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INTRODUCTION

Epilepsy is a neurological disease characterized by seizures, which affects up to 65 million people
worldwide (1). About two-thirds of patients with epilepsy are able to achieve seizure control with
current antiseizure medication (ASM) (2), whereas one-third of epilepsy patients are difficult to
treat, i.e., patients with drug-resistant epilepsy (DRE). In addition, ASM can induce (serious)
adverse events and a significant reduction of the quality of life (QoL), leading to ASM retention
rates around 50% (3).

DRE can induce neurobiochemical alterations and emotional and physical dysfunctions. The
multifaceted status of DRE patients underscores the emphasis on non-pharmacological options,
and therapies that target multiple mechanisms are likely to be more effective to treat DRE (4),
thereby acting as a “magic shotgun” rather than a “magic bullet.” If epilepsy surgery is not an
option in a patient with DRE, vagus nerve stimulation (VNS) (5) or dietary treatments, such as the
ketogenic diet (KD), are valuable alternative options (5–7). Initial studies with dietary treatments
report on the classical KD, consisting of 80% fat and 20% protein plus carbohydrate (4:1 KD) or
75% fat and 25% protein plus carbohydrate (3:1 KD) (8). A KD using medium-chain triglycerides
(MCTs) leads to more ketones/kcal of energy and a more efficient absorption (9). Therefore, the
MCT diet is less restrictive since it consists of a lower amount of fat and a higher intake of protein
and carbohydrate (10). ThemodifiedAtkins diet (MAD) (11) and the low-glycemic index treatment
(LGIT) (12) are other dietary therapies mimicking the seizure reduction result of the KD, but they
are less restrictive.

Clinical studies show that both modalities (VNS and KD) lead to a seizure frequency reduction
(SFR) by at least 50% in half of the DRE patients. A recent study proposed a treatment algorithm for
pediatric DRE, including non-pharmacological treatment options such as VNS and the KD (13).

Interestingly, the KD therapy has some advantages in comparison to VNS: the SFR is slightly
higher for patients on the KD (14); the KD is non-invasive, and there are few to no neurotoxic
effects when compared to multiple ASM (6). Nevertheless, there are barriers and disadvantages in
putting the KD into practice, such as palatability issues, compliance issues, side effects (usually
mild), variable response rates, and restrictions to the daily life of the patient (15). Overall, a
multidisciplinary team (pediatric neurologist, dietician/nutritionist, and a primary care-giver) is
indispensable when dietary treatments are initiated and also during maintenance (16).

Currently, we are unable to pinpoint the mechanism(s) of action of the KD, and it is possible that
dietary therapies will be classified as “magic shotguns” (17–20). Therefore, our aim was to elaborate
on the newest pathways involved, such as the gut microbiome and serine synthesis.
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PRIMARY ANTISEIZURE MECHANISMS OF
THE KD

A high-fat low-carbohydrate KD replicates a “fasting
state.” Subsequently, this state results in (1) fatty acid
oxidation producing ketone bodies (KBs), (2) production
of polyunsaturated fatty acids (PUFAs), (3) decreased activity of
lactate dehydrogenase (LDH), and (4) inhibition of the mTOR
pathway (17, 21).

First, KBs [i.e., β-hydroxybutyrate (BHB), acetone, and
acetoacetate] have been considered the key effectors of the
antiseizure effects of the KD by modulating neurotransmissions
and altering metabolic, inflammatory, and epigenetic pathways,
as reviewed elsewhere (17, 22–26). BHB, one of the KBs, can also
enhance oxidative brain metabolism, resulting in the production
of gamma-aminobutyric acid (GABA) (27), GABAB activation
(24), the induction of synaptic recycling of glutamate loaded
vesicles (24, 28), activation of KATP (18), activation of two-pore
domain potassium channels (K2P) (20), and the decrease of
acid-sensing channels (ASICs) (29), thereby dampening neuronal
excitability (20). The effects of the KD on neurotransmission
have been validated by clinical studies in which patients on the
KD therapy were found to have increased GABA levels in the
cerebrospinal fluid (CSF) (20). Second, the KD-induced increase
of PUFAs can decrease neuronal excitability as well (16, 17, 23,
25, 30). Third, the decreased glucose availability of the KD leads
to a significant reduction of LDH activity, resulting in neuronal
hyperpolarization and decreased seizures. These features were
proven to be part of the antiseizure mechanism of action of
stiripentol (24, 31). Fourth, the KD can inhibit the mTOR
pathway, which (1) can affect epileptogenesis (26, 32) and (2) can
reduce the hyperactivation that has been implicated in patients
with tuberous sclerosis complex (TSC), cortical developmental
malformations, and DRE (33).

Besides replicating a “fasting state,” resulting in production
of various effectors, the antiseizure mechanisms of the KD are
also thought to result in anti-inflammatory and antioxidant
activity, as reviewed by Koh et al. (15). The nutritionally regulated
transcription factor peroxisome proliferator activated receptor
gamma, PPARγ , regulates genes involved in anti-inflammatory
and antioxidant pathways. The findings of Simeone et al. indeed
implicate brain PPARγ 2 among the mechanisms by which the
KD reduces seizures (34). More specifically, Knowles et al. found
that in vivo treatment of rats with a KD increased hippocampal
catalase mRNA and protein and that this upregulation required
PPARγ 2 (35). Hence, it seems that the KD regulates catalase
expression through PPARγ 2 activation and that catalase may
contribute to the antiseizure efficacy of the KD.

ANCILLARY ANTISEIZURE MECHANISMS
OF THE KD

In Figure 1, we provide an overview of ancillary mechanisms
of action of the KD. These include KD-induced alterations of
the endocrine system, gut microbiome, epigenetic mechanisms,

and expression of phosphoglycerate dehydrogenase (PHGDH),
the first and rate-limiting enzyme of the de novo serine
biosynthesis pathway. Hence, it seems that multiple mechanisms
can be induced by the KD and that these might not be
mutually exclusive.

Production of Neurohormones
The KD therapy can significantly increase the production of
certain neurohormones, such as leptin and cortisol (36, 37).
First, leptin receptors are found throughout the brain, and
their stimulation leads to antiseizure effects by decreasing pro-
inflammatory cytokines (e.g., IL-1β), increasing an endogenous
anticonvulsant (galanin), and acting as an antioxidant by
increasing glutathione and decreasing malondialdehyde (37–39).
Second, ghrelin, neuropeptide Y, galanin, and cortisol can induce
alterations in GABA uptake and serotonin turnover and affect ion
channels, thereby decreasing neuronal excitability, although the
exact mechanisms need to be explored by future research (20, 40).
Third, cortisol is part of the hypothalamic–pituitary–adrenal
(HPA) or stress axis, and targeting this axis can decrease seizures
and stress-related comorbidities, e.g., anxiety and depression
(41). Consequently, the KD can have beneficial effects in patients
with other neurological diseases, diabetes, obesity, reproductive
disorders, and other endocrine diseases (42, 43).

Epigenetic Mechanisms
The KD was found to target epigenetic mechanisms in several rat
models of epilepsy, potentially by increasing adenosine (17, 44)
that alters DNA methylation and thereby the expression of genes
involved in epileptogenesis, such as the purine ribonucleoside
adenosine that functions as a homeostatic regulator of DNA
methylation (45). This latter study also correlated the epigenetic
mechanisms to the antiseizure activities. In addition, pre-clinical
data show that the glucose analog 2-deoxy-D-glucose (2-DG)
that inhibits glycolysis and thereby mimics the KD decreases
the expression of brain-derived neurotrophic factor (BDNF)
and the principal receptor, TrkB, an important repressor of
neuronal genes via NRSF (neuron restrictive silencing factor)
induction (46). Thus, a biochemical glycolysis interruption
leads to downstream modulation of gene transcription and
epileptogenesis (47). Finally, it has been suggested that the KD
can change the expression of microRNAs (e.g., mRNA expression
decrease of inflammatory interleukines such as IL-1β and IL-6)
(15) and ofmultiple brain genes such as an upregulation of GABA
type A receptor subunit alpha 1 (gabra1) (20). However, the
evidence is currently not strong enough to unequivocally link the
expression of these genes with the observed antiseizure effects.

Gut Microbiome
The study of Newell et al. is the first study to show
that the KD affects the gut microbiome (48). The KD
therapy inevitably reduces carbohydrate intake and thereby
reduces Faecalibacterium, Blautia bacteria, Bifidobacterium, and
Eubacterium rectale. The first two bacteria induce fermentation
(49) and an elevation of GABA in the hippocampus (50). The
latter two bacteria also affect acetate and lactate levels and are
involved in regulating the pH and pathogen growth (51). Hence,
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FIGURE 1 | Proposed mechanisms of the ketogenic diet. Previously reported pathways are presented in black; recently discovered and novel pathways are presented

in orange. Each pathway is numbered, which refers to the reviewing literature focusing on this specific pathway: (1) Gavrilovici and Rho (23); (2) Danial et al. (26); (3)

D’Andrea Meira et al. (24); (4) Gavrilovici and Rho (23); (5) Rho (25); (6) Boison (17) and Gavrilovici and Rho (23); (7) Koh et al. (15); (8-11) this review. mTOR,

mammalian target of rapamycin; PHGDH, phosphoglycerate dehydrogenase.

it seems that specific bacteria can modulate the production of
inhibitory neurotransmitters like GABA, possibly by increasing
ketogenic gamma-glutamylated amino acids that are substrates
for GABA synthesis, which was found to be correlated to the
antiseizure effects (52).

Olson et al. were the first to demonstrate that the
antiseizure effects of the KD were induced by enrichment of
Akkermansia muciniphila and Parabacteroides populations in
the gut microbiome in two distinct murine models of different
epilepsy types. Furthermore, transplantation of the KD gut
microbiota and suppletion of Akkermansia muciniphila and
Parabacteroides decreased seizure frequencies even in mice on a
normal diet (50).

Clinical data also show that the KD influences gut microbiota

composition in children with DRE, resulting in increased levels
of Bacteroidetes (53, 54) and proteobacteria (51). However, these

studies were not able to elucidate how microbiome alterations

correlate to the antiseizure effect of the KD.
To unravel the correlation between the human gut

microbiome and neurological diseases including epilepsy,
metagenomics holds great potential (55). Understanding how
diet can manipulate seizures may suggest novel therapies. In
this respect, probiotics could constitute an alternative therapy as
suggested by small clinical studies (56).

Phosphoglycerate Dehydrogenase and the
Serine Synthesis
The KD has recently been shown to induce the expression
of genes involved in the serine synthesis, such as PHGDH,
in the liver and cerebral cortex of mice (57). The low
content of proteins in the KD can result in amino acid
stress and thereby induce serine (amino acid) synthesis as a
feedback mechanism. In addition, the low amount of glucose
of the KD reduces the content of glycolytic intermediate 3-
phosphoglycerate (3-PG), which is a substrate of serine synthesis.
Henceforth, these two compensating mechanisms can induce
the expression of serine synthesis genes, including PHGDH (57)
(Supplementary Figure 1).

To date, there are several findings underlining the antiseizure
effects of PHGDH activation. First, PHGDH activity is linked
with normal brain function. L-serine (synthesized via PHGDH)
is a key rate-limiting factor for maintaining steady-state levels
of D-serine in the adult brain (58). Hence, L-serine availability
in mature neuronal circuits determines the rate of D-serine
synthesis in the forebrain and controls N-methyl-D-aspartate
(NMDA) receptor function at least in the hippocampus (59).
Second, PHGDH malfunctioning/deficiency is associated with
DRE (60), and mice with reduced PHGDH expression, induced
by a high-lard-content diet resulting in fatty liver disease, have
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a severe pre-disposition for development of seizures, more
specifically increased seizure episodes and decreased seizure
thresholds (61). Third, PHGDH activity is linked to anti-
inflammatory action. PHGDH has been identified as a key
enzyme for steering macrophage polarization toward an anti-
inflammatory M2 state (62). Hence, increasing the expression
of PHGDH by the KD might additionally polarize microglia
toward anti-inflammatory M2 phenotype, thereby resulting in
neuroprotection. Interestingly, the gut microbiome plays a
crucial role in serine synthesis (63), thereby increasing serine
levels in the brain (60, 64). Thus, the KD likely activates PHGDH,
which can be linked to the induction of several neuroprotective
and antiseizure effects.

CONCLUSION

The treatment of a complex disease such as epilepsy warrants
novel treatment approaches, even in an era of ample available
ASM (65). Almost 20 years ago, treatments were developed
targeting one specific receptor or mechanism (66). In
the last decade, however, focus has been directed toward
the development of epilepsy treatments based on multiple
mechanisms instead of one (4).

The KD is such a therapy modulating various distinct
pathways as underlined by a plethora of pre-clinical data
(15, 17–20, 24, 56, 67–70). Clinical data are rather scarce;

for example, concentrations of ketone bodies in the blood
(71), GABA levels in the CSF (20), and Bacteroidetes and
proteobacteria in the gut (51, 53, 54) have been related to the

KD therapy. Hence, future studies should investigate if and how
certain pathways can be clinically proven to be impacted by
the KD.

Even though different mechanisms of the KD have been
reviewed the last few years (15, 17, 18, 20, 56) (i.e., focusing
on the primary antiseizure mechanisms), we have compiled
a comprehensive overview of the ancillary pathways that are
affected by the KD and discussed their pre-clinical and clinical
evidence in epilepsy treatment. These include KD-induced
changes of the endocrine system, epigenetic control, the gut
microbiome, and the serine synthesis via PHGDH. Overall, this
review and future studies will contribute to the identification of
specific pathways of the KD.
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