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Ciliary neurotrophic factor stimulates cardioprotection and the
proliferative activity in the adult zebrafish heart
Thomas Bise1, Anne-Sophie de Preux Charles1 and Anna Jaźwińska1

Unlike mammals, adult zebrafish can regenerate their hearts after injury via proliferation of cardiomyocytes. The cell-cycle entry of
zebrafish cardiac cells can also be stimulated through preconditioning by thoracotomy, a chest incision without myocardial
damage. To identify effector genes of heart preconditioning, we performed transcriptome analysis of ventricles from
thoracotomized zebrafish. This intervention led to enrichment of cardioprotective factors, epithelial-to-mesenchymal transition
genes, matrix proteins and components of LIFR/gp130 signaling. We identified that inhibition of the downstream signal transducer
of the LIFR/gp130 pathway through treatment with Ruxolitinib, a specific JAK1/2 antagonist, suppressed the cellular effects of
preconditioning. Activation of LIFR/gp130 signaling by a single injection of the ligand Cilliary Neurotrophic Factor, CNTF, was
sufficient to trigger cardiomyocyte proliferation in the intact heart. In addition, CNTF induced other pro-regenerative processes,
including expression of cardioprotective genes, activation of the epicardium, enhanced intramyocardial Collagen XII deposition and
leucocyte recruitment. These effects were abrogated by the concomitant inhibition of the JAK/STAT activity. Mutation of the cntf
gene suppressed the proliferative response of cardiomyocytes after thoracotomy. In the regenerating zebrafish heart, CNTF
injection prior to ventricular cryoinjury improved the initiation of regeneration via reduced cell apoptosis and boosted
cardiomyocyte proliferation. Our findings reveal the molecular effectors of preconditioning and demonstrate that exogenous CNTF
exerts beneficial regenerative effects by rendering the heart more resilient to injury and efficient in activation of the proliferative
programs.
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INTRODUCTION
In adult mammals, a damaged myocardium cannot be restored
because cardiomyocytes are not sufficiently proliferative.1,2 By
contrast, zebrafish cardiac cells can activate the morphogenetic
programs and enter the cell cycle to regenerate an injured
ventricle.3–9 Lineage tracing analyses have demonstrated that the
new myocardium originates from remaining cardiomyocytes
(CMs) at the site of injury.10–13 The physiological growth of
juvenile and adult fish also involves CM proliferation, however,
without a noticeable activation of injury-responsive programs.14,15

Non-cardiac tissues of the heart, such as epicardium, endocar-
dium, vasculature, fibroblasts, nerves and immune cells, provide
an environment for stimulation of cardiac cells.16–28

Our laboratory has recently demonstrated that chest incision or
intraperitoneal injection of immunogenic particles can induce the
cell-cycle entry of CMs.29 These interventions also resulted in an
upregulation of cardioprotective genes, such as txn, cxcl12a,
hmoxla and hsp5a. As opposed to regeneration, no CM
dedifferentiation was observed after thoracotomy, indicating a
different form of cardiogenesis in both contexts. Importantly,
thoracotomy at a few days before ventricular cryoinjury increased
cell survival and enhanced cell proliferation during the first week
of regeneration.29,30 Based on these beneficial effects, we
proposed that the surgical opening of the pericardium provides
a model of cardiac preconditioning in zebrafish. Thus, the cell-

cycle entry of CMs can be enhanced by a preconditioning
procedure in zebrafish.
Preconditioning is a systemic self-defense mechanism that is

invoked by exposure to low doses of a harmful stimulus and
enables tissues to better withstand the deleterious effects of
subsequent more severe injuries.31,32 In mammals, the target
organs of preconditioning include the heart, brain, kidney, liver
and skeletal muscle, all of which temporarily become more
resilient to damage after a small injury.33 A variety of remote
stimuli can elicit organ protection, such as electroacupuncture,
nociceptor activation through capsaicin and surgical skin incision.
In clinical trials, cardiac preconditioning strategies rely on non-
invasive remote insults, such as cycles of inflation–deflation using
a blood pressure cuff on the patient’s arm.34–36 Studies in rodents
revealed that preconditioning is associated with an elevated
expression of pro-angiogenic, antioxidant and cytoprotective
genes.31,37 From an evolutionary perspective, preconditioning
can be considered an adaptive trait that increases the fitness of
organisms by strengthening and preparing the body to cope with
environmental hazards.38,39 The molecular mechanisms of cardiac
preconditioning in the zebrafish model have not yet been
investigated.
In this study, we used thoracotomy as a model of cardiac

preconditioning in zebrafish. To identify molecular factors
involved in this process, we compared transcriptional profiles of
ventricles from intact and thoracotomized animals. This analysis
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revealed upregulation of cardioprotective factors, epithelial-
mesenchymal transition (EMT) genes and extracellular matrix
(ECM) components. Among signaling pathways, we found that
multiple members of the LIFR/gp130 (Leukemia inhibitory factor
receptor / Glycoprotein 130) cascade displayed a remarkable
expression change at one day after thoracotomy. LIFR and gp130
are structurally related and ubiquitously expressed receptors that
form a heterodimeric signaling complex at the cell surface
through binding to cytokines of the IL (Interleukin)-6-type family.40

Activation of the receptor complex leads to phosphorylation of
JAKs (Janus tyrosine kinases), resulting in phosphorylation of
STATs (Signal transducers and activators of transcription), which
translocate into the nucleus and initiate gene expression. The
activity of the gp130 receptor is negatively regulated by the
feedback inhibitors SOCSs (Suppressors of cytokine signaling).
LIFR/gp130 signaling can trigger a wide range of effects
depending on the cell type and the cellular state.41–43

Here we investigated whether inhibition of LIFR/
gp130 signaling by a pharmacological selective inhibitor of the
JAK1/2 activity, Ruxolitinib, abrogates cardiac preconditioning
after thoracotomy. Furthermore, to test whether activation of LIFR/
gp130 is sufficient to elicit the preconditioned phenotype, we
synthetized zebrafish CNTF (zCNTF), a LIFR/gp130 ligand,40 and
injected it into the pericardial cavity. To determine if the cntf gene
is necessary for preconditioning-induced cardiomyocyte prolifera-
tion, we generated mutant zebrafish and analyzed their hearts
after thoracotomy. Our findings demonstrate that cntf regulates
several effects of cardiac preconditioning in zebrafish.

RESULTS
Transcriptional changes after thoracotomy suggest the activation
of cytoprotection
Thoracotomy induces preconditioning in the zebrafish heart, but
the molecular pathways mediating cardioprotection and prolifera-
tion remain unknown.29 To identify biological processes activated
in the heart by thoracotomy, we performed transcriptome high
throughput sequencing. Expression profiles of ventricles from
uninjured animals were compared to those from fish at 1 day post-
thoracotomy (dpt), the early phase after stimulation, and at 7 dpt,
when an advanced preconditioning effect should be detected
(Fig. 1a). We identified 1638 and 103 differentially expressed
genes at 1 and 7 dpt, respectively, compared to uninjured
ventricles at 0 dpt (Suppl. Data 1; Suppl. Fig. S1). To identify the
effects of thoracotomy, we first focused our analysis on 53
common genes at 1 and 7 dpt, which we manually annotated (Fig.
1b; Suppl. Data 2). In mammals, one of the key features of
preconditioning is the induction of cell protection programs.37

Consistently, the expression of several orthologs of mammalian
genes associated with cytoprotection was increased, namely a
pleiotropic cytokine midkine a (mdka),44,45 chemokine C-X-C motif
ligand 12a (cxcl12a, also known as sdf-1α),46 an oxidative stress
factor thioredoxin (txn),47 a glycoprotein cystatin,48 a carnitine
efflux transporter slc16a9,49 a short peptide thymosin β4,50 a
plasma metalloprotease carboxypeptidase N1,51 and an alcohol
dehydrogenase adh8a52 (Fig. 1b, Suppl. Data 2). This finding
suggests that the molecular players of preconditioning are
conserved between mammals and fish.
We selected several common candidate genes with the highest

expression change for further analysis by in-situ hybridization at 7
dpt. We found that most of the genes were upregulated at the
surface of the ventricle after thoracotomy (Fig. 1c). Beside
cardioprotective genes, we identified a few mediators of
epithelial-to-mesenchymal transition (EMT), such as annexins and
slug (Fig. 1c, Suppl. Data 2). Among extracellular matrix (ECM)
components, we found enrichment of several collagens, particu-
larly of two paralogous genes encoding col12a1a and col12a1b,

which belong to the group of fibril-associated collagens with
interrupted triple helical domains (FACIT).53 ColXII proteins do not
assemble into rigid fibrils, but form flexible bridges between
matrix fibers.54 The upregulation of several EMT and FACIT genes
on the heart surface indicates that activation of epicardial cells
might be an important mechanism of preconditioning after
thoracotomy.
To further investigate this observation, we used the transgenic

fish strain ET27:EGFP, which demarcates the epicardium,55 and
performed immunofluorescence staining against ColXII. In unin-
jured control fish, as previously shown,19,56 ET27:EGFP-expressing
cells and ColXII-positive fibrils were mostly confined to the
superficial layer of the heart (Fig. 1d). Interestingly, at 7 dpt, we
found a 3-fold increase of ET27:EGFP-expressing cells entirely
within the underlying myocardium and an extensive infiltration of
ColXII (Fig. 1d, e). Our findings suggest that thoracotomy triggers
expansion of epicardial cells and ColXII in the ventricle.

The LIFR/GP130 pathway is activated at 1 day after thoracotomy
Our next aim was to use the high throughput sequencing data to
identify a signaling pathway that can initiate cardiac precondi-
tioning at 1 dpt. An enrichment analysis of pathway maps
revealed a significant representation of genes involved in the
signaling of interleukin-6 (IL-6) family cytokines.40 In our dataset,
the expression of leukemia inhibitory factor receptor alpha b (lifrb,
also known as CD118) and glycoprotein-130 (gp130), also known as
the interleukin-6 signal transducer (il6st), and several of their
downstream effectors (jak1, stat1b, stat3, mapk12a, junba, cebpb)
or targets (mmp13a, timp2b, ldlr, ldlrad3, socs3b) were modulated
at 1 dpt (Suppl. Fig. S2a, Suppl. Data 3). Transcripts of socs3b,
mmp13a, timp2b were detected on the outer layer of the heart, as
determined by in-situ hybridization (Suppl. Fig. S2b). We
concluded that the LIFR/gp130 pathway is upregulated in the
epicardium after thoracotomy.
In mammals, LIFR and GP130 receptors act as heterodimers,

which are activated by IL-6 type ligands, such as leukemia
inhibitory factor (LIF), oncostatin M (OSM), ciliary neurotrophic
factor (CNTF), cardiotrophin-1 (CT-1) and cardiotrophin-like factor
(CLCF).40 To investigate the role of the LIFR/GP130 pathway in
cardiac preconditioning, we first aimed to determine which of the
LIFR-binding cytokine displays the highest expression in the
zebrafish heart at 1 dpt. No zebrafish orthologs were identified for
osm and ct-1, but cntf, clcf1 and lif genes have been annotated in
the Danio rerio genome (Ensemble, release 89). qRT-PCR analysis
revealed that among these cytokines, only cntf displayed a
significant upregulation at 1 dpt (Suppl. Fig. S2c). Consistently, in-
situ hybridization detected cntf transcripts in the outer layer of the
preconditioned ventricle (Suppl. Fig. S2d). These data suggest that
the LIFR/gp130 signaling pathway might be involved in cardiac
preconditioning.

Enhanced proliferation and ColXII deposition observed after
thoracotomy are dependent on the JAK/STAT pathway
Among upregulated genes at 1 dpt, we identified socs3b.
Expression of socs3 genes is considered a sensitive readout of
JAK/STAT3 activation.57 To test the importance of the LIFR/gp130
pathway in cardiac preconditioning, we disrupted its downstream
JAK/STAT3 signaling using Ruxolitinib (INCB018424), which
selectively inhibits JAK1/2 activity in mammals, and has been
validated in zebrafish.58 We designed an experiment to assess the
effects of the drug on cell proliferation and ColXII deposition at 7
dpt (Fig. 2a). To distinguish between cardiac and non-cardiac cells,
we used cmlc2:DsRed2-nuc transgenic fish that express a red
fluorescent protein in the nuclei of CMs.59 To detect the
proliferative activity, we applied MCM5 as a marker of the G1/S
phase in the cell cycle.60 Consistent with our previous study,29 at 7
dpt, the preconditioned hearts contained 4- and 10-times more
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MCM5-positive cardiac and non-cardiac nuclei, respectively, than
uninjured control hearts (Fig. 2b, d, e). This enhanced proliferative
activity was suppressed by the treatment with the JAK/STAT3
inhibitor, Ruxolitinib (Fig. 2b, d, e). To verify the specificity of this
phenotype, we suppressed two other signaling pathways that are
essential for heart regeneration, namely TGF-β and FGF using their
specific antagonists, SB431542 and PD173074, respectively.20,61

Interestingly, the inhibition of TGF-β and FGF signaling did
not influence cell proliferation after thoracotomy (Fig. 2b, d, e).
We concluded that the stimulation of the cell cycle in
the preconditioned hearts might be dependent on JAK/
STAT3 signaling.
To determine the role of JAK/STAT3 signaling on modifications

of the extracellular matrix, we assessed deposition of ColXII. At 7
dpt, the amount of ColXII-positive fibers displayed a 4-fold
increase compared to uninjured control (Fig. 2c, f). Inhibition of
the JAK/STAT3 pathway resulted in a decrease of ColXII
accumulation, an effect that was not caused by the suppression
of TGF-β and FGF signaling (Fig. 2c, f). Taken together, our
observations suggest that the activation of JAK/STAT3 signaling
promotes cell proliferation and ECM reorganization in intact
preconditioned hearts. Furthermore, the roles of TGF-β and FGF
might be restricted to the regenerative processes, thereby
reemphasizing the unique role of JAK/STAT3 during heart
preconditioning.

Injection of zCNTF results in rapid upregulation of preconditioning
genes
In mammals, CNTF is not essential for development and survival,
but it can elicit powerful neuroprotective and metabolic effects,
when ectopically administrated.62 As cntf transcripts were
detected on the heart surface after thoracotomy (Suppl. Fig. S2c,
d), we asked whether CNTF is a relevant activator of LIFR/
GP130 signaling in the context of cardiac preconditioning.
Considering that the mammalian CNTF recombinant protein only
displays an approximately 20% identity with the zebrafish
ortholog, we synthetized the zebrafish CNTF protein for our
functional study (Suppl. Fig. S3).
To test the effects of exogenous zCNTF on the heart, we

injected 2.5 μl solution containing 250 ng of this protein into the
pericardial cavity, whereby the amount of protein was chosen
based on previous studies in zebrafish63 and rodents.62 For the
control, we used the same quantity of human immunoglobulins
(hIgG), which we selected as unspecific proteins with a neutral
pharmacological activity, as verified in vivo.64 To determine if
zCNTF injection alters gene expression in a similar pattern as
thoracotomy, we performed in-situ hybridization with the
validated probes (Suppl. Fig. S4a). We found that several LIFR/
GP130 downstream factors, such as socs3b, mmp13a, timp2b, as
well as the cardioprotective gene cystatin and the EMT-factor
anxa2a, were upregulated at 1 day post-injection (dpi), as
compared to hIgG control (Suppl. Fig. S4b). Furthermore, zCNTF

injection into ET27:EGFP fish stimulated invasion of epicardial cells
into the myocardium in a similar manner as thoracotomy, as
assessed at 7 dpi (Suppl. Fig. S4c, d). Thus, delivery of exogenous
zCNTF is sufficient to induce expression of preconditioning genes
and to activate the epicardium in the intact heart.

Exogenous zCNTF is sufficient to increase myocardial mitotic
activity, ColXII deposition and leucocyte recruitment to uninjured
heart
To test whether zCNTF is sufficient to exert preconditioning effects
similar to thoracotomy, we performed intrathoracic injections into
cmlc2:DsRed2-nuc transgenic fish in the presence of Ruxolitinib or
control treatments (Fig. 3a). Remarkably, a single injection of
zCNTF was sufficient to increase the number of MCM5-expressing
CMs by nearly 4-fold, compared to hIgG-injected fish (Fig. 3b, d, e).
Furthermore, we observed a similar increase of mitosis, using
phospho-Histon H3 immunostaining (Suppl. Fig. S5). zCNTF also
induced a 3-fold increase in ColXII deposition (Fig. 3c, f). All these
effects were abolished by the inhibition of JAK/STAT3 signaling
with Ruxolitinib (Fig. 3b–f). Thus, zCNTF stimulates the cell cycle
entry of CMs and ECM remodeling in intact zebrafish hearts by
activating the JAK/STAT3 pathway.
Thoracotomy is associated with the recruitment of leukocytes

into the ventricle within one week after the procedure.25 To test
whether zCNTF injection elicits a similar response, we performed
immunostaining against L-plastin, also called lcp1, which is a
leukocyte-specific actin-bundling protein.65,66 Interestingly, the
zCNTF-injected ventricles contained approx. twice more L-plastin-
positive cells compared to control (Fig. 4a, e). This phenotype was
reverted by treatment with Ruxolitinib, suggesting that the
recruitment of immune cells to the injury site was dependent
on JAK/STAT3 signaling. We concluded that a pulse delivery of
exogenous zCNTF triggers responses that mimic preconditioning
in the zebrafish ventricle.
Markers for specific leukocytes in the adult zebrafish are still

subject to refinement.67 To distinguish between different types of
leukocytes, we used the transgenic fish line, mpeg1:EGFP, which
demarcates macrophages.68 To identify neutrophils, we per-
formed immunofluorescence staining against Myeloperoxidase
(Mpx, also abbreviated as Mpo) and Lysozyme (Lyz), both of which
have been validated by several assays as myeloid-specific
markers.69 We found that thoracotomy and zCNTF injection
increased the number of mpeg1:EGFP-expressing cells by approx.
25- and 9-fold, respectively, compared to their controls (Fig. 4b, f).
Furthermore, the number of Mpx- or Lyz-positive cells that co-
expressed L-plastin displayed a 3-fold increase after thoracotomy
and zCNTF injection compared to their controls (Fig. 4c, d, f).
Taken together, these results indicate that both macrophages and
neutrophils are recruited into the ventricle upon thoracotomy or
intrathoracic CNTF injection.

Fig. 1 Transcriptional changes after thoracotomy suggest the activation of cardioprotective and EMT genes in the epicardium. a Experimental
design. High throughput sequencing (HTPS) of ventricles collected at 0 (control), 1 and 7 days post-thoracotomy (dpt). For each group, RNA
was extracted from a pool of 8 ventricles. The encircled numbers indicate differentially expressed genes at each time point. The middle
number depicts differentially expressed genes common for both time points. b Heat-map representation of the common 53 differentially
expressed genes at 1 and 7 dpt. Genes are grouped according to biological function. Fold changes are represented in log2 scale (blue: log2 <
0; red: log2 > 0). c In-situ hybridization of ventricular transversal sections reveals upregulation of several candidate genes (purple) in the
epicardial and sub-epicardial region at 7 dpt, compared to control hearts at 0 dpt. The frames indicate the part of the section that is magnified
on the right side of each image. n ≥ 3 hearts. Scale bar for the whole section, 100 μm; for the magnified area, 50 μm. d Immunofluorescence
staining of ventricular sections of transgenic fish ET27:EGFP (red) with antibodies against cardiac Tropomyosin (TMP, blue) and ColXII (green).
At 0 dpt, ET27:EGFP+ cells and ColXII are confined to the epicardium. At 7 dpt, ET27:EGFP+ cells and ColXII expand and infiltrate the
myocardium. Arrows indicate intramyocardial ET27:EGFP+ cells. Scale bar, 50 μm. e Quantification of intramyocardial ET27:EGFP+ area per
ventricular section area. Superficial epicardial ET27+ cells were not included in measurements. n ≥ 3 hearts, 3 sections per heart each. *P <
0.05 with student’s t-test. Error bars represent standard error of the mean (s.e.m.) (This applies to the all subsequent figures)
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Fig. 2 The cell-cycle entry and the deposition of ColXII after thoracotomy are dependent on the JAK/STAT3 pathway. a Experimental design.
The requirement of different pathways for the increased CM mitotic activity and the ColXII deposition observed after preconditioning was
tested at 7 dpt by using specific inhibitors of JAK/STAT (1 µM Ruxolitinib), TGF-β (20 µM SB431542) or FGF (10 µM PD173074) signaling. b, c
Transversal sections of hearts treated with different drugs indicated at the left side. Scale bar for the whole section, 500 μm; for the magnified
area, 100 μm. b Ventricle of transgenic fish cmlc2:DsRed2-nuc (red) immunostained for the G1/S-phase marker MCM5 (green). Some double
positive cells are indicated with arrows. Treatment with Ruxolitinib markedly reduces cells proliferation in the ventricle. c Ventricle of wild type
fish immunostained against Tropomyosin (red) and ColXII (green). In the presence of Ruxolitinib, intramyocardial ColXII is reduced. d
Proportion of MCM5+ nuclei among cmlc2:DsRed2-nuc+ nuclei. e Proportion of MCM5+ cmlc2:DsRed2-nuc-negative nuclei among DAPI+
nuclei. f Proportion of the ColXII-positive area within the surface of ventricular section. n ≥ 4 hearts; ≥ 2 sections per heart; ***P < 0.001
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Fig. 3 Single injection of zCNTF elevates the mitotic activity and ColXII deposition. a Experimental design to assess effects of a single
intrathoracic injection of zCNTF in the presence of the JAK/STAT inhibitor, 1 µM Ruxolitinib, at 7 dpi. b, c Immunofluorescence staining of heart
sections. Scale bar for the whole section, 500 μm; for the magnified area, 100 μm. b Transversal heart sections of transgenic fish cmlc2:DsRed2-
nuc (red) to demarcate CM nuclei, immunostained with the G1/S-phase marker MCM5 (green) display enhanced CM proliferation (arrows) after
zCNTF injection in the absence of the JAK/STAT inhibitor. c Transversal heart sections of wild type fish immunostained with of ColXII (green)
and Tropomyosin (red). Intramyocardial ColXII is increased in zCNTF-injected hearts. JAK/STAT inhibition abolished this effect. d Proportion of
MCM5-positive cells among cmlc2:DsRed2-nuc/DAPI-positive CM nuclei. e Proportion of MCM5+ cmlc2:DsRed2-nuc-negative nuclei among
DAPI+ nuclei. f Proportion of the ColXII-positive area within the surface of ventricular section. n ≥ 4 hearts; ***P < 0.001
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Injected CNTF mimics the preconditioning phenotype in
regenerating zebrafish heart
Preconditioning improved initiation of regeneration after ventri-
cular cryoinjury, by rendering the heart more resilient to injury and

by boosting CM proliferation.29 To determine if CNTF can
reproduce these beneficial effects and act as a preconditioning
stimulus, we performed injections of this protein prior to
cryoinjury. In this model, the process of freezing and thawing
destroys the cellular integrity, whereby fully disrupted cells rapidly
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die, whereas partially damaged cells may enter the apoptotic
program within 24 h after the procedure.30 To assess the level of
cell survival during this critical recovery period, we injected zCNTF
into the pericardium 3 days before inducing ventricular damage,
and collected hearts at 6 and 12 h post-cryoinjury (hpci) (Fig. 5a). A
TUNEL assay of the ventricles revealed that apoptosis was reduced
by 2- and 4-fold at 6 and 12 hpci, respectively (Fig. 5b, c). This
finding suggests that exogenous zCNTF might improve cell
survival upon partial damage.
To assess the effects of zCNTF on reactivation of the

regeneration programs, we used cmlc2:DsRed-nuc transgenic fish
and analyzed CM proliferation and dedifferentiation at 7 dpci (Fig.
5d). The assessment of MCM5 cell-cycle marker revealed a 3-fold
increase in CM proliferation in regenerating hearts after zCNTF
injection, compared to after hIgG injection (Fig. 5e, g). We have
previously demonstrated that CMs of the peri-injury zone within
100 μm from the wound margin reactivate expression of
embryonic cardiac myosin isoform (embCMHC, monoclonal anti-
body N2.261).12,70 Remarkably, the zCNTF-injected group con-
tained a twice-larger embCMHC-positive area in the peri-injured
myocardium compared to control, suggesting a more efficient CM
dedifferentiation (Fig. 5f, h). Taken together, our results indicate
that exogenous zCNTF increases cell survival after damage and
enhances the entry into the regenerative program.

cntf mutations abrogated the CM proliferation response following
thoracotomy
To genetically investigate the requirement of CNTF for
thoracotomy-induced preconditioning, we generated mutant fish
using CRISPR-Cas9. We injected wildtype embryos with Cas9-
sgRNA ribonucleoprotein complexes (RNPs) that induce double
strand breaks (DSB) in cntf between the 154th and 155th

nucleotide of exon 3 (Fig. 6a). Two mutants were identified,
namely cntfdel207 with a 207 bp deletion that includes the exon/
intron boundary, and cntfdel7 with a 7 bp deletion that causes a
frameshift, followed by a premature stop codon (Fig. 6b). The
cntfdel207 and cntfdel7 mutations lead to alteration of the protein
sequence after the 85th and 88th amino acid, respectively. After
incrossing of these F0 crispants, we raised cntfdel207/ cntfdel7 trans-
heterozygous zebrafish and their wild type siblings, which were
identified by genotyping (Fig. 6c). We did not observe any
phenotype in F1 adult mutant fish (Fig. 6c).
In order to assess preconditioning in the cntf mutant fish, we

analyzed CM proliferation, immune cell recruitment and ColXII
deposition in the hearts at 7 dpt. Compared to wildtype siblings,
no difference was observed in the presence of L-plastin- and Mpx-
positive cells, as well as in the infiltration of ColXII fibers in the
ventricle (data not shown). To determine CM proliferation after
thoracotomy, we used PCNA and BrdU-incorporation assays.
Colocalization between PCNA and a myocyte marker Mef2 in
DAPI-positive nuclei revealed approx. 3.5-times fewer proliferating
CM in cntfdel207/cntfdel7 fish compared to their control siblings (Fig.
6e, g). Similarly, the mutant zebrafish displayed approx. 6-times
less BrdU-labeled myocytes than control (Fig. 6f, h). These findings
suggest that CNTF is required for stimulation of CM proliferation
after thoracotomy-induced preconditioning.

DISCUSSION
The adult mammalian heart exhibits only very limited cardiomyo-
cyte renewal, which is insufficient for regeneration of myocardial
damage. It is therefore important to develop approaches to
prevent the detrimental consequences of injury. After infarction,
reperfusion is mandatory to salvage the ischemic myocardium.
Paradoxically, cardiomyocyte death occurs not only during
ischemia but also during ‘myocardial reperfusion injury’. There is
currently no cardioprotection stronger than that elicited by the
preconditioning phenomena.32 Preconditioning is an intriguing
phenomenon, whereby endogenous cellular survival and pro-
regenerative programs are induced by transient exposure to
noxious stimuli.31,36 Consequently, activated protective mechan-
isms increase the resilience of tissues to further harmful injuries.
Preconditioning is a powerful intervention known for reducing
infarct size and improving clinical outcomes in patients with
ischemic heart disease.35,71 Despite its potential in regenerative
medicine, the cascade of events invoking protective programs still
remains unclear. In this study, we used transcriptional profiling of
the zebrafish ventricle to determine differentially expressed genes
after cardiac preconditioning, whereby chest incision activates
pro-regenerative programs in the heart even in the absence of
myocardial damage.29 As in mammalian preconditioning, we
identified upregulation of genes involved in cytoprotection,
epithelial-to-mesenchymal transition and extracellular matrix
remodeling. This finding indicates that the molecular players of
preconditioning might be conserved among vertebrates.
Our analysis revealed expression changes of several

epicardium-derived signaling factors, which have previously been
identified in epicardial cell transcriptome sequencing in zebra-
fish.72 Specifically, we found that thoracotomy resulted in down-
regulation of neuregulin 2a (nrg2a), whose homolog nrg1 was
reported in tcf21+ perivascular cells.73 Several epicardial signaling
factors were upregulated in preconditioned hearts, including a
CXC-motif chemokine ligand cxcl12,22 insulin growth factor 2b
(igf2b),23,74 thymosin beta and midkine A.75 These signaling
molecules might regulate CM proliferation, survival and leukocyte
recruitment. Here, we focused our analysis on the epicardium
activation and the LIFR/GP130 signaling pathway during
preconditioning.
We identified a few mediators of epithelial-to-mesenchymal

transition (EMT), such as regulators of the plasma membrane
organization annexins (anxa1a, anxa2a)76,77 and a master
transcription factor slug (also called snai2).78 In-situ hybridization
of several candidate genes and immunofluorescence analysis of
ET27:EGFP transgenic-reporter fish revealed that the epicardium is
stimulated after thoracotomy. We found that the thoracotomy-
activated epicardial cells invade the underlying myocardium that
is associated with ColXII deposition. This type of collagen is
particular because it does not form stereotypic fibers on its own,
but regulates the size, spacing and interconnection between ECM
fibrils.53 Indeed, ColXII may modulate the matrix arrangement and
its morphogenetic flexibility, especially under biophysical stress
during tissue restoration and homeostasis.54,56,79,80 The require-
ment of ColXII in the zebrafish heart needs further investigation.

Fig. 4 Exogenous zCNTF recruits leucocytes into the zebrafish uninjured heart. a–d Immunofluorescence staining of heart sections from
different conditions as indicated at the left side of the images. a Hearts of wild type fish stained for L-plastin (green) and DAPI (blue). Single
injection of zCNTF results in higher accumulation of L-plastin in the heart at 7 dpi. This effect is abolished in the presence of the JAK/STAT
inhibitor, 1 µM Ruxolitinib. Scale bars, 100 μm. b Hearts of transgenic fish mpeg1:EGFP (green) stained for L-plastin (red) and F-actin (Phalloidin,
blue). The number of mpeg1:EGFP/L-plastin-expressing cells is increased at 7 days after zCNTF injection. Some double positive cells are
indicated with arrows. Scale bers 50 μm. c, d Ventricles of wild type fish stained for Mpx (c, green) or Lyz (d; green) and F-actin (Phalloidin,
blue). The number of double positive leucocytes is increased at 7 days after zCNTF injection (arrows). Scale bars, 50 μm. e Quantification of L-
plastin+ area in ventricular sections. f Quantification of cells expressing mpeg1:EGFP, Mpx and Lyz normalized to the ventricle area at different
conditions. n ≥ 4 hearts; ≥ 2 sections per heart; *P < 0.05; **P < 0.01; ***P < 0.001
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The pathway analysis of the differentially expressed genes
revealed that multiple members of the LIFR/GP130 receptor
pathway were enriched at 1 dpt. In mammalian models, down-
stream JAK1/STAT3 signal transducers are activated upon cardiac
stress, such as pressure overload, hypoxia or injury.81 Furthermore,

STAT3 has been shown as a mediator of cardioprotective signaling
in the pig and mouse heart.82,83 In the zebrafish heart, over-
expression of dominant negative STAT3 has been shown to
restrict CM proliferation during regeneration, but not during
normal growth.84 Our study revealed that cntf, a cytokine of LIFR/
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GP130 signaling,40 is transcriptionally induced after thoracotomy.
Although our in-situ hybridization analysis indicated that the
epicardium expresses cntf, other tissues could also contribute to
production of extracellular CNTF, which might be distributed in a
paracrine or systemic manner.
We showed that a single injection of zebrafish CNTF into the

uninjured pericardial cavity was sufficient to mimic various
preconditioning responses, including stimulation of the cell cycle
entry of CMs and non-CMs, expansion of ColXII fibers into the
myocardium and recruitment of macrophages. The number of
dsRed/MCM5-double positive cells was lower in our control fish
than in our previous study.70 This discrepancy in the proliferation
dynamics might be caused by epigenetic changes in the cmlc2:
DsRed-nuc strain. However, as we used sibling fish for hIgG and
CNTF injections, the comparison between both groups should
reveal the direct effects of the injected molecules. Importantly,
exogenous CNTF exerted beneficial effects in the cryoinjury
model. Pre-injected fish displayed reduced apoptosis as assessed
at 6 and 12 hpci, more proliferation of CMs at 7 dpci, and a higher
expression of the embryonic isoform of the myosin heavy chain.
Thus, similarly to thoracotomy, one injection of CNTF is sufficient
to reproduce preconditioning in the zebrafish heart.
Since CNTF possesses a wide spectrum of biological

actions,40,42,43 it remains unclear whether its beneficial effects
observed in the heart are direct or indirect. In this study, we were
not able to visualize STAT3 phosphorylation by immunofluores-
cence, which is essential to monitor the signal-activated cells. The
inhibition of JAK/STAT3 in the zebrafish heart was sufficient to
suppress the effects of CNTF, but we cannot exclude that other
downstream signaling cascades contribute to CNTF-mediated
preconditioning. To determine whether the endogenous cntf gene
is required for the preconditioning effects of thoracotomy, we
generated mutant zebrafish using the Crispr/Cas9 method. Two
alleles contained deletions that disrupt the protein sequence after
the 85th and 88th amino acid. The missing part of the protein is
predicted to comprise one out of the four α-helixes and 5 protein
binding sites.85 Thus, it is likely that the mutated alleles produce
truncated non-functional proteins. The trans-heterozygous mutant
fish did not display any developmental defects. Nevertheless,
adult mutant fish failed to enhance CM proliferation upon
thoracotomy. Thus, cntf seems to be essential for stimulation of
the pro-regenerative program after preconditioning. Further
studies could be conducted in the future to address the role of
cntf during zebrafish heart regeneration after cryoinjury.
Mouse knockout and human genetic studies have revealed that

the cntf gene is not essential during development or for healthy
life,86,87 but the CNTF protein can exert protective effects for
neural tissues when exogenously provided.62 Ectopically admini-
strated CNTF can decrease progression of motor neuron diseases
in rodent and primate models.88,89 CNTF can act as a neuropro-
tective or pro-regenerative agent in retinas of mice and
zebrafish.63,90 This cytokine also plays a metabolic role in
hepatocytes, in which it stimulates lipid metabolism,91 and
adipocytes, where it increases insulin sensitivity, decreases fatty
acid synthesis and stimulates production of anti-obesogenic

leptin.92 In cultured skeletal muscle cells, CNTF promotes
myoblasts proliferation and inhibits myogenic differentiation.93,94

To our knowledge, the role of this exogenous cytokine has not yet
been reported in the vertebrate heart. Thus, our findings on the
cardioprotective and pro-regenerative effects of CNTF in the
zebrafish heart allow new insights into the function of this
cytokine in vertebrates. The mechanisms of the protective tissue
response are probably evolutionary conserved. The zebrafish heart
model will provide a deeper comprehension of the cardioprotec-
tive mediators that is necessary to guide pharmacological research
that aims to mimic preconditioning processes.

METHODS
Zebrafish lines and animal use
Wild type AB (Oregon) and transgenic adult zebrafish aged 6 to 18 months
were used in this study. Genetically modified lines were: Tg(cmlc2:DsRed2-
Nuc),59 Tg(mpeg1:EGFP),68 Tg(ET27:EGFP).55 The trans-heterozygous
cntfdel207/ cntfdel7 fish were at the age of 3 months old. All assays were
performed using different animals that were randomly assigned to
experimental groups. The exact sample size (n) was described for each
experiment in the figure legends, and was chosen to ensure the
reproducibility of the results. During invasive procedures and imaging,
fish were anaesthetized with buffered solution of 0.6 mM tricaine (MS-222
ethyl-m-aminobenzoate, Sigma-Aldrich) in system water. Animal proce-
dures were approved by the cantonal veterinary office of Fribourg,
Switzerland.

Animal procedures
For all interventions, anesthetized fish were placed ventral side up in a
damp sponge under the stereomicroscope.
Thoracotomy were performed by cutting a 1-2mm incision through the

chest with iridectomy scissors (Roboz Surgical Instrument Co.) The beating
heart was well visible, and no extensive bleeding occurred during the
thoracotomy. It was not necessary to suture the wound, as the healing
process occurs spontaneously within a week.29

Ventricular cryoinjuries were performed according to our video
protocol.95 Briefly, the ventricular wall was directly frozen by applying for
23-25 sec a stainless steel cryoprobe (custom-made) precooled in liquid
nitrogen. To stop the freezing of the heart, system water at room
temperature was dropped on the tip of the cryoprobe, and fish were
immediately returned into water.
Intrathoracic microinjections were performed using pulled glass needles

TW100F-6 (World Precision Instruments) and an Eppendorf Femto Jet
microinjector. To ensure the reproducibility of the injections and monitor
spreading of the liquid under the chest of the fish, 10% Phenol Red was
added to the solution. Injections of 2.5 μl solution into the pericardial
cavity were guided by observation under the stereomicroscope (Suppl. Fig.
S6). Injections were performed with caution to avoid any direct contact
between the needle and the heart. If the heart was touched or punctured
by the needle, the fish were excluded from experiments.
For the bromodeoxyuridine (BrdU) incorporation assay, the animals were

maintained in 5mg/ml BrdU (B5002; Sigma-Aldrich) for 6 days at 22 °C
starting from 1 dpt.
To collect the heart for fixation, fish were euthanized in 0.6 mM tricaine

solution. An incision was made above the heart through the branchial
cartilage and the heart was pulled from the body cavity as shown in the
video protocol.95 For analysis of leucocytes, the hearts were prefixed for

Fig. 6 Cntfmutants fail to enhance CM proliferation after thoracotomy. a Schematic drawing of the cntf locus containing 4 exons. UTR (white);
translated sequences (orange boxes). The sequence of 154-174 nucleotides (in red) flanking PAM sequence (in blue) in the 3rd exon was
targeted by the CRISPR/Cas9-sgRNA RNP complex. b Schematic drawing of the two deletions induced by CRISPR/Cas9. cntfdel207 contains a
deletion of 207 bp in the 3rd exon spanning the exon/intron boundary. cntfdel7 comprises a deletion of 7 bp in the middle of the 3rd exon
leading to a frameshift and a premature stop codon. c Genotypes and images of wild type and CNTF mutant siblings. F0 mosaic heterozygous
candidates were crossed to obtain F1 trans-heterozygous mutants, which are viable without visible phenotype. Scale bar, 5 mm. d
Experimental design. e Quantification of PCNA-positive cells among Mef2/DAPI-positive CM nuclei. n ≥ 3 hearts; ≥ 3 sections per heart; *P <
0.05, **P < 0.01. f Quantification of BrdU-positive cells among Mef2/DAPI-positive CM nuclei. n ≥ 3 hearts; ≥ 3 sections per heart; *P < 0.05. g, h
Transversal heart sections of wt and cntf mutant fish at 7 dpt, immunostained against Mef2 (green, a myocyte nuclear marker) and cell
proliferation markers, PCNA (g, red) or BrdU (h, red). All nuclei are labeled with DAPI (blue). Arrows indicate some proliferating CMs. Scale bar
for the whole section, 500 μm; for the magnified area, 100 μm; for the zoom of magnified area, 20 μm
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15min prior to collection by injecting 5 μl of 2% paraformaldehyde into
the pericardial cavity of euthanized animals. This prefixation was
performed to avoid corruption of the results by immune cells that are
carried in the blood and that adhere to the surface of the ventricle at the
moment of heart collection.

Drug treatments
The JAK1/2 kinases inhibitor Ruxolitinib (Selleckchem) was dissolved in
DMSO at a stock concentration of 1 mM and used at a final concentration
of 1 μM. The TGFβ type I receptor inhibitor SB431542 (Tocris) was dissolved
in DMSO at a stock concentration of 20mM and used at a final
concentration of 20 μM. The FGFR1 inhibitor PD173074 (Tocris) was
dissolved in DMSO at a stock concentration of 10mM and used at a final
concentration of 10 μM. Control animals were kept in water with 0.1%
DMSO. Zebrafish were treated with drugs at a density of 3 fish per 100ml
of water. During the treatments, fish were fed and solutions were changed
every second or third day.

CRISPR-Cas9-induced cntf mutation
Mutant fish were generated as previously described.96 The targeting
sequence was: GGAAGATGTCATTACCCGGGAGG (PAM underlined). Two
cntf alleles were established. First, cntfdel207 contains a deletion of 207 bp,
corresponding the sequence between 144 and 351 bp of cntf gene
counted from the beginning of the 3rd exon (NM_001145632). This
deletion covers a large part of the coding exon and the exon/intron
boundary, and is predicted to affect the downstream sequence. Second,
cntfdel7 lacks 7 bp between 151 and 158 bp of cntf gene counted from the
beginning of the 3rd exon. This deletion results in a frameshift followed by
a premature stop codon. cntfdel207 / cntfdel7 trans-heterozygous fish at the
age of 3 months were used for this study.

Reporting summary
Further information on experimental design is available in the Nature
Research Reporting Summary linked to this article.
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