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Reproducible image handling and analysis
Kota Miura1,2,* & Simon F Nørrelykke1,3

Image data are universal in life sciences
research. Their proper handling is not. A
significant proportion of image data in
research papers show signs of mishandling
that undermine their interpretation. We
propose that a precise description of the
image processing and analysis applied is
required to address this problem. A new
norm for reporting reproducible image
analyses will diminish mishandling, as it
will alert co-authors, referees, and jour-
nals to aberrant image data processing or,
if published nonetheless, it will document
it to the reader. To promote this norm, we
discuss the effectiveness of this approach
and give some step-by-step instructions
for publishing reproducible image data
processing and analysis workflows.

M ishandling and misconduct based

on image data in published arti-

cles have been surfacing across

the life sciences community. The Journal of

Cell Biology, reported that 10% of accepted

papers contained inappropriate manipulation

on image data (Martin & Blatt, 2013). EMBO

Press has instituted a three-tiered classifi-

cation for image aberrations to handle prob-

lems in image data submitted to their journals

(Pulverer, 2015). Under this classification,

consistently about 20% of post-review papers

presented some sort of problem that required

follow-up by the editorial office. This includes

unintentional mistakes in handling images,

not affecting the results presented. A manual

survey of 20,000 biomedical papers found

that 4% had inappropriately duplicated

images and 1.9% had deliberate manipula-

tions (Bik et al, 2016). Among 99 biomedical

papers that were labeled with the “Editorial

expression of concern”, 40% had issues with

image data (Vaught et al, 2017). 760,000

papers sampled from PubMed Open Access

Subset were automatically screened and then

manually annotated for image data reuse. Of

all papers, 0.6% were scored as falsely

reusing images (preprint: Acuna et al, 2018).

To prevent these problems, in our view,

the most effective way is to advocate and

practice the scientific norm of reporting meth-

ods in a way that renders the experiments

reproducible. We first review some of the

most common problems seen in image data

and analysis in the biosciences. We then

argue that the most effective way to prevent

these aberrations is by documenting and

reporting reproducible image handling and

analysis. We provide a step-by-step protocol

for publishing reproducible image data analy-

sis and figures. Finally, we recommend what

journal editors can do to facilitate the submis-

sion of reproducible methods. This includes

author self-evaluation of the level of repro-

ducibility of the image analysis methods.

Some of the terms we use are subject to varia-

tions and ambiguity in their usage; Box 1

defines our use of these terms, “Mishan-

dling”, “Misconducts”, and “Reproducibility”.

As image analysts at two major imaging

facilities, we are regularly asked to replicate

the typically vague methods in published

papers and find this task ranges from

straight-forward, over pleasantly challeng-

ing, to impossible.

Image Manipulation—Cause
and Consequence

Mishandling: accidental or intentional

Two major causes underlie image mishan-

dling the first type is caused by a lack of

knowledge about the appropriate scientific

handling of image data. When processed

based on subjective impressions, image

data often lose quantitative information

(“photoshopping” or “beautification”). Such

processing may lead to the misinterpretation

as researchers instinctively tend to accentu-

ate the findings. Moreover, without some

knowledge of image processing and analysis

algorithms, the analysis workflow cannot

become reliable enough to establish scientif-

ically valid results, as is the case for any

other instrument used in scientific research.

Images or analysis results based on wrongly

processed images may become included in

publications and mislead the research

community. We refer to these types as the

"accidental” type of mishandling.

The second type is due to deliberate

manipulations by researchers with the clear

goal of supporting their conjectures, at the

cost of skewing the data. We refer

to these acts as the "intentional” type of

mishandling.

Inappropriate figure creation and
image analysis

Mishandling often involves changes to the

visual rendering of image data that trick the

eyes of reviewers and readers. These manip-

ulations can involve duplication of part of

an image or a whole image (“cloning”),

removal of undesired signals (deletion and

biased cropping), insertion of artificial

objects, pasting objects to appear near each

other or localized changes of image contrast

(Rossner & Yamada, 2004). Regardless of

the motivation, we refer to mishandling by

changing the visual impression as “figure

mishandling”. For example, enhancing the

contrast of image data is generally accept-

able if (i) it is applied for segmentation or to

create the figures, (ii) no intensity quan-

tification is involved after the operation, (iii)

it is applied equally to all conditions, and
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(iv) it is clearly stated in the manuscript

(Johnson, 2012). Condition no. 3 is some-

times ignored, either due to “accidental” or

“intentional” actions of the authors. In Fig 1,

we demonstrate how one can end up in

uneven contrast enhancement depending on

how one processes image data (Fig 1A, orig-

inal image; adjusting contrast Fig 1B, alto-

gether; Fig 1C, individually). Design and

layout suggestions for clear and effective fig-

ures can be found elsewhere (Schmied &

Jambor, 2020; preprint: Jambor et al, 2020)

and references therein.

On the other hand, mishandling of image

data during analysis—not just during the

creation of a figure, is another prevalent

problem in life science research that is rarely

discussed. We illustrate mishandling by

wrongly designed image analysis workflows

with three representative examples below.

We call this “analysis mishandling”.

Analysis mishandling: overuse of single
channel image

In some cases, a single fluorescence channel

is used both for the object segmentation and

for the measurement of the intensity of that

object. Without careful workflow design,

such an overuse of single channel data

yields wrong results. In the worst case, cells

with a weak signal are not detected, and

hence not measured, unintentionally remov-

ing them from the analysis.

In Fig 2, we illustrate a more subtle effect

using synthetic image data. Consider two

circular spots with different intensities as

shown in Fig 2A. The task is to measure the

mean intensity of each of these spots. A typi-

cal workflow for this task is to segment

these spots using intensity thresholding, to

delineate each object as region-of-interest

(ROI), and then to measure the intensity in

A

B

C

Figure 1. Enhancing contrasts in awrongway.

Two Hoechst-stained nuclei were cropped from
the original sample image (A). The full image
was contrast-enhanced using the ImageJ
Enhance Contrast function (B). The default
saturation value was used (0.35%). Both nuclei
are now with a better contrast against the
background, while preserving the difference in
the signal intensity observed in the original
image. For comparison, each cell was
individually selected and contrast-enhanced
separately indicated by yellow region-of-
interests (C). The applied function and
parameters were exactly the same as B, but the
two nuclei now appear to have similar signal
intensity. Since the degree of enhancement
varies depending on the image, such difference
in the processing results happens, depending on
the area to which one applies the function. An
example of such a case can be found in Fig
S12 of Tanno et al (2019), available from the
Broad Bioimage Benchmark Collection (Ljosa
et al, 2012; BBBC039: Nuclei of U2OS Cells in a
Chemical Screen n.d.). No scale bar information
was available. The reproducible workflow for the
figure shown above is available at: https://
github.com/miura/reproducible_bioimage_
analysis.

Box 1. Definitions of Terms We Use

Definitions of Terms

“Mishandling” and “Misconduct”
Throughout the text, we use the word “mishandling” to describe the wrong handling of image
data in general, including analysis and figure creation. “Misconduct” describes researchers publish-
ing scientifically wrong results, regardless of the cause being accidental or intentional. "Accidental"
is like driving your car (your scientific project), unaware that you have no thread left on your tires
—you are a potential danger to yourself, your car, and the rest of traffic.
"Intentional" should be compared to knowingly installing defeat-devices in your car to, illegally,
pass the exhaust-regulations in your state. Mishandling of image data might be happening locally
and personally. Misconduct is a public affair: Publication of mishandled image data is misconduct.

“Reproducibility”
Reproducibility, repeatability, and replicability are terms often used interchangeably. To fix our
nomenclature, we will follow Goodman et al (2016), who distinguished three types of reproducibil-
ity in terms of experiments and data analyses:

1 Methods reproducibility: The original meaning of reproducibility (Claerbout & Karrenbach, 1992).
The ability to obtain the exact same results, by implementing procedures using the same data
and tools.

2 Results reproducibility. Also known as replication. The ability to produce similar results, in an
independent study, following similar procedures and using similar tools.

3 Inferential reproducibility. The ability to reach the same scientific conclusions by conducting an
independent study, or re-analysis of the data, potentially using different tools and methods.

Because the focus of this commentary is on analysis and methods, we are concerned mainly with
methods reproducibility. This is also the only type of reproducibility that can, feasibly, be verified
before publication. We are of the same opinion as Mendes, 2018 that “Scientific journals should
not publish non-reproducible research and thus should promote, or even enforce, such actions”—
the actions we have in mind are discussed in this commentary.
Results reproducibility, or rather the lack thereof, has received much attention lately (Baker, 2016).
With a reported 50% of preclinical studies not being replicable the economic cost, attributable to
irreproducible data analysis and reporting alone, is estimated at $7B/year in the US (Freedman,
Cockburn, & Simcoe, 2015). One of four broad strategies to improve reproducibility, as recom-
mended in Freedman, Venugopalan, & Wisman (2017), is open access to data and methods.
The most infamous recent example, of lacking results and inferential reproducibility, is, arguably,
reporting a ~90% rate of irreproducibility of landmark preclinical studies. Only six out of 53 could
be reproduced (Begley & Ellis, 2012).
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each ROI. The resulting ROIs are shown as

yellow circles, and the original boundary of

each spot is shown as blue circles Fig 2B. A

larger area was detected with the brighter

spot because it has more pixels with inten-

sity values larger than the threshold value.

Similarly, the darker spot had a smaller area

detected than the input. This difference in

the size of the area affects the apparent

decrease and increase of the mean intensi-

ties compared to the expected values. As the

thresholded region is determined based on

the signal intensity, the intensity measured

in that region is affected by the intensity

itself—the measured intensity depends on

the region which depends on the intensity.

Such logical bootstrapping can cause under-

or over-estimation of measured values. It is

thus preferred that another probe is used

and captured in a second channel specifi-

cally for segmentation of objects.

Analysis mishandling: bit depth conversion
and normalization

When a 16-bit image is converted to an 8-bit

image, the normalization of pixel intensity

values depends on the preference setting of

the software used. Such a bit depth conver-

sion is likely to be normalized at a different

degree depending on the content of the

image, i.e., depending on whether it is a

dark or a bright image, so the intensities of

converted images can no longer be directly

compared (Fig 3). Two nuclei, one (Fig 3B)

less bright than the other (Fig 3C), are

cropped from a single image (Fig 3A) of

DAPI stained cells. If these cropped images

are handled independent of each other when

converted to 8-bit representation, they may

appear to have similar brightness (Fig 3D

and E), whereas in reality they have signifi-

cantly different brightness. Some researchers

do not recognize this artifact and present the

comparison as a quantitative difference,

which is invalid.

Analysis mishandling: “PSF volume”

Even when the real size of the point source,

here a fluorescent signal, is below the reso-

lution limit of the optical setup (diffraction

limited spot), the emitted signal propagates

in space according to the so-called impulse

response of the imaging system and gives

rise to the appearance of the Point Spread

Function (PSF). As this results in voxels

with non-zero intensities, some researchers

take this as truly occupied space and try to

measure this volume as the size of the target

signal. It is technically possible to perform

this measurement, but it is scientifically

wrong (Fig 4).

The cause of mishandling

It seems that figure mishandling and analy-

sis mishandling are both caused, firstly, by

the frequent lack of image analysis training

in the life sciences, and, secondly, by the

absence of standards for image handling and

reporting. Without training and standards,

neither the researchers nor the reviewers are

able to assess the scientific validity of the

image figure and analysis workflow. As a

result, many published papers include

images with insufficient documentation of

the underlying data processing. The mishan-

dling, once published, can become a miscon-

duct. Mishandling during image data

acquisition is another issue (Marqu�es et al,

2020); here, we focus on problems in data

handling after the acquisition.

The poor documentation of image hand-

ling and analysis may be deep-rooted:

Images have strong and immediate cognitive

impact and compel us to accept them as self-

explanatory, even in the absence of a scien-

tific description of methodological details:

When modern biology began in the 18th

century, with taxonomy, scientific discover-

ies were often documented using hand-

A B

Figure 2. Overuse of single channel image.

(A) Two circular spots were plotted in an 8-bit image. The spots are with the same radius, but with different
gray values: One is 150 (top, darker) and the other is 250 (bottom, brighter), and then Gaussian blurring was
applied to mimic realistic image data. (B) The image, with both objects in it, was segmented by automatic
global thresholding (Otsu, 1979) to detect the boundary of each and shown as yellow ROIs. The threshold
value determined by Otsu’s algorithm was 86 (same threshold applied to both the darker and the brighter
circle disk). The mean intensities measured inside the yellow circles were 125.0 and 180.6 for dark and
bright circles, respectively. The original boundaries, before applying the Gaussian blur filter, are shown as
blue circular ROIs. The workflow for this image analysis, including the creation of the figure above, is
available at: https://github.com/miura/reproducible_bioimage_analysis.
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A

B C

D E

Figure 3.
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drawn illustrations. This classic tradition,

of images serving merely as illustrations

of scientific observations, seems to survive

to this day. At the same time, these char-

acteristics are a hindrance to the handling

of images as numerical data (Cromey,

2013), and amount to “analysis mishan-

dling”. In our experience, even just a few

days of training in the quantitative hand-

ling of image data and analysis strongly

mitigates this type of scientific misreport-

ing. Integration of bioimage analysis in

the curriculum of life science departments,

as early as the undergraduate level, could

be a powerful solution.

How Can We Prevent Misconduct?

Guidelines for image data handling and

processing may avoid some mishandling

and misconduct. While setting rules that

apply universally is a difficult task, there

have been attempts to propose guidelines

for image data acquisition, processing, and

analysis (Cromey, 2013). These guidelines

capture some of the current best practices

in the field. In a similar manner, some jour-

nals provide author guidelines suggesting

“Do’s and Don’ts” in submitted image

data1. Such guidelines are effective in

setting a baseline for minimal standards

and can be effective in avoiding some of

the “accidental” type of misconduct

(Abbott, 2019).

The limitation of a list of “Do’s and

Don’ts” is the unavoidable overgeneraliza-

tion. Indeed, imaging technology is advanc-

ing at a rapid pace, both in terms of

hardware (e.g., super-resolution localization

◀ Figure 3. Bit depth conversion and normalization.

Panel A shows an 8-bit version of a 16-bit image, created by conversion in ImageJ/Fiji (Schindelin et al, 2012) with the default settings of the software. The display range
is automatically set, when opened, based on the pixel intensity distribution of that image, and used when performing the linearly scaled conversion from 16 to 8 bit, of
all values inside the display range. Panels B and C are likewise 8-bit versions, created by cropping the original 16-bit image, using its display range when converting.
Panels D and E are again 8-bit images, created by letting ImageJ/Fiji automatically determine their individual display ranges, and then making the conversion; thus
mimicking the procedure used if two original images are opened and converted independent of each other. This result is similar, but not generally identical, to what we
would find if we had applied auto-contrast or histogram normalization on the two cropped images independent of each other (Fig 1). The royal” lookup table (LUT) was
used, to better visualize the difference. The image is from the publicly available image set BBBC021v1 (Caie et al, 2010), available from the Broad Bioimage Benchmark
Collection (Ljosa et al, 2012). No scale bar information was available. Macro for cropping and generating panels for this figure is available in the GitHub repository at:
https://github.com/miura/reproducible_bioimage_analysis. Composite figure was created using the ImageJ/Fiji plugin ScientiFig (Aigouy & Mirouse, 2013).

Figure 4. “PSF volume”.

A 3D image of PSF was made using a PSF generator plugin for ImageJ (Sage et al, 2017), showing the Rochard & Wolf model with default parameters provided in the
plugin. A point source fluorescence signal with its size below the pixel resolution (100 nm) can be measured with its apparent volume”. XY (top-left) and XZ plane (top-
right) at the position of the point source showing the PSF. Image thresholding segments a region that can be measured as volume”(bottom panels). Details about the
generation of this PSF and the reproducible workflow for the composite image shown are available at: https://github.com/miura/reproducible_bioimage_analysis.
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microscopy) and data analysis techniques

(e.g., deep learning based approaches), and

guidelines are destined to be lagging behind

technological innovation. Eventually, an

unwieldy, ever-growing rule book would be

required to cover image data handling and

analyses comprehensively; it is doubtful this

rule book would be used by those most

likely to mishandle scientific images. More-

over, as illustrated here, misconduct can go

much beyond simple figure falsification and

extends to image analysis that is not neces-

sarily apparent in image figures.

We also see that a side effect of “Do’s

and Don’ts” lists is that researchers with

minimal knowledge in image analysis tend

to over-interpret them. For example, we

witnessed many cases where researchers

avoided enhancing the contrast of image

data altogether, undermining the analytical

approach to the image data (see Fig 1).

Simplified lists of rules can therefore back-

fire if they are misused or hinder the dissem-

ination of scientific research.

Reporting transparency

Instead of setting overly prescriptive rules

for image data handling, we propose to

report fully reproducible image analysis

workflows with all the processing steps used

to go from the initial image to its quan-

tification or to figures. By doing so, the

results presented in a paper can be repro-

duced by peers and reviewers. When the

reproducibility is secured, accidental

mistakes can be more easily uncovered

during the reviewing process or by the read-

ers of the paper. The obligation to publish

reproducible workflows may also induce a

stronger motivation of researchers to learn

quantitative image analysis, resulting in a

reduction in accidental image manipulation.

For intentional misconduct, rules are

only effective as an additional hurdle that

may be weighed against the expected

rewards of a high impact publication

(Cyranoski, 2006). Intentional misconduct

happens across disciplines and data types

and irrespective of rules. The abuse of data

has a longer history than the recent

advancement of the imaging techniques. We

know that there have been cases of deliber-

ate manipulations of values listed in tables,

reaching probably as far back as Gregor

Mendel (Fisher, 1936). Images can in fact be

understood as a type of table. We show this

with the following example. Let us say that

there is a table presenting two different

measurements values, one for the control

and the other for the treated condition

(Fig 5A). Those numbers can easily be

adjusted to enhance the difference for better

support of one’s hypothesis (Fig 5B). As a

two-cell table can also be thought of as a

two-pixel image (Fig 5C), this artificially

enhanced difference is comparable to

enhancing the contrast of an image (Fig 5D).

Digital image data are just another way of

reporting measurement values beside classic

tables. Many of the intentional modifications

of image data in fact represent a form of data

manipulation.

A B

C D

Figure 5. Manipulation of images is like replacing table values.

(A) Original values of measurement. (B) Manipulated values of values of (A) showing two-fold increase in treated samples compared to control samples. This is
equivalent to enhancing the contrast of images (C) to (D). Note that we are not arguing against the use of contrast enhancements of image data, e.g., histogram
stretching, in research papers, merely warning against its inappropriate application. See Fig 1 for more details.
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We will be better off by asking

researchers to document all the steps they

took, to allow others to test the results by

reproducing the analysis. The norm of

publishing reproducible workflows will

hinder the intentional misconduct as it

becomes more difficult to hide any manipu-

lation step when the workflow can be criti-

cally reviewed and examined. In the

following section, we explain practical steps

that can be taken to publish reproducible

image analysis workflow. These recommen-

dations are what we currently think are the

best in terms of openness, popularity, and

accessibilities, but we welcome criticism,

suggestions, and advice through discussions

in the online forum2.

How to Publish a Reproducible
Bioimage Analysis Workflow

Reproducible analysis is critically important

in data-driven quantitative sciences (Baker,

2016). We provide below separate recom-

mendations for researchers and for journal

editors to prepare a reproducible bioimage

analysis workflow.

Recommendations for Researchers

We define a reproducible image analysis

workflow as a set of resources that allow

any person to replicate the process of image

handling and analysis. The aim is to derive

the same results as the authors presented. It

has three essential elements:
● the workflow code

● the workflow description

● the original image data.

We call this set the “workflow package”.

In the following sections, we explain how

each of these elements can be prepared,

even without knowledge of computer

programming, and how the workflow pack-

age can be published.

Workflow code: documenting
your workflow

Before beginning the processing and analyz-

ing of image data, we strongly recommend to

examine if the software package to be used

supports the generation and export of repro-

ducible analysis workflows (see Box 2: A

three-tiered ranking of software’s support of

reproducibility). Some packages provide

only a graphical-user interface (GUI), with-

out allowing the user to export the workflow

as a reusable and shareable file. Though

reproducible in theory, in practice such GUI-

only software is not ideal for the creation of

reproducible workflows as the user would

need to manually note each step of the work-

flow; for example, the name of the menu

item selected, which option from the menu

was selected and in which order, the exact

parameter values that were used, the size,

and coordinates of the region-of-interest.

We therefore recommend software pack-

ages that automatically record user actions

as text-based macros or scripts. For example,

ImageJ has a utility called a “Command

Recorder” that does such recording of GUI

actions as lines of text commands. The

generated text file, listing commands in a

sequential order, is called a “macro” (see

Figs 6 and 7). For recording figure creation,

as an example, two small regions of the origi-

nal image (Fig 6A) can be cropped manually

(Fig 6D), and during this process, all those

manual handlings can be recorded (Fig 6B)

and a script can be created based on that

recording (Fig 6C). The recording of analysis

workflow (Fig 7B), though it can become

Box 2. A three-tiered ranking of software’s support of reproducibility

There are three levels of reproducibility that a software may support. A brief description of what
we consider essential requirements for each level as well as a few illustrative examples are given
(this is not an exhaustive list).

A Highest degree of reproducibility supported
a Description (fulfills all or most): Widespread; free; GUI workflows recordable; full scripting

capability in one or more common programming languages
b Examples: Fiji/ImageJ (Schindelin et al, 2012); ICY (de Chaumont et al, 2012); CellProfiler

(McQuin et al, 2018); ilastik (Berg et al, 2019); QuPath (Bankhead et al, 2017); Python; R (Rip-
ley, 2001); fully documented and self-contained code in a public repository

B Somewhat supportive of reproducibility
a Description: Locally common; commercial (requires paid license for full access); scriptable, but

in proprietary or local language;
b Examples: Imaris; Amira; Arivis; MATLAB; MetaMorph; Zeiss ZEN; undocumented code with

rare dependencies, available in repository
C Not or almost not supportive of reproducibility

a Description: Rare; commercial; not scriptable (GUI only)
b Examples: Photoshop, PowerPoint, undocumented code living only on one computer

URL Links

Software URL

Amira http://thermofisher.com/amira-avizo

Arivis https://www.arivis.com/en/imaging-science/imaging-science

CellProfiler https://cellprofiler.org

ICY http://icy.bioimageanalysis.org

ilastik https://ilastik.org

ImageJ/Fiji https://imagej.net

Imaris https://imaris.oxinst.com

QuPath https://qupath.github.io

MATLAB https://www.mathworks.com/products/matlab.html

MetaMorph https://www.moleculardevices.com/products/cellular-imaging-systems/ac
quisition-and-analysis-software/metamorph-microscopy

Photoshop https://www.adobe.com/products/photoshop.html

PowerPoint https://office.live.com/start/powerpoint.aspx

Python https://www.python.org

R https://www.r-project.org

Zeiss ZEN https://www.zeiss.com/microscopy/int/products/microscope-software/zen/image-
analysis.html
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more complex than figure creation, can also

be recorded to generate a macro (Fig 7B).

After recording data handling or the analysis

workflow as a macro file, users can re-run

the macro to check if the results can be

reproduced. If this is ensured, the macro can

be used by others for reviewing. Some types

of software packages are designed to be used

from the command line, such as MATLAB,

Python, and R. In this case, the command

history can easily be converted to scripts and

saved, so these packages by default provide

the means for preparing reproducible work-

flows. Box 2 gives examples of software

packages that support the creation of repro-

ducible image analysis workflows.

Code as documentation
One important and generally accepted aim

of computer programming, or scripting, is to

automate repetitive operations in order to

minimize the manual workload. However,

when it comes to reproducibility, the

purpose of programming is different : Here,

the goal is to document the workflow

precisely and to ensure that the same result

can be reproduced by others.

Therefore, the programming of macros or

scripts is essential even if the code is used

only once. We suggest keeping the workflow

file as simple as possible, preferably as plain

text files. It is also possible to provide a so-

called “container” that fully clones the

execution environment, e.g., operating

system, installed software and libraries, but

we do not explicitly include it as a required

component of the workflow package since

this technology is emerging and its deploy-

ment is still not trivial (Box 3: Shared-infras-

tructures for the reproducible analysis).

Some web-based services exist that allow

researchers to upload workflow codes and

run them on the server-side. One possible

usage of such a service is to enable others to

reproduce an image analysis (See also

Box 3).

Workflow description: describe how to
reproduce results

Scripts or macros are computer code and

should be associated with a text describing

the outline of the workflow to explain the

overall aim and the key components, as well

as instructions on how to run the code

(Box 4: Workflow Description). A flowchart,

or meta-code, can be a helpful solution as a

visual guide for this outline (Box 4, item 1).

If the software is publicly available, it is

recommended to place a download link and

A C

B

D

Figure 6. Recording figure creation.

Proper reporting of image data handling/analysis is facilitated by recording the process of image handling. As an example, we explain a case of creating a figure using
the “Command Recorder” function in ImageJ (version 1.51o). (A) The original image. We select two embryos, extract them and create a figure with two panels. (B) The
result of macro recording. All these lines were automatically generated during the manual handling of the image. (C) Comments (shown in green) were added manually
after recording to clarify what is achieved by each step. Others can easily understand the aim of different parts of the macro by these comments. (D) The figure. The
macro shown in (B) can be used to reproduce exactly the same figure from the original image. Macro programming in ImageJ is explained in the chapter “ImageJ Macro
Programming” in “Bioimage Data Analysis”, 2016, Wiley-VCH. The macro code shown here is available at: https://github.com/miura/reproducible_bioimage_analysis.
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add notes regarding the installation

procedure (Box 4, item 2). Note version

numbers of the software tools. When certain

components of the workflow require some

run-time input of functional parameters,

those values should ideally be included in

the description (e.g., as a table) to ensure

that others can derive the same results and

also to emphasize key parameters (Box 4,

item 3, 4, & 5).

Original image data: be ready
for publication

Collect all image data, which were used for

the image analysis workflow, structure them

into folders so that the reader can easily

associate a specific workflow with the data

that they are analyzing. Use a compression

tool or data container to package them all in

a single file, e.g., ZIP or HDF5. For large

datasets that exceed several gigabytes, we

suggest preparing a minimally sized sample

dataset to allow the reviewers and others to

test the workflow and to be convinced of the

ability to obtain similar results. Both the

sample data and the complete data set

should be source (raw) data in the format it

had when acquired, i.e., before any informa-

tion reducing processing. For microscopy

data, this could mean TIFF files, or a propri-

etary file format (ND2, LIF, OIF, LSM, CZI,

etc). With sample data, the results do not

necessarily have to be exactly the same as

the complete dataset but it should output

similar results that agree well with the

conclusion of the full analysis (see Box 1,

“Reproducibility”).

In a recent survey, more than 90% of

biology PIs report that publishing data is

important to them, yet more than half noted

that their needs are not met in terms of

training and, to a lesser degree, infrastruc-

ture (Barone et al, 2017). More than half of

the respondents work with images, topped

only by sequence data. In earlier times,

data-inspired papers without actual data

were commonplace. Consider the report on

the discovery of the diffusion process by

Robert Brown. In his careful study and

beautiful exposition of “active molecules”

from 1828, the paper contain no data,

though it is clearly a data-driven study. At

that time, results were typically dissemi-

nated by reading one’s own paper to a scien-

tific society; the sharing of raw data was not

usual, possibly because of the absence of

means to do so. Publishing source data is in

fact a largely modern phenomenon; thanks

to the development of open-access software

and data-storage tools.

Here, we might need to clarify that the

goal of data publishing in the context of

enabling the reproducibility of data hand-

ling is slightly different from the data

archiving requested by institutions. Funders

of scientific research projects are increas-

ingly aware of data archiving, not keeping

them only for the verification of results in

the future but also as data are seen as

results of their investment. Institutional

data archiving mandates for the retention

of acquired data for a certain period of time

has become standard regulation in many

countries. Furthermore, the archiving of

◀ Figure 7. Recording bioimage analysis workflow.

We show here the recording of a simple analysis workflow as an ImageJ macro. The workflow counts blobs in the sample image “blobs.gif” loaded from the ImageJ
menu. We segment blobs with the auto-threshold function, and then apply particle analysis in order to count the number of blobs and measure their area. Auto-
thresholding of blobs (A, top-left), segmented blobs (A, top-right), and the results of particle analysis (a, bottom, the results table). These steps were taken using the GUI
of ImageJ, while the command recorder is turned on. (B) The result of command recording of the analysis workflow. The code is slightly cleaned-up, removing
unnecessary steps, and then verified for the reproducibility of results. The code is available in the GitHub repository https://github.com/miura/reproducible_bioimage_a
nalysis.

Box 3. Shared-infrastructures for the reproducible analysis

A typical source of problems in reproducing image analysis workflows is the diversity in computational infrastructure. For example, a workflow written in
the ImageJ macro language may return errors when an older ImageJ version, or a different Java version, is used. Differences in operating systems may
also cause trouble in executing the workflow code. Here, we note several ways to avoid such problems by sharing the infrastructure itself.

1 Use Containers: A software tool called Docker is available now that can be used to create a snapshot of the computational infrastructure originally used
for the workflow. That snapshot can then be shared with others to allow them to run the workflow with exactly the same infrastructure used for its
implementation. A Docker snapshot preserves the exact version of the software components originally used and can also bundle the text file-based
workflow; therefore, it is an ideal format for delivering reproducible workflows. Since the Docker snapshot can be converted to a readable text file called
a Docker file, this also provides good documentation that helps reproducing workflows even if the Docker package itself is not used. Docker is still not
generally used in the life science community (it is Unix based with limited Windows support), and we are still evaluating whether to include its use in
recommendations for the general publication of reproducible workflows.

2 Use Web Services: Several online services are appearing that allow the public sharing and the execution of workflow on the server-side, equipped with
a web interface. For example, Code Ocean is a commercial service recommended by some publishers (e.g., Nature and EMBO Press). Though the
number of use cases is still low, it does solve the problem of infrastructure differences. Apeer is another service recently available promoted by micro-
scope company Zeiss. NEUBIAS has started to provide a web-service for benchmarking bioimage analysis workflow called BIAFLOW, and this service
can also be used as a place to share workflows for others to test (Rubens et al, 2020). Though these services are quite useful as there is no problem to
occur in terms of the infrastructure, we still cannot be sure how long these services will be kept in the future, sustainable enough for scientific
publications.

3 Use Notebooks: Python has a notebook tool called Jupyter, which allows the publishing of workflow codes as server-side executable documentation. As
the notebook can be executed on public servers, and as this is available in popular social code repositories such as GitHub, it is increasingly getting
popular to publish workflows in those repositories avoiding the infrastructure problem. A similar notebook tool is also available in R off-the-shelf by
installing RStudio (R Markdown).
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image data and offering them to the public

is now expected to produce a richer

outcome based on reuse, re-analysis, data-

mining, and referencing (Ellenberg et al,

2018). On the other hand, for ensuring the

reproducibility of data handling and meth-

ods, which is the core interest of this arti-

cle, the scope of data publishing is focused

more on sharing the method in a published

article with others (Miyakawa, 2020). Prac-

tically, the data that need to be published

and associated with the workflow can be

much smaller in amount than that for the

institutional data archiving or with less

efforts in preparation compared to the

publication aiming for the added-value

database.

Upload to public data servers

When your workflow package (workflow

code, description, and original image data)

is ready to be submitted, there are two dif-

ferent forms of submissions for conven-

tional publications: either as

supplementary material or an appendix to

a paper or, as a stand-alone method paper,

e.g., F1000R NEUBIAS Gateway3, or as a

preprint in Biorxiv4. In all cases, the

current format of submission is centered

on text material, while other non-text

resources are provided in most cases as

download links. We, however, insist that

the workflow package should be shared in

a publicly accessible location. There is

quite some flexibility in choosing the loca-

tion for publishing these materials online,

e.g., at Zenodo5, SourceForge6, or GitHub7

(see Box 5: Data Servers to Share Work-

flows and Image Data). Links to a univer-

sity ftp server or dedicated websites

containing lists of files are generally

discouraged due to their ambiguous persis-

tence. Image databases, such as Image

Data Resource (IDR)8 and BioStudies (Lem-

berger, 2015; Sarkans et al, 2018)9, are

excellent places to upload the image

dataset when the file size is large and the

dataset is intended for reuse by others. In

this case, a link to image data can be indi-

cated in the workflow description instead

of including the data set in the workflow

package. A drawback is that data publish-

ing in these added-value image databases

might be demanding in terms of prepara-

tion and peer reviewing, especially when

the purpose is limited to provide a speci-

fic image data for evaluating a specific

workflow.

Currently, we recommend using GitHub

and Zenodo to upload and publish repro-

ducible workflow packages because the

uploaded package will be associated with a

persistent Digital Object Identifier (DOI). It

allows stable links from the main paper that

you will publish. In Box 6, we provided

step-by-step Instructions for uploading

reproducible bioimage analysis workflow to

Zenodo and Github.

Recommendations for Editors

A recent paper examined the level of repro-

ducibility of analysis results published in the

journal Science (Stodden et al, 2018) and

found, empirically, that the analysis

performed in 26% of about two hundred

randomly selected papers could be repro-

duced. We are not aware of any systematic

study of the frequency of reporting image

analysis methods, among papers that rely on

such analysis. Arguably, the rate of report-

ing image analysis methods will be less than

or equal to the rate of reporting image acqui-

sition methods, since acquisition comes

earlier in the experimental pipeline and

tends to be easier to report. For image acqui-

sition, we know that the rate of reporting is

currently low, on average about 17% and as

low as 3% at some journals (Marqu�es et al,

2020).

Thus, instead of trying to design a perfect

"image data handling and analysis" rule-set

as a part of journal policy, evaluating this

aspect of the submitted papers solely for the

reproducibility of the analysis and its results

will be more effective in avoiding accidental

mistakes and in preventing intentional

misconduct. To promote the submission of

reproducible bioimage analysis workflows,

we recommend that journal editors ask

researchers to evaluate themselves the

Box 4. Workflow description

We recommend the following items to be present in the workflow
description. Note that for items 1 to 4, the container service
(e.g., Docker; See Box 3) allows packaging all the materials together.

1 Outline of the workflow: Bioimage analysis workflows are a
set of selected component algorithms that are sequentially
applied to the source image (for more details, see (Miura &
Tosi, 2018)). The outline describing how these components
are assembled will be valuable for others to have a structured
understanding of the design of the workflow. A flowchart,
such as shown below, will also be helpful for this
understanding. Some software, such as ICY, allows the direct
visualization of workflow (See for example https://bit.ly/icy-spot-
detection)

2 Access to the dependent software: The software required for
running the workflow must be reported (name, version
number and location; a URL is sufficient).

3 Instruction for reproducing the workflow: How to run the
code to regenerate the submitted workflow should be explained
step-by-step.

4 Tables of parameter values used. Preferable in plain text as
this is a robust file format. XML or JSON files fall in this
category.

5 Details about the original data: biological name of the
sample, imaging details (microscope settings), type of the protein
label if such markers are used, and space-time resolution. I
f the dataset is not a complete dataset, for example because
it is too large, this should be noted alongside a description of
the complete dataset. Include a download link.
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reproducibility of their image handling and

analysis in the submitted paper. A table that

may help during self-evaluating of repro-

ducibility is shown in Table 1. The tradi-

tional approach has been “Barely”

reproducible description, data, and code. At

the other end of the spectrum, we have

“Fully” reproducible image data handling,

now available to virtually anyone, thanks to

the availability of open-access data-storage

platforms. A group of journal editors are

making an effort in a similar direction to set

the minimal standards for materials includ-

ing data and code, design, analysis and

reporting (preprint: Chambers et al, 2019).

We hope that our list may become a good

reference for setting such a standard.

We do see positive changes in the process

of academic publication that may give rise

to more awareness in the reproducibility of

methods. The preprint posting of a manu-

script might help obtain feedback ahead of

publication to improve reporting standards.

These trends could evolve into a more

dynamic research paper, with continuous

commenting / reviewing of the online paper,

and further revision cycles based on the

feedback. We can see this as a revision-

tracked academic paper akin to version-

controlled software releases.

The complexity of the methods used in

each paper is increasing. More advanced

methods in bioinformatics, genomics,

proteomics, statistics, and imaging are

used in combination in a single paper,

rendering them harder to be assessed by

the typical number of two to three refer-

ees. For example, deficiencies in the

statistical methods used for clinical

research were reported already twenty

years ago, and inclusion of dedicated

statistics experts in the reviewing process

was proposed (Goodman et al, 1998). A

more open publication process with

commenting, feedback, and revisions may

facilitate the involvement of more experts,

specializing in each of the relevant tech-

nological modalities used in the submitted

papers. For example, members from the

Network of European Bioimage Analysts

(NEUBIAS, neubias.org) could provide

expert feedback on image analysis meth-

ods. Papers lacking reproducible methods

could be flagged by experts, and the

revised version should then gain repro-

ducibility.

Conclusion

Misconduct, in the handling and analysis of

image data, comes in two distinct flavors:

The first, more accidental, is caused by lack

of knowledge about image analysis, when

utilizing image data in scientific research.

The other, intentional misconduct, is

caused by the deliberate fabrication and

Box 5. Data servers to share workflows and image data

● Zenodo (with Github): Allows free upload of up to 50Gb per dataset together with the workflow description. Code on Github can be linked. It
automatically assigns digital object identifiers (DOIs) to data. Versioning is possible.

● GitHub, Bitbucket, Gitlab: For publishing version-controlled code and descriptions. Space is limited so the upload of image data needs careful
consideration.

● Figshare: A commercial, but free, service for sharing figures, datasets, images, and videos.
● The journal: limited space and infrastructure. Also suffers from each journal having its own implementation. Better to find an independent solution.
● RCSB Protein Data Bank and other topic-specific repositories: if your field has an established repository for sharing data and code use it.
● The Image Data Resource (IDR). Free and public. This database is only for image data with “added-values” for reuse and re-analysis. It can take three

weeks until the data becomes public. We recommend this repository for datasets exceeding 50Gb and that are meant for further information
mining.

● BioImage Archive: A new public database for life science image data. IDR will eventually become integrated into this server.

Box 6. Step-by-step instructions for uploading reproducible bioimage analysis workflow to Zenodo and Github.

1 Upload the workflow code to a Github repository. If you do not have an account in Github, create your (free) account and start a new repository for
uploading the workflow code. Detailed instructions are available in Github

○ https://guides.github.com/activities/hello-world/#repository).

2 Login to Zenodo using your Github account, and navigate to the Github section within ZENODO site.

○ https://zenodo.org/account/settings/github/
○ The Github repository you created in Step 1 should be already there in the list. Toggle the switch located to the right of the name of your repository

(see the screenshot below).

○

3 Go back to the Github repository page and create a release.

○ Follow the instructions in the page below.
○ https://help.github.com/articles/creating-releases/

4 Switch back to the Zenodo page and reload it. It may take a while, but a DOI is now added to your repository. Note the DOI link.
5 Edit the workflow description and add the DOI link to your workflow code acquired in Step 4.
6 In Zenodo, click “upload” at the top bar of the page. Drag and drop the workflow description and the zipped original image data archive. Uploading

starts.
7 The DOI for this repository will be the identifier of your reproducible bioimage analysis workflow, that can now be cited directly.
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misrepresentation of data, for the sake of a

boost in publication impact, at the cost of

scientific integrity and potentially misdirect-

ing the research of peers. In both cases,

adoption of best practices, in publishing

reproducible image handling and analysis,

will increase both the transparency and

impact of the research. Employing detailed

do-and-don’t rules can only have limited

positive effects, especially compared to the

more robust approach of ensuring repro-

ducibility. Therefore, our approach here has

been to discuss the underlying principles

and general operational approaches that we

believe to be central to reproducibility in

image analysis. We hope that this commen-

tary encourages the use of the many power-

ful image analysis methods available in life

science research, with only one simple rule:

The image analysis workflow should be fully

documented and reproducible.
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