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Abstract: The rapid development of civilization increases the area of land exposed to the accu-
mulation of toxic compounds, including heavy metals, both in water and soil. Endophytic fungi
associated with many species of grasses are related to the resistance of plants to biotic and abiotic
stresses, which include heavy metals. This paper reviews different aspects of symbiotic interactions
between grass species and fungal endophytes from the genera Epichloë with special attention paid
to the elevated concentration of heavy metals in growing substrates. The evidence shows the high
resistance variation of plant endophyte symbiosis on the heavy metals in soil outcome. The fungal
endophytes confer high heavy metal tolerance, which is the key feature in its practical application
with their host plants, i.e., grasses in phytoremediation.
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1. Introduction

Technology development and changes in the modern world have a significant impact
on the natural environment. Along with the increase of population, demands for energy,
consumer goods, machines, devices, etc., are also growing, and this, in turn, affects the
environment with pollution from chemicals, pesticides, oils, gasoline, and industrial waste.
Contamination of soil with heavy metals and metalloids is currently considered, on a global
scale, the main threat to agro-ecosystems, which is associated with food contamination [1].

This is why new solutions are being sought that will allow, in an environmentally
friendly way, to eliminate or reduce soil pollution while restoring its productivity. The use
of green plants to remove pollutants from the environment to render them harmless (phy-
toremediation) is the cheapest and the simplest way to use remediation technology [2,3].
However, the use of phytoremediation on a large scale faces some problems, such as
slow growth and small biomass, phytotoxicity, and evapotranspiration of volatile contami-
nants [3,4]. The answer to these problems may come from microbe-assisted phytoremedi-
ation in general but with foliar fungal endophytes in particular [2]. The participation of
endophytes in the phytoremediation process is based on a positive effect on the growth and
development of plants, reducing the phytotoxicity of metals and affecting the translocation
and accumulation of metals in the plant.

The total content of chemical pollutants (metals and organic compounds) in soils used
for agriculture in Poland does not differ from the levels recorded in neighboring European
countries [5]. However, in special cases, i.e., plant cultivation on highly industrialized
regions, agriculture lands of high chemicals applications, or in areas close to highways,
heavy metals such as lead (Pb), cadmium (Cd), zinc (Zn), nickel (Ni), and copper (Cu) are
taken up by plants from the soils [6].
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Some of these elements are necessary for the proper functioning of living organisms
(e.g., Cu and Zn), while others such as Cd and Pb are the cause of many diseases and disor-
ders. The health effects of systematic consumption of products containing small amounts
of heavy metals may become apparent after years due to their cumulative capacity [7].
Heavy metals influence calcium metabolism thereby increasing bone fragility, disturb the
functioning of the nervous system causing dementia, intellectual disability, visual distur-
bances, and coordination of movements, cause damage to the liver and kidneys, and also
cause neoplastic changes [7,8].

In soils, heavy metals are commonly found as a result of release from parent rocks in
soil-forming processes and during volcanic eruptions [6]. Their natural level does not pose
a threat to ecosystems. For example, the average content of heavy metals in agricultural
soils of Poland is small and amounts to (mg·kg−1), e.g., Cd-0.21, Cu-6.5, Ni-6.2, Pb-13.6,
and Zn-32.4 [9]. Over 96% of arable soils are characterized by natural or slightly increased
content of heavy metals, which allows us to classify them as high-quality soils, on which all
plants can be grown excluding the purpose of growing vegetables for preserves and direct
consumption for children [10]. It also follows that over 3% of soils are contaminated with
heavy metals to the extent that all grown crops are excluded for consumption. Cationic
forms of heavy metals retain in the surface layer of soil and their migration into the soil
profile is relatively slow. This is one of the main causes of soil chemical degradation [11].
This type of threat to plant production occurs mainly in industrialized areas and in the
vicinity of roads where, together with exhaust fumes, sewage, or industrial dust and heavy
metals are collected by plants and introduced in the food chain.

This work aims to present different aspects of the interactions between fungal endo-
phytes in the genus Epichloë and their grass host in the response to increased level of heavy
metals in soil.

2. Heavy Metals

Due to the degree of danger, heavy metals are divided into the following groups [12]:

- very high level of potential threat, e.g., Cd, Hg, Pb, Cu, Zn,
- high level of potential threat, e.g., Mo, Mn, Fe,
- medium level of potential threat, e.g., Ni, Co,
- low level of potential threat, e.g., Sr, Zr.

Heavy metals that are the most common in contaminated sites are Pb, Cr, As, Zn,
Cd, Cu, and Hg [13]. Trace metals such as: Cu, Fe, Zn, Mn, Co, and Se are essential for
metabolism and while the other ones do not play an important role in the life cycle of
organisms (Pb, Cd, Hg, and As). However, they can be damaging to organisms when the
toxicity threshold is exceeded [14].

Heavy metals are often essential for the proper functioning of organisms as they per-
form biochemical and physiological functions. They are important components of several
key enzymes and play an important role in various oxidation-reduction reactions [14].
For example, copper is an essential nutrient that is incorporated into a series of enzymes
involved in hemoglobin formation, carbohydrate metabolism, catecholamine biosynthesis,
and the cross-linking of hair collagen, elastin, and keratin [15]. Zinc plays an important role
in the activity of pyrophosphates and in shaping DNA, and iron is part of various enzymes,
regulates the functions of chloroplasts or is involved in oxidation processes [16]. Other
heavy metals are enzyme activators and take part in photosynthesis (Mo), the formation of
chlorophyll (Co) or show antioxidant activity (Se).

In biological systems, heavy metals influence cell organelles and components such as
the cell membrane, mitochondria, lysosomes, endoplasmic reticulum, nuclei, and some
enzymes involved in metabolism, detoxification, and damage repair [17].

2.1. Occurrence in the Soil

The development and extensive application of plant protection chemicals in agri-
culture, mineral and organic fertilizers, e.g., compost and sewage sludge produced from
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municipal waste, has led to the excessive accumulation of heavy metals in soils and then in
plants. Intensive use of transportation routes emits large quantities of harmful substances
into the environment. The main components of traffic pollution are nitrogen oxides, sulfur,
polycyclic aromatic hydrocarbons, and heavy metals, such as Pb, Cr, and Cd [18]. A major
source of lead is petrol and sources of cadmium include vehicle construction components,
tires, or moisturizers. Chrome can come from corrosive parts of metal vehicles [19]. The
highest concentrations of heavy metals are recorded in the so-called street dust, collected
from the surface directly in the lane. These values can reach even 15,000 mg·kg−1 for lead,
196 mg·kg−1 for chromium, and 72 mg·kg−1 for cadmium [19,20]. This most often applies
to the Far East or Africa, where the increase in the number of transport means occurs
very quickly, which is not covered by the applicable regulations, which are changed more
slowly.

Over 90% of the total content of cadmium, copper, zinc, and lead in soils and sedi-
ments of rivers and other water reservoirs comes from anthropogenic pollutants [21]. A
particularly high content of heavy metals in the soil was found in the regions adjacent
to the smelters of copper [22–28], of zinc smelters [29–33] and mines [34,35]. Thus, soil
pollution of heavy metals has a local character and mainly concerns the areas near the
smelters, the landfills of slag or mines where long-term emission of gaseous pollutants
and metal-bearing dusts is the source of the enrichment of soils with metals around the
emitters of pollutants.

The main carriers of heavy metals were previously active substances of pesticides (e.g.,
arsenic, copper, mercury, zinc, or lead compounds) [36], but they have since been replaced
with different types of organic compounds. Concerning the content of heavy metals in
the soil environment, commonly the term “background” or “baseline” are often used as
synonymously [18,37]. The natural abundance of an element in rock, sediment, or soil with
reference to a particular area is the most common definition of background, and will be
used in this meaning in below article.

Higher values from the background are considered as evidence of environmental
pollution. European countries have several approaches to define the risk level associated
with different concentrations of heavy metal in soil [38,39]. For example, for lead content
in soil, background values in Poland are 20–40 mg·kg−1, for cadmium-0.05–0.7 mg·kg−1

and for chromium-15–60 mg·kg−1 [19]. The guideline value standards of the Ministry of
Environment of Finland [40] in this regard for lead-60 mg·kg−1, cadmium-1 mg·kg−1, and
chromium-100 mg·kg−1. The Finnish standard values represent a good approximation of
the mean values of different national systems in Europe [38] and India [41] and they have
been applied in an international context for agricultural soils as well [42].

However, we must be aware that the few metals, e.g., Cu, Zn, Co, and Fe in trace
amounts are essential for various metabolic activities of plants. However, excess of all kinds
of metals (both, essential and non-essential) adversely affect plant metabolism [43]. The
acceptable concentrations of heavy metals in the soil are different for individual countries
and designated by relevant state offices. For example in Poland limit values for individual
metals depend on the soil or soil quality standard and its current and planned function
(Table 1).

Agricultural land on which increased heavy metal content has been found should be
excluded from cultivation for consumption purposes. It should be proposed to introduce
such crops that would not lead to soil degradation (e.g., due to erosion) and would allow
the systematic binding of harmful elements.
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Table 1. Permissible levels of substances (in mg·kg−1 of dry soil, soil surface layer: 0–0.2 m) causing
risk for given land categories based on the Annex to the Regulation of the Minister of Environment
from 1 September 2016).

Metal

Land Categories *

I
II

III IV
II-1 II-2 II-3

Arsene (As) 25 10 20 50 50 100
Bar (Ba) 400 200 400 600 1000 1500

Chrome (Cr) 200 150 300 500 500 1000
Zinc (Zn) 500 300 500 1000 1000 2000

Cadmium (Cd) 2 2 3 5 10 15
Cobalt (Co) 50 20 30 50 100 200
Copper (Cu) 200 100 150 300 300 600

Molybdenum (Mo) 50 10 25 50 100 250
Nickel (Ni) 150 100 150 300 300 500
Lead (Pb) 200 100 250 500 500 600

Mercury (Hg) 0.5 2 4 5 10 30
* Land categories: I-residential and other built-up areas, developed agricultural land, recreational and leisure areas,
areas with entertainment functions, such as: amusement parks and amusement parks, zoological and botanical
gardens; water intakes and their protection zones. II-arable land and areas of family allotment gardens arranged
on orchards, permanent meadows, pastures, land under ponds and ditches and areas of family allotment gardens
arranged on land; subdivided into following 3 groups: II-a: very light and light mineral soils, granulometric
fraction (GF) below 0.02 mm between 10- and 20%); II-b mineral soil from light to heavy, GF 0.02 mm between 10-
and 35%, mineral-organic soil with 3.5–6.0% of C org.; II-c mineral and mineral-organic soils of GF 0.02 mm above
20%, pH higher than 5.5, more than 6.0% of C org. National parks and nature reserves. III-forests, wooded and
shrubby land, wastelands, recreational and leisure areas of a historic nature (castle ruins, fortified settlements,
burial mounds, natural monuments), unmanaged green areas, ecological lands. IV-industrial and urbanized areas,
communication areas (roads, and railway areas).

2.2. The Importance of Heavy Metals for Plants, Animals, and Humans

Heavy metals are common in soils. Their natural level does not pose a threat to
ecosystems. However, the concentration above the permissible norms already means a
serious problem. Through plants, heavy metals enter the human body, where they can
contribute to the occurrence of many diseases, including cancer [8,44–47].

The metals in the form of free ions are most easily absorbed by plants from the soil,
while metals in the form of complexes can be mobilized by active substances secreted by
plant roots and then taken up by plants [48,49]. The uptake of heavy metals by plants
depends on the type of metal, their content in the soil, the forms in which they occur, and
the plant species [50]. The heavy metal content of various plant organs is reduced in the
following order: root, leaves, stem, flowers, and seeds. The toxic effect of heavy metals on
most plants often occurs only in soil with high levels of contamination. On the other hand,
humans are particularly sensitive to the presence of increased amounts of heavy metals,
especially cadmium and lead (Table 2) [51]. Heavy metals in animal and humans primarily
cause changes in protein synthesis and disturbances in ATP production, which may cause
serious pathological changes, including cancer [12].

Heavy metals are systemic toxicants known to induce adverse health effects in humans.
Exposure to toxic metals causes long-term health problems, mainly cardiovascular disease,
developmental abnormalities, neurological and neurobehavioral disorders, diabetes, hear-
ing loss, hematological and immune disorders, and various types of cancer. The severity of
the adverse health effects is related to the type of heavy metal and its chemical form, and is
also time and dose dependent [52]. The results of studies on the effects of heavy metals
on human health indicate that simultaneous exposure to several heavy metals produced
more severe effects even at lower dose levels than for one metal [53]. Nordberg et al. [54]
showed that simultaneous human exposure to cadmium and inorganic arsenic caused
more pronounced kidney damage than exposure to each of these elements separately.
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Table 2. The most important heavy metals and their toxic effect on humans and animals (more details: Tchounwou et al. [52],
Siemiński [55], Ware [56], Walker et al. [57], Kołacz and Brodak [58], Szymański [59], Zwoźniak [60], Brandys [61], Albińska
et al. [62], Hong et al. [63], Davidson et al. [64]).

Metal Effect Accumulation

Cadmium

- disturbs protein metabolism
- interferes with the transformation of vitamin B1
- affects metabolism of calcium and phosphorus compounds
- increases bone fragility
- carcinogenic, embryotoxic and teratogenic
- anemia, hypertensive disease, changes in the circulatory

system, pregnancy complications
- changes in pulmonary function, increased risk of

emphysema
- Itai-itai disease

- liver, kidneys, pancreas,
intestines, lungs

Lead

- poisoning of the digestive, nervous, blood, respiratory,
kidney and liver systems

- embryotoxic, carcinogenic and mutagenic effects
- disorders of reproductive functions and calcium metabolism
- impaired development, lower IQ, shortened attention span,

hyperactivity, and mental deterioration

- skin and brain,
- blood, where it reaches all parts of

the body and accumulates in almost
every tissue

Arsenic

- affects virtually all organ systems, including the
cardiovascular, dermatological, nervous, gastrointestinal
and respiratory system

- a relationship with diabetes and reproductive organs

- absorbed into the body and
metabolized, expelled mainly
through the urine

Zinc

- carcinogenic
- metabolic disorders (causes anemia), susceptibility to

infections, immune and mental development disorders
- disorders of the digestive and respiratory systems

- liver, kidneys

Chrome
- allergic factor
- damages the digestive system
- carcinogenic, embryotoxic and teratogenic

- liver, kidneys, lung tissue, blood,
bone marrow and spleen

Mercury

- brain damage
- cell damage
- paralyzes sensory nerve endings,
- visual, hearing, speech disorder and limb muscle paralysis
- severe poisoning of the whole organism and even death.

- kidneys, liver, nervous system

In crop and wild species, there is considerable variability in the ability to accumulate
different metal ions from contaminated soils. Within plant species, genotypes characterized
by increased ability to accumulate a given metal can be distinguished. In general, plants
can grow on land with the content of most heavy metals two or even three times exceeding
the limit values. The growth and development of the plant stops in the stage of a few-leafed
seedling, only after reaching the content of metals in the order of (in mg·kg−1) ca. 1400 Pb,
90 Cd, or over 4500 Zn [65]. These exceedances of heavy metals are, however, very rare
and most often encountered in the vicinity of non-ferrous metallurgy plants.

Some plant species, called metallophytes, have the ability to grow and develop on
metal-rich habitats. These plants possess the special mechanisms for coping with higher
heavy metal concentrations in soil and are divided into three categories: excluders, indica-
tors, and hyperaccumulators [6]. Hyper accumulative plants accumulate heavy metals in
their tissues in an amount of metals, often exceeding their concentration in the soil [66].
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During the search and selection crop genotypes for phytoremediation, the greatest number
of candidates was found among Brassicaceae, Poaceae, and Fabaceae plants. In the grass
family, the commonly grown maize is most useful in the phytoextraction process. Other
species and varieties in this family come from the genera Festuca, Agrostis, and Lolium.
Although they accumulate much less biomass, the cost of their cultivation is much lower
and they have lower soil requirements. It seems a good idea to use Agropyron repens L.,
which accumulates the largest amounts of toxic substances in the soil in its roots [67].

So far, research has focused on endophytes, fungal symbionts of grasses, associated
with hyperaccumulators because of their resistance to metals associated with long-term
adaptation to high metal concentrations in plants [68]. Many such endophytes have been
isolated from hyperaccumulating plants, such as Alyssum bertolonii, Alnus firma, Brassica
napus, Nicotiana tabacum, Thlaspi caerulescens, Thlaspi goesingense, and Solanum nigrum [2].

Plant growth in contaminated soils is usually associated with the accumulation of these
elements in their biomass, which in turn significantly limits its further use. The suitability
of such biomass for energy conversion is related to the reduction of metal emissions in the
energy production process and the management of leftovers after processing (e.g., ashes
after combustion, post-concession deposit). The presence of heavy metals for plants can be
critical especially in metabolic processes that can be inhibited (Table 3).

Table 3. A negative effect of some heavy metals on plants.

Metal The Symptoms and Effect References

Lead

- lower yielding, stunted leaves often
with necrotic spots and shortened
roots with less hair density,

- photosynthesis, cell division,
nitrogen metabolism and water
management disorders,

- Kabata-Pendias and
Mukhejee, 2007 [51]

Cadmium

- chlorotic and brown spots on leaf
blades, reddening of veins, twisted
leaves, shortening of roots,

- disturbances in photosynthesis,
transformations of nitrogen
compounds, changes in the
permeability of cell membranes,
changes in DNA structure,

- Kabata-Pendias and
Pendias, 2001 [11],
Kabata-Pendias and
Mukhejee, 2007 [51]

Copper

- growth inhibition, chlorosis,
necrosis, and leaf depigmentation,

- decrease in fluorescence,
- decline in photosynthesis,

- Küpper et al., 1996 [69],
Vidaković-Cifrek et al.,
2015 [70]

Zinc

- both the deficiency and the excess
of this element limit the growth and
development of plants,

- excess causes the inhibition of plant
growth and reproduction, chlorotic
and necrotic changes on leaves,
reduction of photosynthesis,

- the deficiency disturbs the
metabolism of proteins, phosphates,
carbohydrates and the synthesis of
RNA and DNA.

- Kabata-Pendias and
Mukhejee, 2007 [51]

However, the presence of some heavy metals is necessary for the course of some
life processes, e.g., photosynthesis. Both deficiency and elevated concentration of heavy
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metals affects both light and dark reactions of photosynthesis directly or indirectly. For
example, iron is necessary for the synthesis of chlorophyll, and manganese is required as a
cofactor for several enzymes involved in photosynthesis, particularly decarboxylase and
dehydrogenase enzymes [69].

3. The Symbiosis of Grass-Epichloë
3.1. Occurrence and Importance

Endophytic fungi are species of the genus Epichloë, which live their whole life in
symbiosis in the tissues of their hosts plants. The most common grass endophytes include:
E. festucae var. lolii co-living with L. perenne, E. coenophiala co-occurring with tall fescue (F.
arundinacea), and E. uncinata occurring in meadow fescue (F. pratensis) [71]. Previously, the
Epichloë genus contained only sexual forms (teleomorph), but now also includes asexual
forms (anamorph), which were previously classified as Neotyphodium [72], and before that,
Acremonium [73] (Table 4).

Table 4. Some Epichloë species and their select host.

Grass Species Epichloë Species Reference

Achnatherum inebrians E. gansuensis Li et al. 2004 [74]

Achnatherum sp. E.chisosum, E. inebrians, E. funkii Moon et al. 2004 [75]; Chen et al. 2015 [76]; Leuchtmann et al.
2014 [72]

Agropyron repens E. bromicola Lembicz et al., 2010 [77]

Agrostis spp. E. baconii, E. amarillans Cagnano et al., 2019 [78], Clay and Brown, 1997 [79], White, 1993
[80]

Ammophila breviligulata E. amarillans Drake et al. 2018 [81]

Anthoxanthum sp. E. typhina Cagnano et al., 2019 [78]

Brachyelyrtum sp. E. brahyelytrei Cagnano et al., 2019 [78]

Brachypodium sp. E. sylvatica, E. typhina Cagnano et al., 2019 [78]

Bromus aleuticus E. pampeana; E. tembladare Leuchtman et al. 2014 [72]

Bromus erectus Epichloë bromicola Leuchtmann and Schardl, 1998 [82]

Bromus laevipes E. cabralii, E. spp. Charlton et al. 2014 [83]

Bromus setifolius E. tembladerae Leuchtman et al. [72]

Bromus setifolius E.typhina var. aonikenhana McCargo et al. 2014 [84]

Bromus setifolius E. typhina Gentile et al. 2005 [85]

Calamagrostis sp. E. stromatolonga Song et al. 2016 [86]
Cinna arundinacea E. schardlii Ghimire et al. 2011 [87]

Dactylis glomerata E. typhina Clay and Brown, 1997 [79]

Elymus canadensis E. canadensis Leuchtman et al. 2014 [72]

Elymus repens E. elymi, E. bromicola Cagnano et al., 2019 [78], Leuchtmann and Schardl, 1998 [82]

Festuca argentina E. tembladerae Cabral et al. 2007 [88]

Festuca brevipila E. festucae Clarke et al. 2006 [89]

Festuca arizonica E. huerfanum, E. tembladare Moon et al. 2004 [75]

Festuca arundinacea E. coenophialum Cagnano et al., 2019 [78]

Festuca gigantea E. festucae Leuchtmann et al., 1994 [90]

Festuca hieronymi E. tembladerae Cabral et al. 2007 [88]

Festuca longifolia E. festucae Niones and Takemoto 2014 [91]

Festuca pratensis E. uncinatum, E. siegelii Craven et al., 2001 [92], Gams et al., 1990 [93]

Festuca pulchella E. festucae Niones and Takemoto 2014 [91]

Festuca rubra E. festucae Clay and Brown, 1997 [79], Leuchtmann et al., 1994, [90]
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Table 4. Cont.

Grass Species Epichloë Species Reference

Festuca sinensis E. sp. Zhou et al. 2015 [94]

Festuca sp. E. sinofestucae Song et al. 2016 [86]

Glyceria sp. E. glyceriae Schardl and Leuchtmann 1999 [95]

Holcus lunatus E. clarkii Clay and Brown, 1997 [79], Leuchtmann et al., 2014 [72]

Holcusmollis E. mollis Clay and Brown,1997 [79], Morgan- Jones and Gams, 1982 [73]

Hordelymus sp. E. disjuncta, E. danica, E. hordelymi,
E. sylvatica subsp. pollinensisi

Leuchtmann and Oberhofer, 2013 [96]; Leuchtmann et al.,
2014 [72]

Hordeus comosum E. tembladerae; E. amarillans;
E. typhina hybrids Iannone et al. 2015 [97]

Koeleria cristata E. festucae Niones and Takemoto 2014 [91]

Leymus chinensis E. bromicola Wang et al., 2016 [98]

Lolium canariense E. typhinum var. canariense Moon et al., 2000 [99]

Lolium multiflorum E. occultans Moon et al., 2000 [99]

Lolium perenne E. festucae var. lolii, E. typhina,
E. lolii, E. hybrida Latch et al., 1984 [100], Morgan-Jones and Gams, 1982 [73]

Lolium rigidum E. occultans Leuchtmann et al., 2014 [72]

Melica ciliata E. guerinii Leuchtman et al. 2014 [72]

Melica decumbens E. melicicola Moon et al. 2004 [75]; Moon et al. 2002 [101]

Phleum alpinum E. tembladerae Leuchtman et al. 2014 [72]

Phleum alpinum E. cabralii McCargo et al. 2014 [84]

Phleum sp. E. typhina Cagnano et al., 2019 [78]

Poa alsodes E. alsodes Shymanovich et al. 2017 [102]

Poa secunda ssp.
junicolia E. poae Tadych et al., 2012 [103]

Poa spp. E. typhina, E. typhina subsp. poae, Tadych et al., 2012 [103]

Poa spp. E. liyangensis Li et al. 2006 [104]

Roegneria sp. E. sinica, E yangzii Song et al. 2016 [86]; Li et al. 2006 [104]

Sphaenopholis sp. E. amarilians Cagnano et al., 2019 [78]

Many studies indicate the frequent presence of these fungi in grass plants, both
cultivars and wild ecotypes [86,105–109], as well as in the seeds of commercially available
varieties [110]. However, maintaining the viability of endophytes in seeds varies depending
on the storage conditions, and at the same time it is possible to eliminate them from the seed
when necessary, e.g., due to the production of harmful alkaloids. It should be mentioned
that seed is not the only source of endophytes spreading, but they can migrate from plant
to plant during mowing (i.e., horizontal transmission) [111].

3.2. The Effects of Epichloë Endophytes on Plants

The effects of this symbiosis can be both negative and positive. Endophytes confer
benefits to grasses, such as mechanisms of tolerance to drought and regeneration of dam-
age after long-term drought, as well as the more effective management of nitrogen and
improved phosphorus assimilation [112]. In addition, grasses infected by endophytes
are resistant to pests, nematodes, and certain diseases [105]. However, the presence of
endophytes in plants can pose a threat to herbivores. It has been found that some of the
alkaloids produced by these fungi are toxic and that their accumulation in feed can affect
the health status of farm animals [113]. In cattle is fed with grass containing ergovaline
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or lolitrem B, there may be a decrease in milk production, a decrease in body weight, a
decrease in activity (animals are not active, and avoid the sun). In extreme cases, severe
diseases such as “ryegrass staggers syndrome” and “fescue toxicosis” can occur [105].
Previous studies have shown that endophytes induce drought tolerance mechanisms in
grass plants; however, these effects appear to depend on the species, variety, and devel-
opmental phase of plants [107,114]. This favorable aspect of the presence of endophytic
fungi in grasses has been best documented for tall fescue [115–119]. In other grass species,
e.g., perennial ryegrass, the results of drought resistance studies are not so clear [120–123].
Gundel et al. [124] indicates that the results obtained in most of the studies on the impact of
endophytes on drought stress are inconclusive, often they do not describe any experiments
on drought or related information. They argue that there is an unreasonable extrapolation
that attributes the overall positive effect of fungal endophytes on drought tolerance of
host plants in general and in the long term, and that it has spread in the literature to
predict the effects of endophytes on wild species in natural, arid ecosystems. It has also
been found that endophytes affect the nitrogen management by both assimilatory and
basic nitrogen metabolism and may be correlated with mechanisms of its utilization by
endophyte mycelium and better phosphorus assimilation [112], as well as improve the
viability of seedlings and tiller number [125]. In addition, grass inhabited by endophyte
are resistant to pests, nematodes, and some diseases such as tall fescue with increased
resistance to fungus Rhizoctonia zeae [105,123,126].

Pressure exerted on plants by disease factors is the most important abiotic stress that
grasses are subjected to during the entire growing season. The most dangerous pathogens
of perennial ryegrass in turf maintenance are pink snow mold (Microdochium nivale), pow-
dery mildew (Erysiphe graminis), leaf spot (Drechslera spp. and Bipolaris spp.), stem rust
(Puccinia graminis), brown patch (Rhizoctonia spp.), and crown rust (Puccinia coronata) [127].
The ability to control plant diseases by infecting more desirable Epichloë endophytes, which
did not affect flowering, was investigated in vitro by White and Cole [128] and Siegel and
Latch [129]. They showed that Epichloë isolates grown on agar plates inhibited the growth
of colonies of many pathogenic fungi including Rhizoctonia solani, R. zeae, Bipolaris sorokini-
ana, and Colletotrichum graminicola. Siegel and Latch [129] also found that the antifungal
activity of endophyte differed between strains. Often for many microorganisms there is
a low correlation between the effect of antibiosis between fungal cultures under labora-
tory conditions and the effect on the disease in the field [130]. It was confirmed in field
experiments conducted by Burpee and Bouton [131], which showed that the presence of
endophytes did not protect tall fescue plants against R. solani, the main pathogen occurring
in soil. Moreover, endophyte-infected tall fescue seedlings were not protected against B.
sorokiniana infection [132] and pathogens frequently observed on lawns: Magnaporthe poae
and Pythium aphanidermatum [133]. The presence of endophyte in tall fescue or perennial
ryegrass does not appear to affect the occurrence or severity of root rot caused by Fusarium
oxysporum, F. equiseti, and Pythium acanthicum, as reported by Hume et al. [134].

Studies on abiotic factors such as water deficit, mowing, shading, low nitrogen fertil-
ization, or low soil pH have demonstrated varying plant responses, depending on the plant
genome–endophyte genotype structure [135–137]. It was found that the stress tolerance
conferred by some endophytes involves also habitat-specific fungal adaptations, and this
concept has been confirmed with different fungal and plant species, and different environ-
mental stresses [138]. Redman et al. [139] studied a plant species Dichanthelium lanuginosum
from the geothermal soils colonized by one dominant endophyte Curvularia protuberata.
They found that this fungus confers heat tolerance to the host plant, and neither the fungus
nor the plant can survive separate from one another when exposed to heat stress more than
38 ◦C. A comparative study was done by Rodriguez et al. [140] which revealed that the
ability to confer heat tolerance was specific to isolates from geothermal plants hence and
the ability to confer heat tolerance is a habitat-adapted phenomenon.

In the variable European climatic and soil conditions, the beneficial effects of endophytes
in grasses compared to plants without these fungi are not clear. There are reports of plants



Plants 2021, 10, 429 10 of 20

with an endophyte that have accumulated higher amounts of metals from the soil and even
used them to produce more biomass [141–144]. Our preliminary research shows the possibility
of increasing the uptake of cadmium, for example by 25% in plants infected by endophyte
versus non-infected plants [145]. In an abiotic and biotic stress conditions, major losses in plant
yield take place. Throughout the life cycle, plants can adjust their physiology and metabolism,
including the synthesis of a range of defensive proteins to overcome the stress [146]. Further,
endophytes that colonize plants can improve plant growth and health through better mineral
absorption or increased resistance to biotic and abiotic stresses [147].

4. Response of the Endophyte—Grass Association on the Heavy Metals in the Soil

The results of many scientific studies indicated that heavy metals are toxic to plants, but
many plants are metal tolerant and some of them are metal hyperaccumulators [148–150].
Irdis et al. [68] found that the plants with metal hyper-accumulative properties and associ-
ated with endophytes could be metal resistant, due to long-term adaptation to the high
concentration of metals accumulated in the plants. The phytoremediation efficiency of
contamination of heavy metals is mainly dependent on metal uptake and accumulation
in shoots. It has been demonstrated that some heavy-metal resistant and plant-growth-
promoting endophytes can improve uptake and accumulation in plants of nickel [151],
cadmium [152], or lead [153].

Results of studies [152,154–157] confirm the key role of endophytes in the adaptation
of plants to the conditions of a polluted environment by immobilizing contaminants in
the soil, promoting plant growth, decreasing phytotoxicity, and improving plants’ metal
tolerance. Some endophytic bacteria can produce indole-3-acetic acid, which stimulates
plant growth and enhances phytoremediation [158], or affects the plant’s root elongation
compared to plants in which these bacteria were not observed [159]. Other endophytes can
produce cytokinins or gibberellins, which under both stress and non-stress conditions can
stimulate plant growth and modify their morphology [160]. Many authors [158,161,162]
also claim that some of the endophytes exhibit features that can alter contaminants’ toxicity
for example through the production of iron chelators, siderophores, organic acids, and
various degrading enzymes.

Many studies on the use in the phytoremediation process have been made for endo-
phytic bacteria [163–166] but also among the fungi, some species have been found that
can be successfully used in this process [167–169]. Soleimani et al. [167] investigated the
effect of two endophyte-infected grass species (Festuca arundinacea and Festuca pratensis) on
the degradation of petroleum hydrocarbons. They found that endophyte-infected plants
contained more root and shoot biomass and created higher levels of water-soluble phenols
and dehydrogenase activity in the soil. Song et al. [86] show that Epichloë endophytes
conferred stress tolerance to native grasses in China and played a significant role in the
survival of some plants in high-stress environments, such as cadmium contaminated soils.
Achnatherum inebrians [170,171] and Elymus dahuricus [172] had higher germination rates,
more tillers, longer shoots and roots, and more biomass compared to endophyte-free
plants in high concentration of cadmium ions. There was no significant difference between
endophyte-infected and endophyte-free plants under low cadmium concentration, indicat-
ing that Epichloë infection was only beneficial to the growth and development of A. inebrians
and E. dahuricus exposed to the high concentration of cadmium ions. Further, endophytic
fungi inhabiting perennial grasses were the subject of research, the results of which showed
that they can be successfully used in the process of phytoremediation [173,174].

4.1. Aluminum

Malinowski and Belesky [175] reported that Epichloë coneophialum infection had no
effect on root and shoot development in tall fescue (Festuca arundinacea) grown in elevated
concentration of Al. A higher concentration of Al (35%) and P (10%) has been observed in E+
plants, but no differences were found in roots. Elevated concentration of Al gave a variable
effect on root and shoot dry weight (from positive to negative) in red fescue (Festuca rubra)
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and Poa ampla inhabited by Epichloë festucae and Epichloë sp., respectively [176]. However
they claim that endophyte infection alone is not enough to confer aluminum tolerance in
fine fescues, but in certain plant–fungus combinations, endophyte infection can contribute
to enhanced aluminum tolerance.

4.2. Cadmium

Cadmium (Cd) is one of the most toxic environmental pollutants for plants [177].
Cadmium can interfere with numerous biochemical and physiological processes including
photosynthesis, respiration, nitrogen and protein metabolism, and nutrient uptake [178].

Generally, the presence of endophytes had a positive effect on plants grown in elevated
Cd concentrations. Epichloë endophyte presence in the seed of Elymus dahuricus promoted
germination range and index, as compared to endophyte-free seed, in higher (i.e., from 100
to 300 µmol L−1) Cd concentrations [172]. Higher values of shoot and root length and dry
biomass were also observed in E+ plants of mentioned grass species.

Presence of endophytes in tall fescue (Epichoë sp.) and Achnatherum inebrians (Epichloë
gansuensee) grown in the presence of an elevated concentration of Cd yielded also increased
tiller number and higher biomass [167,179]. Plants inhabited by endophytes were able
to accumulate more Cd ions in roots and shoots [167,179]. This is the result of improved
transport of Cd ions from roots to shoots and resulting higher (2.4-fold) phytoextraction
efficiency of E+ plants [179]. The effects of cadmium on germination, and antioxidative
enzyme activity present within Achnatherum inebrians, were determined for plants infected
and non-infected by Neotyphodium gansuense [171]. They found that under high Cd con-
centrations, endophyte-infected plants exhibited a higher germination rate and index, and
higher values for shoot length, root length, and dry biomass, but there was no signifi-
cant difference under low Cd concentrations. Endophyte infection was concluded to be
beneficial to the germination and anti-oxidative mechanisms within A. inebrians under
plant exposures to high cadmium concentrations. In the case of this plant increased anti-
oxidative enzyme activity, H2O2 content and increased levels of chlorophyll a and b, as
well as declined proline and malondialdehyde content, were observed in E+ plants vs. E-
plants [172]. All these results indicate that the presence of endophyte may ameliorate the
effect of cadmium toxicity on plant.

4.3. Copper

Copper (Cu) is an essential element to plant growth but toxic in higher concentrations.
The presence of endophyte (Epichloë coenophialum) in tall fescue was associated with lower
Cu concentrations in plants, which may further contribute to lowered Cu status in grazing
animals, thus contributing to the etiology of fescue toxicosis [180]. However, plants were
grown on pasture or pots without artificially increased Cu levels, which was one from
many micronutrients in soil. Other results suggest that the effects of endophyte infection on
Cu acquisition in perennial ryegrass (Lolium perenne) is quite different from those found in
tall fescue [181]. This was explained that Epichloë endophytes present in perennial ryegrass
often triggers sets of physiological, biochemical, and morphological responses in host
plant different from those found for tall fescue infected with N. coenophialum [112]. To our
knowledge, no research is available concerning the effect of artificially increased, high con-
centrations of Cu in growing medium on the grass performance and endophyte interaction.
Most of recent research concerns natural Cu deficiency in forage where endophyte-induced
decrease of Cu in stems and leaves was an additional negative effect for animals.

4.4. Nickel

Studies of Mirzahosseini et al. [182] have shown that endophytes also affect the
presence of nickel in the soil. The obtained results indicated that some E+ genotypes were
characterized by better growth and tolerance to this chemical element. However, the results
were inconclusive, because otherwise endophyte free genotypes showed greater tolerance
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to Ni stress compared to E + plants. This revealed that the effect of endophyte infection in
Festuca plants depends on the host genotype [182].

4.5. Zinc

Endophytes infecting tall fescue and perennial ryegrass have been found to im-
prove chlorophyll functions (i.e., Fv/Fm) under high concentrations of Zn in growing
medium [174]. Shoots of endophyte-infected tall fescue had 82% greater concentration of
Zn than endophyte-free plants. The opposite relation was found for perennial ryegrass
plants: endophyte-free plants exposed higher (29%) concentration of Zn in shoots than
endophyte-infected. Other authors suggested no statistically significant differences be-
tween endophyte-free and endophyte-infected plants of tall fescue in Zn content in plant
tissues [141].

The increase in zinc concentration induced some reduction in photosystem II (PSII)
activity of perennial ryegrass plants but not enough to account for the total drop in the net
photosynthetic rate [143]. In plants with endophyte, the quenching of the reaction center
and antenna complexes rose simultaneously and at a constant rate, as zinc concentrations
increased. The same authors examining the concentration of Zn in the leaves stated that
it increases with the increase in Zn in the medium and the number of days after which
this study was carried out. At the same time, they found that the concentration of Zn
in the leaves was 24–32% lower in the presence of N. lolii [142]. Leaf dry weight was
higher in the presence of endophyte, particularly at 5 mM Zn. It is a known fact that the
effect of endophyte for its host is the production of a greater number of tillers [183]. It has
been confirmed by Monnet et al. [144] for Zn stress from 1 to 10 mM. Zamani et al. [174]
have shown that the number of plant tillers grown under different Zn concentrations
was greater in endophyte-infected Festuca and Lolium compared to their endophyte-free
plants. Roots and shoots dry weights in infected Festuca plants were also greater than
non-infected. Endophyte infected Festuca and Lolium improved chlorophyll fluorescence
as Fv/Fm at high concentrations of Zn, showing their better chlorophyll functions and
significant reduction of Zn stress in endophyte-infected plants.

Some interactions of fungal endophytes on heavy metals are shown in Table 5.

Table 5. Grass–fungal endophyte association and their influence on heavy metals.

Host Fungi Effect References

Achnatherum inebrians Epichloë gansuensis
(=Neotyphodium gansuense)

better germination rates and index in the high
concentration of cadmium, increased tolerance to

cadmium by improving the antioxidant
defense system

Zhang et al. 2010a [170],
Zhang et al. 2010b [171]

Elymus dahuricus Epichloë spp.
(=Neotyphodium spp.)

positively affected seed germination and seedling
growth exposed to high Cd concentration Zhang et al. 2012 [172]

Festuca arundinacea Epichloë coenophiala
(=Neotyphodium coenophialum)

increased exudation of phenolic-like compounds
from roots improved Al tolerance

Malinowski and Belesky
1999 [175]

Festuca arundinacea,
F. pratensis Epichloë spp. improved cadmium tolerance and bioaccumulation

and showed better germination potential
Soleimani et al.

2010a [167]

Festuca arundinacea,
Lolium perenne

Epichloë spp.
(=Neotyphodium spp.)

accumulation and transport more Zn in
aboveground parts under Zn-stress, a significant

effect on the photochemical efficiency of
photosynthesis

Zamani et al. 2015 [174]

Lolium arundinaceum
(Festuca arundinacea)

Epichloë coenophiala
(=Neotyphodium coenophialum)

enhanced Cd accumulation in plant and improved
its transport from the root to the shoot Ren et al. 2011 [184]

Lolium perenne ryegrass endophytes increase Cd transport and accumulation in shoots Ren et a. 2006 [179]

Lolium perenne Epichloë spp.

the increase of accumulation of cadmium and copper
in aerial parts of the host plants, better plant growth

and photosynthesis in the elevated concentration
of Cu

Żurek et al.
(in press) [145]

Lolium perenne Epichloë lolii (=Neotyphodium lolii) a limitation of the Zn concentration in the leaves Monnet et al. 2001 [142]
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Weyens et al. [3] claim that endophyte infection not only improves plant growth
but also to reduces phytotoxicity of contaminants and increase metal translocation to the
above-ground plant parts. Moreover, endophytes that can break down organic pollutants
in soil and facilitate the uptake and accumulation of metals may be a way to improve the
phytoremediation process [167,185]. However the process of optimal phytoremediation
requires the presence of such associations, where endophyte isolates have both tolerance
to the accumulation of pollutants and the production of phytohormones, which can also
affect plant growth and metabolism [186].

5. Conclusions

Endophytes of the genus Epichloë are well-known associates of grasses and research
shows their potential use in the phytoremediation of areas excluded from agricultural
activities due to heavy metal contamination. There are many known associations of grasses
with fungi of the Epichloë genus, which can be an excellent basis for research on their
potential use in areas excluded from agricultural activities due to the increased content of
heavy metals.

Grasses inhabited by endophytes are sometimes characterized by a much higher
ability to accumulate heavy metals from the soil. The cultivation of grass-endophyte
symbiotes in areas contaminated with heavy metals has a positive effect on the quality of
the soil, significantly reducing its phytotoxicity. Monnet et al. [142] claim that the action of
the endophyte remains unclear, but different mechanisms are possible. The fungus may
accumulate heavy metals in mycelia or influencing on the mechanism to the limit metals
concentration in the leaves through a restriction in its transport to the leaf tissues [187,188].

In some cases, plants inhabited by endophytes may have ecological and evolution-
ary advantage over uninfected, but there exist great variability of plant reactions, even
concerning the same host species and the same fungus in uniform growth conditions.
The choice of most effective grass–endophyte association for phytoremediation should
be based on the earlier evaluation of the efficiency of the symbiosis. Summarizing, the
fungal endophytes pass high metal tolerance capacities suggesting their future utilization
in endophyte-assisted phytoremediation applications [189].
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