpolarization that accounts for 50% of the heart 
rate reduction [71, 91]. Acetylcholine also activates 
directly IKACh currents that results in a more nega-
tive maximal diastolic potential, decreasing the pace-
maker rate [18, 71]. Altogether, the changes induced 
by acetylcholine result in a negative chronotropic 
effect [60, 71, 92].

Aging also affects the neural control of the pace-
maker at the molecular level. Pacemaker cells from 
old animals retain the capacity to be accelerated by 
adrenergic stimulation in a similar percentage to cells 
from young animals [3]. Accordingly, aging does not 
change either the transcription levels of beta-adrener-
gic receptors [93, 94] or the adrenergic-facilitation of 
calcium and HCN channels [3]. However, since old 
cells have a slower intrinsic firing rate, they fail to 
reach the same maximum firing rate as that observed 
in young animals, even under saturating concentra-
tions of the beta-adrenergic agonist isoproterenol [3, 
95]. Infusion of isoproterenol in patients under auto-
nomic blockade was 39% less efficient in accelerat-
ing heart rate in 65-year-old subjects when compared 
to young 25-year-old subjects [95]. This effect was 
also observed in ex vivo isolated pacemakers, where 
around 5 times more isoproterenol was needed to 
increase the rate by 50% [96]. In a very interesting 
study by Sharpe et al., it has been shown that directly 
activating AC with forskolin and at the same time 
inhibiting phosphodiesterase with IBMX to increase 
total cAMP cytoplasmic concentration failed to 
accelerate old pacemaker cells firing rate to the same 
level as young cells. However, a high concentration 
of exogenous cAMP completely abolished the effects 
of aging on the slowdown of the intrinsic firing rate, 
restoring action potential firing rate and If absolute 
activation to the same levels observed in young mice 

[10], suggesting that all the machinery downstream 
AC can be potentiated to the same levels in old pace-
maker cells. Other reported changes that can account 
for the intrinsic slowdown and the cap on the adren-
ergic response include a reduction in the expression 
of  CaV1.2, HCN4,  NaV1.5, and several  K+ channels 
[94, 97, 98] and a persistent hyperpolarized shift in 
the activation of HCN channels [10].

A reduced responsivity to the parasympathetic 
drive has been also observed in ex vivo isolated pace-
makers, where around 6 times more carbachol, a cho-
linergic agonist, was needed to increase the beating 
intervals by 50% [96]. A reduction in the expression 
of muscarinic receptors type 2 by 45% in old pace-
maker tissue has been associated with this reduction 
in responsivity [93]. A reduced responsivity to the 
parasympathetic drive can also be attributable to a 
common mechanism such as a reduction of cAMP/
PKA sensitivity [99] or an age-reduced sensitivity to 
phosphodiesterase inhibition [96]. Parasympathetic 
input then appears to be attenuated in old animals, 
generating an abnormal sympathovagal balance with 
age [65].

Global cardiac aging and pacemaker dysfunction

Although the mechanisms behind the age-associated 
dysfunction of the cardiac pacemaker are still being 
elucidated, it is believed to be a multifactorial pro-
cess. Besides pacemaker failure, aging is also a risk 
factor for the onset of other cardiomyopathies, includ-
ing heart failure and atrial fibrillation [100, 101]. 
How these age-associated alterations of ventricu-
lar and atrial function impact the pacemaker is not 
known. In ventricular and atrial myocytes, aging is 
linked to cellular senescence, mitochondrial dysfunc-
tion, and calcium mishandling. Cardiac aging drives a 
loss of ventricular and atrial cells and a compensatory 
cellular hypertrophy [102, 103]. Cardiac senescence 
in heart failure and atrial fibrillation is accompanied 
by a general decline in mitochondrial function, char-
acterized by clonal expansion of dysfunctional mito-
chondria, increased production of reactive oxygen 
species, and dysregulation of mitochondrial fusion 
and fission [104]. Calcium mishandling is perhaps 
one of the most prominent age-associated changes in 
ventricular and atrial cells. Aging causes alterations 
in the diastolic levels of cytoplasmic calcium, the 
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sarcoplasmic reticulum calcium content, and the cal-
cium leakage from the stores, resulting in poor excita-
tion–contraction coupling [105].

Furthermore, while there is a close relation 
between the incidence of heart failure, atrial fibrilla-
tion, and pacemaker dysfunction [106], the causality 
of one over the other is still not clear. Heart failure 
is commonly associated with atrial dysfunction. The 
increase in left ventricular end diastolic pressure 
observed in heart failure patients causes an increase 
in the intra-atrial pressure and atrial stretch, which 
results in atrial electrical remodeling and atrial dilata-
tion [107]. It has been proposed that cellular and tis-
sue alterations caused by heart failure can also cause 
electrical and structural remodeling of the pacemaker 
[108]; the identified mechanisms so far include a 
decrease in the HCN4 and sodium currents [109, 
110]. However, it is not clear how malfunction of 
the ventricular chambers can result in ionic changes 
of pacemaker cells. The relationship between atrial 
fibrillation and pacemaker dysfunction seems more 
reciprocate, with the appearance of atrial fibrillation 
being able to cause pacemaker anomalies and vice 
versa [111, 112].

Some of the age-associated ventricular alterations 
can be reverted using the mTOR inhibitor, rapamy-
cin. Rapamycin treatment in old animals decreases 
ventricular hypertrophy and increases ejection frac-
tion [113] and diastolic function [114]. Nevertheless, 
changes in heart rate have not been reported after 
rapamycin treatment. Whether rapamycin has the 
potential of ameliorating age-associated dysfunctions 
of the cardiac pacemaker remains elusive.

Summary of the effects of age on the function 
and the neural control of the pacemaker

Aging is accompanied by a natural slowdown of the 
pacemaker rate. In some cases, the pacemaker’s slow-
down becomes pathological, leading to the onset of 
Sick Sinus Syndrome, a group of idiopathic diseases 
that account for more than half of about 250,000 arti-
ficial pacemakers implanted every year in the USA. 
Besides the implantation of artificial devices, there is 
no alternative treatment for this dysfunction. Advanc-
ing our understanding of the age-associated changes 
in the pacemaker may inform potential novel inter-
ventions to diagnose and treat this disease. Although 

the mechanisms behind the dysfunction of the pace-
maker are not well understood, here, we summarize 
the main age-associated changes on the architecture 
and neural control of the pacemaker that can play an 
important role in this phenomenon (Fig. 6). Aging is 
associated with the following:

• A reduction in the number of pacemaker cells.
• A reduction in the autonomic innervation.
• An increase in fibrosis. Although the role of fibro-

sis on the dysfunction of the pacemaker has been 
controversial, given the importance of cell-to-cell 
connectivity for the propagation of the electrical 
signal, it is likely that the age-associated increase 
in fibrosis plays an important role on reshaping 
pacemaker function.

• A global increase in the sympathetic drive, result-
ing in the release of more noradrenaline.

• A reduced responsivity of the pacemaker to adren-
ergic stimulation.

• A reduction in the capacity of pacemaker cells to 
reach optimal cytoplasmic levels of cAMP.

• Alterations in the expression and function of a 
variety of ion channels that are important for the 
automaticity and that are targets of the adrenergic 
modulation, including HCN, L-type, T-type, and 
 K+ channels.

• A reduction in the parasympathetic drive. These 
functional alterations result in an overall auto-
nomic imbalance biased toward a higher sympa-
thetic acceleration in the elderly.

Perspectives

The prevalence and clinical implications of the age-
associated dysfunction of the pacemaker justifies the 
urgency to identify the molecular mechanisms under-
lying it. Besides the need of defining the mechanisms 
for the intrinsic changes, alterations in other compo-
nents of the pacemaker need more attention, includ-
ing changes in the vascularization, in the generation 
and propagation of the electrical signal, and in the 
neuro-pacemaker communication.

Vascular dysfunction plays an important role 
in organ pathology. The brain is perhaps the most 
studied example, where age causes structural and 
functional alterations of the vascular bed leading to 
dysregulation of cerebral blood flow, ischemia, and 
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impaired clearance of metabolic byproducts [115]. 
The pacemaker is also a heavily vascularized tissue, 
a requisite to meet its high metabolic demands and 
to allow the fast control of heart rate by the action of 
bloodstream circulating adrenaline. Therefore, altera-
tions in blood supply could be an important stressor 
that might contribute to the dysfunction of the pace-
maker in the elderly.

Where in the pacemaker the action potential is 
originated and how it propagates inside the tissue 
to exit toward the atrium is fundamental for setting 
heart rate. The leading pacemaker site is not static, 
rather, in a phenomenon known as pacemaker shift, 
it moves from the center of the pacemaker head to 
the periphery or even to the tail depending on exter-
nal inputs [116]. Adrenergic or cholinergic stimula-
tion [32, 92], changes in extracellular ionic concen-
tration, or the action of drugs can cause the shift of 
the pacemaker to the region with higher or lower 
sensitivity to the stimulus, depending on the excita-
tory or inhibitory nature of it [117]. Pacemaker 
shift denotes a heterogeneity in the cell identity 

or the molecular mechanisms that sense different 
stimuli. It is necessary to study how aging affects 
this heterogeneity to fully understand pacemaker 
dysfunction.

The classical view of the communication between 
autonomic terminals and pacemaker cells depicts 
the release of neurotransmitters from varicosities 
and the free diffusion nearby pacemaker cells [37]. 
However, there is evidence supporting the existence 
of neuro-cardiac synapses [118]. Testing the effect 
of aging on this neuro-pacemaker communication 
will require the refinement of techniques to measure 
the release, binding, and diffusion of noradrenaline 
and acetylcholine in the intact pacemaker.

Finally, another unexplored area is how cellular 
senescence and age-associated exacerbation of the 
immune response can affect pacemaker function. 
Growing evidence positions senescence and inflam-
mation as important drivers for cardiac dysfunction 
[119–121], but how they specifically affect cardiac 
pacemaker function remains elusive.

Young pacemaker Old pacemaker Age-associated alterations
Tissue level

Reduction in the number of 
pacemaker cells
Reduction of autonomic 
innervation
Increase in fibrosis

Vascular retraction?
Infiltration of immune cells?
Shift of signal origin and 
propagation?

Cellular level

Increase in noradrenaline 
release
Reduction of 
parasympathetic drive
Reduction of responsivity to 
neurotransmitters
Reduction of cAMP 
production
Reduction of ion channel 
expression

Alteration of the 
neuro-pacemaker 
communication?

Ion channels

NE

β-ARsAC

HCN1/4
CaV1.2
NaV1.5

NE

Fibrosis

Pacemaker 
cells
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innervation

Vasculature

Immune 
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Fig. 6  Schematic summarizing the known and unexplored effects of age on the function and neural control of the pacemaker, 
emphasizing alterations at the a tissue and b cellular level. Figure created with Biorender
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