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Background: Patients undergoing carotid endarterectomy (CEA) for severe

carotid stenosis are vulnerable to postoperative delirium, a complication frequently

associated with poor outcome. This study investigated the impact of processed

electroencephalogram (EEG)-guided anesthesia management on the incidence of

postoperative delirium in patients undergoing CEA.

Methods: This single-center, prospective, randomized clinical trial on 255 patients

receiving CEA under general anesthesia compared the outcomes of patient state index

(PSI) monitoring [SEDLine Brain Function Monitor (Masimo, Inc, Irvine, CA)] (standard

group, n = 128) with PSI combined with density spectral array(DSA) -guided monitoring

(intervention group, n = 127) to reduce the risk of intraoperative EEG burst suppression.

All patients were monitored by continuous transcranial Doppler ultrasound (TCD) and

near-infrared spectroscopy (NIRS) to avoid perioperative cerebral hypoperfusion or

hyperperfusion. According to the surgical process, EEG suppression time was calculated

separately for three stages: S1 (from anesthesia induction to carotid artery clamping), S2

(from clamping to declamping), and S3 (from declamping to the end of surgery). The

primary outcome was incidence of postoperative delirium according to the Confusion

Assessment Method algorithm during the first 3 days post-surgery, and secondary

outcomes were other neurologic complications and length of hospital stay.

Results: There were no episodes of cerebral hypoperfusion or hyperperfusion

according to TCD and NIRS monitoring in either group during surgery. The incidence

of postoperative delirium within 3 days post-surgery was significantly lower in the

intervention group than the standard group (7.87 vs. 28.91%, P < 0.01). In the

intervention group, the total EEG suppression time and the EEG suppression time during

S2 and S3 were shorter (Total, 0 “0” vs. 0 “1.17” min, P = 0.04; S2, 0 “0” vs. 0 “0.1”

min, P < 0.01; S3, 0 “0” vs. 0 “0” min, P = 0.02). There were no group differences in

incidence of neurologic complications and length of postoperative hospital stay.
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Conclusion: Processed electroencephalogram-guided general anesthesia

management, consisting of PSI combined with DSA monitoring, can significantly

reduce the risk of postoperative delirium in patients undergoing CEA. Patients,

especially those exhibiting hemodynamic fluctuations or receiving surgical procedures

that disrupt cerebral perfusion, may benefit from the monitoring of multiple EEG

parameters during surgery.

Clinical Trial Registration: www.ClinicalTrials.gov, identifier: NCT03622515.

Keywords: delirium, carotid endarterectomy, electroencephalogram-guided, general anesthesia, cerebral

perfusion, monitoring

KEY POINTS

• Question: Can EEG-guided general anesthesia management
reduce the risk of postoperative delirium in high-risk patients
undergoing CEA?

• Findings: Processed electroencephalography-guided
anesthesia management, including PSI combined with
DSA monitoring, can significantly reduce postoperative
delirium incidence in patients undergoing CEA.

• Meaning: This randomized clinical trial suggests that slight
changes in anesthetic management may play a major role in
modulating postoperative delirium risk in patients undergoing
CEA under general anesthesia. Vulnerable patients, especially
those exhibiting hemodynamic fluctuations or undergoing
surgical procedures that disrupt cerebral perfusion, may
benefit from the monitoring of multiple EEG parameters
during surgery.

INTRODUCTION

Carotid endarterectomy (CEA) is the gold standard treatment
for patients with severe carotid stenosis (CS) to reduce the risk
of stroke (1–4). The safety and long-term efficacy of CEA for
the management of carotid artery disease has been demonstrated
in large randomized controlled trials (5–8). However, cerebral
blood supply may be severely disrupted by anesthesia and
surgical manipulations during CEA, and cerebral function is
highly vulnerable to even brief changes in oxygen and blood
supply. Cerebral vascular diseases may further increase the
risk of perioperative neurological dysfunction. For instance,
there is a significant association between carotid artery stenosis
and postoperative delirium (9, 10), an acute state of mental
confusion defined by alterations in attention, consciousness, and

Abbreviations: CEA, carotid endarterectomy; EEG, electroencephalogram; TCD,

transcranial Doppler ultrasound; NIRS, near-infrared spectroscopy; CS, carotid

stenosis; POD, postoperative delirium; CAM, Confusion Assessment Method;

MMSE, Mini-Mental State Examination; MoCA, Montreal Cognitive Assessment;

SDS, Self-rating Depression Scale; SAS, Self-rating Anxiety Scale; ASA, American

Society of Anesthesiologists; rSO2, regional cerebral oxygenation; MFVMCA, mean

flow velocity of the middle cerebral artery; BSR, burst suppression ratio; DSA,

density spectral array; PSI, patient state index; MAP, mean arterial blood pressure;

PETCO2, end-expiratory carbon dioxide partial pressure; SD, standard deviation;

IQR, interquartile range; OR, odds ratio; ACA, anterior communicating artery;

CBF, cerebral blood flow; CAS, carotid artery stenting; EMG, electromyogram.

disorganized thinking (11, 12). Postoperative delirium (POD)
is a common yet serious geriatric syndrome that afflicts 10–
60% of patients after major surgery (13–16) and up to 91%
of the critically ill (17). Further, POD is associated with worse
early and long-term prognosis as well as greater healthcare
costs (11, 14, 17–19). Therefore, the United Kingdom National
Institute for Health and Care Excellence, the American Geriatric
Society, the American College of Surgeons, and the American
Society of Anesthesiologists have all identified the prevention of
postoperative delirium as a public health priority (20–23).

Risk factors for delirium are usually divided into predisposing
and precipitating (24). Predisposing factors include preoperative
vulnerabilities, while precipitating factors are potentially
reversible events occurring throughout the perioperative period.
POD incidence increases with longer cumulative intraoperative
electroencephalogram (EEG) suppression duration (25, 26),
and processed EEG monitoring during surgery may lower
POD rate and prevent or minimize EEG suppression by using
minimal anesthetic doses (27–31). A burst suppression pattern
on the EEG indicates severe inhibition of neuronal activity and
metabolic rate. Patients with severe CS are prone to vascular
cerebral injury, and may therefore be particularly vulnerable
to EEG suppression (32, 33). It is not clear, however, whether
processed EEG-guided anesthesia management can reduce POD
incidence in patients undergoing CEA and if this effect depends
on decreasing EEG suppression.

The objectives of this study were to investigate the effect of
processed EEG-guided anesthesia management on the incidence
of POD in patients receiving CEA under general anesthesia. The
primary hypothesis was that processed EEG-guided anesthesia
management can effectively reduce the likelihood of the
incidence of POD during the first 3 days following CEA.

METHODS

Research Design
This is a single-center, prospective, randomized clinical trial
with two parallel arms. The research protocol was approved
by the Ethics Committee of Xuanwu Hospital of Capital
Medical University (LYS[2018]053) and written informed
consent was obtained from all subjects participating in the
trial. The trial was registered prior to patient enrollment
at clinicaltrials.gov (NCT03622515, Principal investigator: Na
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Xu, Date of registration: August 8, 2018). All surgeries were
conducted at Xuanwu Hospital (Beijing, China). Results are
reported according to CONSORT guidelines.

Participants
Study candidates were screened by investigators the day before
surgery (or on Friday for those scheduled for surgery the
followingMonday). We recruited patients at our institution from
August 2018 to December 2019. All surgeries were performed by
the same surgical and anesthesia team. Inclusion criteria included
patients scheduled to undergo elective CEA under general
anesthesia, fluency in ChineseMandarin, an anticipated length of
hospital stay over 3 days after surgery, and willingness to comply
with the research protocol. Exclusion criteria were as follows:
(1) declining preoperative condition (such as unstable angina,
acute myocardial infarction, and heart function NYHA III to IV)
within 4–6 weeks before surgery, (2) severe hepatic dysfunction
(Child–Pugh grade C) or renal failure (requirement for renal
replacement therapy), (3) history of schizophrenia, Parkinson’s
disease, or traumatic brain injury, (4) inability to perform
neurocognitive testing, (5) preoperative delirium according to
the Confusion Assessment Method (CAM) algorithm (34), (6)
preoperative cognitive impairment according to the Chinese
Mini-Mental State Examination (MMSE) corrected for education
level (illiterate ≤ 19 points, 1–6 years of primary school ≤

22 points, middle school or above ≤ 26 points) and Montreal
Cognitive Assessment (MoCA) score (illiterate ≤ 13 points,
primary school ≤ 19 points, middle school or above ≤ 24
points) (35, 36), (7) preoperative depression according the Self-
rating Depression Scale (SDS, score > 41 points) or preoperative
anxiety according to the Self-rating Anxiety Scale (SAS, score
> 41 points) (37, 38), (8) change in surgical procedure after
anesthesia, (9) return to the intensive care unit following surgery,
(10) conditions that caused severe hemodynamic fluctuations
(such as severe allergic reactions or major bleeding), and (11)
accidental discharge.

Baseline Data Collection
Baseline data included demographics, co-morbidities, and
relevant physical and laboratory findings. Preoperative physical
condition was evaluated using the American Society of
Anesthesiologists (ASA) Physical Status Classification System
(39). Activities of daily living were assessed using the Barthel
Index (score range 0–100, with higher score indicating better
independent function) (40). Cognitive functions were assessed
using the MMSE and MoCA. Anxiety and depression were
assessed using the SAS and SDS because several studies have
identified preoperative depression (41–43) and anxiety (44) as
risk factors for postoperative delirium incidence or duration.
Delirium status was assessed with the CAM. Pre-surgical tests
of baseline general cognition, delirium, anxiety, and depression
were conducted by a neuropsychologist blinded to group
allocation (see below).

Randomization and Blinding
Patients were assigned to intervention and control arms before
surgery using a computerized random number generator at

a 1:1 ratio. A seed was not specified, and blocks were not
used in randomization. Randomization was conducted after
patient consent for research participation during the preoperative
interview. Both patients and research associates conducting
preoperative testing and postoperative outcome assessments
were also blinded to group assignment.

Anesthesia and Surgery
General anesthesia was induced in all patients by intravenous
etomidate 0.15 mg·kg−1, and sufentanil 0.2 mg·kg−1, and
maintained by continuous propofol infusion. In the standard
monitoring group, propofol dosage was 50–80 mcg·kg−1·min−1,
while in the intervention group, dosage was adjusted according
to sedative depth as described in the next section (Intervention).
All patients received remifentanil and dexmedetomidine as well
as rocuronium (0.6 mg·kg−1) or cisatracurium (0.15 mg·kg−1)
injection for muscle relaxation. Patients were mechanically
ventilated with FiO2 50%, and SaO2 was maintained at more
than 95%. Goal-directed fluid and vasoconstrictive drug therapies
were conducted to maintain stroke volume variability below
13% and regulated patients’ blood pressure within 180 mmHg
according to transcranial Doppler ultrasound (TCD, China
Shenzhen Delica Medical Equipment, ShenZhen, China) and
near-infrared spectroscopy (NIRS, Cas Medical Systems, Inc,
Branford, Connecticut, USA). Intraoperative warming devices
were used to maintain nasopharyngeal temperature between
36◦C and 37◦C. Perioperative care was standardized according
to institutional routines for all patients.

All CEA procedures were performed by the same team
of 4 experienced neurosurgeons who have worked for more
than 15 years. As there is a correlation between intraoperative
hypotension and incidence of delirium (45, 46), all patients were
monitored by TCD and NIRS during CEA to minimize the risks
of perioperative cerebral hypoperfusion and hyperperfusion.
Regional cerebral oxygenation (rSO2) was also monitored
by NIRS and mean flow velocity of the middle cerebral
artery (MFVMCA) by TCD. The NIRS probes were placed
on the bilateral forehead. Cerebral ischemia was deemed to
have occurred if the ipsilateral MFVMCA was reduced by
>50% compared to baseline or rSO2 decreased by 20% from
baseline during the clamping process (47–50). An increase
in MFVMCA of 100% after carotid declamping compared to
baseline was considered indicative of cerebral hyperperfusion
(51). Anesthesiologists managed cerebral hypoperfusion or
hyperperfusion during CEA by regulating the patient’s blood
pressure, which was elevated or reduced by 10% before
and after declamping the carotid artery, respectively. Carotid
shunting was conducted based on TCD monitoring and the
surgeon’s discretion.

Intervention
During surgery, patients from both the groups were monitored
using the SEDLine Brain Function Monitor (Masimo, Inc, Irvine
CA), which uses symmetrical bifrontal electrodes to measure
four channels of raw EEG data with separate displays for
electromyogram (EMG), artifacts (e.g., patient motion), burst
suppression ratio (BSR), and density spectral array (DSA). The
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SEDLine monitor also estimates sedative depth from digital
EEG waves using a proprietary algorithm and displays it as
a dimensionless parameter called the patient state index (PSI,
ranging 0–100, with 100 indicating wakefulness and 0 isoelectric
EEG) (52). Even though there are some raw EEG patterns
clearly visible on the spectrogram plots, we are nowhere close
to being able to describe the cerebrum depending on the
information obtained from the processed EEG. Therefore, in
the intervention group, we visually analyzed and inspected
DSA as an intervention indicator for EEG burst suppression
rather than EEG suppression waveforms (53, 54). Whenever
the DSA indicated burst suppression, propofol dosage was
reduced 5 mcg·kg−1·min−1, as clinically permitted. In order
to prevent intraoperative awareness, if lowering propofol was
found to cause PSI to reach 60, but DSA still showed burst
suppression, we stopped adjusting propofol and adjusted blood
pressure according to the stage of surgery to ensure cerebral
perfusion. For instance, blood pressure was elevated by 5%
before declamping the carotid artery or decreased by 5% after
declamping. In the standard group, the monitor screen was
masked, all EEG data and spectrograms were blinded, and
only PSI values were displayed. Anesthesiologists performed
anesthesia by conventional methods and maintained the PSI at
25–50 in the standard group.

Outcome Assessments
Measurement of Delirium
Delirium was assessed by trained research team members
preoperatively and daily on the first three postoperative days
using the Chinese version of CAM algorithm, which has
demonstrated good reliability and validity among the Chinese
population (55). Postoperative visits were conducted between
10:00A.M. and 16:00 P.M. at the patient’s bedside. Delirium
was defined by acute onset with fluctuating course, inattention,
disorganized thinking, and (or) altered level of consciousness.

Measurement of EEG Suppression
The raw EEG data, PSI, and BSR were obtained from all patients
using the SEDLine monitor. The EEG recordings were initiated
from anesthesia induction, and ended at the completion of
surgical manipulation. All EEG data were then edited and saved.
The experienced neurophysiologists independently reviewed the
intraoperative EEG traces acquired by the SEDLine R© monitoring
system for the entire duration of the operation, recorded
whether or not burst suppression was present, and calculated
the cumulative duration of EEG suppression in minutes. The
neurologists recorded an epoch as having a burst suppression
pattern if there was at least 5 s of suppression of the EEG
tracing present in a given 30 s epoch (56). We recorded the
cumulative duration of total EEG suppression and the duration
of EEG suppression for three surgical stages: S1 (from anesthesia
induction to carotid artery clamping), S2 (from clamping to
declamping), and S3 (from declamping to the end of surgery).

The anesthesiologists received training by neurophysiologists
in reading and interpreting the DSA before the study was
initiated to ensure that all anesthesiologists could reach 100%
consensus on the interpretation of the DSA. Additionally, the

training process was repeated at 6-month intervals during
the study.

Magnetic Resonance Image Data Acquisition
Cerebral microembolization is a significant contributor to
postoperative delirium (57, 58). Therefore, magnetic resonance
imaging examinations were conducted before and 24 h following
surgery using a Clinical 3-Tesla whole-body MR imager (Verio;
Siemens Medical Solutions, Erlangen, Germany). In accordance
with previous studies (59–62), new ischemic cerebral lesions were
defined as hyperintense regions on post-intervention diffusion-
weighted images that were not present on pretreatment images.
Ischemic lesions (number and total volume of hyperintense
regions) were evaluated by a radiologist and neurologist both
blinded to the research protocol, and disagreements were
resolved by consensus.

Measurement of Anesthetic Doses
To determine whether processed EEG-guidance resulted in
propofol dosage reduction, we calculated the cumulative
doses of all anesthetics according to intraoperative electronic
medical records.

Measurement of Vital Signs
Mean arterial blood pressure (MAP), PSI, end-expiratory carbon
dioxide partial pressure (PETCO2), bilateral rSO2, and bilateral
MFVMCA were recorded at three time-points, immediately
after general anesthesia induction and before carotid artery
clamping as baseline (T1), immediately after clamping (T2),
and after declamping and subsequent stabilization of cerebral
perfusion (T3).

Measurement of Secondary Outcomes
Physical and neurological examinations were conducted by a
neurologist blinded to group allocation before and for the
first 3 days after surgery. Examinations included evaluation
of neurological deficits according to the National Institutes of
Health Stroke Scale. From the beginning of anesthesia to 3
days after surgery, we also monitored adverse events such as
intraoperativemovement or awareness. Finally, length of hospital
stay was recorded.

Statistical Analysis
Postoperative Outcome Analysis
The Kolmogorov–Smirnov test was used to check for the
normality of all continuous variables. Continuous datasets
with a normal distribution were compared by independent-
samples t-test, and continuous datasets with non-normal
distributions by independent-samples Mann–Whitney U-tests.
Categorical data were compared by χ2 test or Fisher exact
test as indicated. Measurement data at each time point were
compared between the two groups by analysis of variance
with repeated measures (RT-ANOVA). Normally distributed
continuous variables are reported as mean ± standard deviation
(s.d.) and non-normally distributed continuous variables as
median (interquartile range, i.q.r.).
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FIGURE 1 | Flow diagram depicting patient recruitment for this clinical trial. EEG, electroencephalography.

Statistical analyses were conducted using SPSS R© Version
21(IBM Inc. Chicago, IL, USA). All tests were two-tailed, and a
two-sided P < 0.050 was considered statistically significant.

Sample Size Calculation
We calculated the sample size based on the expected incidence
of the primary outcome (postoperative delirium). In a pilot
study, 20 patients meeting the inclusion criteria were included
and randomly divided into an intervention group and standard
care group, with 10 patients in each group. One patient
in the standard care group had postoperative delirium,
whereas patients in the intervention group did not have
any postoperative neurological complications. Therefore,
postoperative neurological complications rates where 0% in
the interventional group (to avoid errors, the incidence was
increased of 0.5% for calculating the sample size) and 10% in
the standard group. We set type I error α = 0.05 and the type
II error β = 0.1. From this, the sample size of each group was
estimated at 91 cases using the sample size software PASS11
(NCSS, Caseville, Utah, United States). Assuming a 20% loss
to follow-up, we had planned to enroll at least 220 patients
undergoing CEA.

RESULTS

Patient Recruitment
This clinical trial was conducted from August 2018 to December
2019. Overall, 366 patients were deemed eligible and 272
patients were included, with patients randomly and equally
divided into processed EEG-guided anesthetic management
(intervention) and standard anesthesia care groups (Figure 1).
Anesthesiologists adhered to the protocol for all 136 patients
assigned to the intervention group. During the study period,
five surgeries were changed to carotid stenting (four cases in
the intervention group and one in the standard care group,
and they did not receive any of the study intervention in
either group), 10 cases did not complete the postoperative
CAM test (five cases in each group), and two cases in the
standard care group were transferred to the intensive care unit
after surgery. Therefore, 255 patients were included in the final
analysis, 127 in the intervention group and 128 in the standard
care group (Figure 1). Preoperative demographic, surgical, and
intraoperative variables for each group are summarized in
Tables 1, 2. Baseline variables, such as age, sex ratio, preoperative
co-morbidity, and cognitive and mood assessments, among
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TABLE 1 | Patient demographic and clinical information.

Variable Intervention group

(n = 127)

Standard group

(n = 128)

P-value

Age (y)†† 62.31 ± 8.02 63.16 ± 7.17 0.37

Sex ratio (F:M)§§ 18:109 15:113 0.56

Height (cm)†† 168.74 ± 6.98 169.55 ± 6.31 0.33

Body weight (kg)†† 71.61 ± 10.03 71.88 ± 10.16 0.83

BMI (kg/m2 )†† 25.11 ± 2.80 24.95 ± 2.81 0.65

Preoperative co-morbidity

Hypertension## 92 (72.44) 86 (67.19) 0.36

Diabetes## 42 (33.07) 42 (32.81) 0.96

Coronary artery disease## 27 (21.26) 28 (21.88) 0.90

Previous stroke## 72 (56.69) 69 (53.91) 0.66

ASA fitness grade (III: IV)§§ 37:90 31:97 0.38

Preoperative level of function and mood

Barthel Index score*†† 98.94 ± 3.79 99.35 ± 3.18 0.45

Education (y)†† 9.93 ± 3.96 9.44 ±4.41 0.35

MMSE score††† 27.41 ± 2.06 27.09 ± 2.54 0.26

MoCA score††† 23.98 ± 2.53 23.63 ± 3.31 0.34

SDS score‡†† 23.65 ± 4.99 24.45 ± 5.60 0.23

SAS score‡†† 23.56 ±4.37 23.80 ± 4.92 0.67

Values in parentheses are percentages unless indicated otherwise; values are expressed

as mean ± standard deviation (s.d.) or median (interquartile range, i.q.r.). *Score ranges

from 0 to 100, with higher score indicating better function.
†
Score ranges from 0 to

30, with higher score indicating better function. ‡Score ranges from 20 to 80, with

higher score indicating worse mood. BMI, body mass index; MMSE, Mini-Mental State

Examination; MoCA, Montreal Cognitive Assessment; SDS, Self-rating Depression Scale;

SAS, Self-rating Anxiety Scale.
§§The P-value is from the χ

2 test, except.
††
The P-value is from the independent-samples

t-test. ##The P-value is from the independent-samples Mann–Whitney U-test.

others (Table 1), and intraoperative variables, such as surgery
duration, anesthesia duration, and clamping duration, among
others, were well-matched between the groups (all P > 0.05)
(Table 2). In addition, intraoperative anesthesia dose did not
differ between groups.

Incident Delirium
The incidence of postoperative delirium was significantly lower
among patients receiving processed EEG-guided anesthesia
management compared with that in the standard care group [10
of 127 (7.87%) vs. 37 of 128 (28.91%), P < 0.01] (Table 3).

Intraoperative EEG Suppression
Seven patients were excluded from EEG analysis because of
corrupted data. The total duration of EEG suppression was
significantly shorter in the intervention group than the standard
care group [0 (0) vs. 0 (1.17), P = 0.04] (Table 3). The effect
of the intervention on EEG suppression differed according to
surgical stage, with significantly shorter durations during S2
and S3 among the intervention group patients compared to the
standard group patients, while there was no significant difference
in duration during S1.

TABLE 2 | Intraoperative variables.

Variable Intervention

group

(n = 127)

Standard

care group

(n = 128)

P-values

Surgery duration (min)*## 135 (73.5) 139.5 (100.25) 0.50

Anesthesia duration (min)*## 213 (71.5) 216 (98.75) 0.75

Clamping duration(min)*## 38 (24.75) 35.5 (32) 0.94

Type of surgery (CEA: CEA+CAS)§§ 91:36 87:41 0.52

Total fluid infusion(ml)*## 1,100 (400) 1,100 (500) 0.73

Crystal liquid (ml)*## 900 (400) 1,000 (400) 0.66

Urine output(ml)*## 700 (600) 700 (600) 0.86

Estimated blood loss(ml)*## 20 (20) 20 (20) 0.24

Intraoperative drugs

Propofol (mcg/kg/min)*## 52.13 (14.11) 52.45 (15.98) 0.58

Remifentanil (mcg/kg/min)*## 0.20 (0.08) 0.21 (0.06) 0.32

Dexmedetomidine (mcg/kg/h)*## 0.29 (0.12) 0.27 (0.11) 0.48

Values in parentheses are percentages unless indicated otherwise; values are mean ±

s.d. and *median (i.q.r.). CEA, carotid endarterectomy; CAS, carotid artery stenting.
§§The P-value is from the χ

2 test, except. ##The P-value is from the independent-samples

Mann–Whitney U-test.

TABLE 3 | Postoperative outcomes and related intraoperative variables.

Variable Intervention

group

(n = 127)

Standard

group

(n = 128)

P-value

Postoperative outcome

Incidence of delirium within 3 days 10 (7.87) 37 (28.91) 0.000

New cerebral infarctions (symptomatic)§§ 1 (0.79) 3 (2.34) 0.32

New cerebral infarctions (MRI)§§ 33 (25.98) 43 (33.59) 0.18

Intracerebral hemorrhage (MRI) 1 (0.79) 2 (1.56) 0.57

Duration of hospital stay after surgery

(days)
††

3.99 ± 1.80 4.26 ± 2.00 0.27

Intraoperative EEG Suppression

Total EEG suppression time (min)*## 0 (0) 0 (1.17) 0.04

Time of EEG suppression in S1 (min)*## 0 (0) 0 (0.25) 0.13

Time of EEG suppression in S2 (min)*## 0 (0) 0 (0.1) 0.000

Time of EEG suppression in S3 (min)*## 0 (0) 0 (0) 0.02

The values in parentheses are expressed as percentages unless indicated otherwise.

Values are expressed as *median (i.q.r.). S1 is the stage from induction of anesthesia to

clamping the carotid artery, S2 from clamping to declamping, and S3 from the declamping

to the end of surgery.

§§The P value is from the χ2 test, except
††
The P value is from the independent-samples

t test and ##The P value is from the independent-samples Mann–Whitney U test.

Other Outcomes and Safety of the
Intervention
There were no significant differences in incidence of new cerebral
infarctions according to symptoms and neuroimaging, incidence
of intracerebral hemorrhage according to neuroimaging,
and hospital stay duration between groups (Table 3). No
intraoperative movement or awareness was observed in any
patient during surgery and no deaths occurred after surgery.
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FIGURE 2 | MAP over time. MAP, mean arterial blood pressure. The

measurement time interval after general anesthesia but before clamping the

carotid artery was recorded as baseline reference T1, the time interval after

clamping but before declamping was recorded as T2, and the time interval

after the declamping and stabilization of cerebral perfusion but before

completion of surgery was recorded as T3.

FIGURE 3 | PETCO2 over time. PETCO2, end-expiratory carbon dioxide partial

pressure. The measurement time interval after general anesthesia but before

clamping the carotid artery was recorded as baseline reference T1, the time

interval after clamping but before declamping was recorded as T2, and the

time interval after the declamping and stabilization of cerebral perfusion but

before completion of surgery was recorded as T3.

Intraoperative Monitoring Values at
Different Time-Points
There were also no significant differences in MAP, PETCO2,
bilateral MFVMCA and rSO2 between groups at corresponding
time-points (Figures 2–7), while PSI was higher in the
intervention group at all measurement time-points (P <

0.05) (Figure 8). There were differences in MAP, PETCO2, PSI,
ipsilateral MFVMCA, and bilateral rSO2 at all time-points within
the two groups. MAP, PETCO2 and contralateral rSO2 at T2
were higher than at T1 and T3 (P < 0.05); PSI, ipsilateral rSO2

and MFVMCA at T2 were lower than at T1 and T3 (P < 0.05).
While contralateral MFVMAC was not significantly different at
all time-points in the two groups (Table 4).

DISCUSSION

We demonstrated that in patients undergoing CEA, processed
EEG-guided anesthesia management with PSI combined with
DSA reduces the incidence of POD compared to using PSI

FIGURE 4 | Ipsilateral rSO2 over time. rSO2, regional cerebral oxygenation.

The measurement time interval after general anesthesia but before clamping

the carotid artery was recorded as baseline reference T1, the time interval after

clamping but before declamping was recorded as T2, and the time interval

after the declamping and stabilization of cerebral perfusion but before

completion of surgery was recorded as T3.

FIGURE 5 | Contralateral rSO2 over time. rSO2, regional cerebral oxygenation.

The measurement time interval after general anesthesia but before clamping

the carotid artery was recorded as baseline reference T1, the time interval after

clamping but before declamping was recorded as T2, and the time interval

after the declamping and stabilization of cerebral perfusion but before

completion of surgery was recorded as T3.

alone. Based on previous studies on POD (11, 14, 17–19), we
suggest that not only the index from a processed EEG but also
an index with additional values (in this case, DSA) to guide
anesthesia management protocol may improve outcomes among
CEA patients.

The SEDLine monitor provides computed quantitative
EEG indices based on retrospective analysis of a diagnostic
EEG database of sedated patients. Since regulatory approval
in 2002, these indices have been shown to independently
predict deep sedation as assessed by other clinical metrics
such as the Ramsay Sedation Score and Modified Observer’s
Assessment of Alertness/Sedation Scale (52, 63–65). Our
findings of reduced POD incidence using processed EEG-guided
anesthesia management are in accord with previous studies
on other surgical populations (27–29, 66, 67). In contrast, the
Electroencephalography Guidance of Anesthesia (ENGAGES)
trial of older adults undergoing cardiac or non-cardiac surgery
found no reduction in delirium incidence using this EEG-based
intervention (68). Possible explanations for this discrepancy
include differences in baseline conditions between cohorts and
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FIGURE 6 | Ipsilateral MFVMAC over time. MFVMAC, mean flow velocity of

middle cerebral artery. The measurement time interval after general anesthesia

but before clamping the carotid artery was recorded as baseline reference T1,

the time interval after clamping but before declamping was recorded as T2,

and the time interval after the declamping and stabilization of cerebral

perfusion but before completion of surgery was recorded as T3. MFVMAC,

bilateral mean flow velocity of middle cerebral artery.

FIGURE 7 | Contralateral MFVMAC over time. MFVMAC, mean flow velocity of

middle cerebral artery. The measurement time interval after general anesthesia

but before clamping the carotid artery was recorded as baseline reference T1,

the time interval after clamping but before declamping was recorded as T2,

and the time interval after the declamping and stabilization of cerebral

perfusion but before completion of surgery was recorded as T3. MFVMAC,

bilateral mean flow velocity of middle cerebral artery.

the unique effects of cardiopulmonary bypass on the cerebrum.
A comprehensive description of predisposing factors is critical
for investigations on POD, especially those including patients
with multiple etiologies. Leung and colleagues recently reported
the results of their clinical trial in older adults undergoing
non-cardiac surgery, and reported similar rates of postoperative
delirium between patients randomized to receive EEG-guided
anesthetic management vs. those without the monitor (66).
Unlike our study, most of the patients included in this study
were undergoing spinal surgery, and the surgical process had
little effect on the cerebral circulation. In contrast to the two
trials, our patient groups were well-matched demographically
and clinically at baseline, and received similar surgical procedures
with comparable impacts on cerebral circulation, permitting
similar anesthesia management (except for the EEG-based
intervention). Another possible explanation for this discrepancy
is that anesthesia requirements may be highly patient-specific
due to individual sensitivity to anesthetic depth (69). EEG

FIGURE 8 | PSI at corresponding time points. PSI, patient state index, *P <

0.05 from standard group (statistically significant). The measurement time

interval after general anesthesia but before clamping the carotid artery was

recorded as baseline reference T1, the time interval after clamping but before

declamping was recorded as T2, and the time interval after the declamping

and stabilization of cerebral perfusion but before completion of surgery was

recorded as T3.

suppression is also a function of cerebral perfusion. The patients
recruited in our study all had severe carotid artery stenosis and
exhibited baseline characteristics predictive of greater sensitivity
to anesthesia depth and POD compared to the two cohort.
Thus, patient vulnerability is an important consideration when
identifying patients most suitable for processed EEGmonitoring.
A slight change in anesthetic management may play a major
role in modulating postoperative delirium risk in patients with
cerebral ischemia (or patients at a risk of cerebral ischemia).

In this study, both groups of patients used the index from a
processed EEG, and the intervention group combined the index
with additional values (in this case the DSA) to guide anesthesia.
It was observed that using the PSI alone did not result in as good
outcomes and BS avoidance, possibly due to underestimation of
EEG suppression using the monitoring (56). Patients may have
benefited from BSR and PSI monitoring, visual tracking of the
EEG, and the individualized real-time feedback of an anesthetic
cerebral state provided by the EEG spectrogram or raw waveform
patterns (70–72), thereby achieving superior anesthesia depth
monitoring and reducing POD risk. Anesthesiologists may be
able to manage patients’ anesthetic cerebral state better by
monitoring multiple EEG parameters. The occurrence of EEG
burst suppression during maintenance may be predictive of
POD (73). Lower EEG suppression duration may have directly
contributed to the reduced POD incidence in the intervention
group; hence, vulnerable patients may have derived a greater
benefit. The PSI of the intervention group is higher than that of
the standard care group, however, if only a single PSI index is
observed and maintained at a high level, EEG suppression may
not be minimized, which may not be enough to significantly
reduce the risk of POD.

The EEG suppression is also a function of cerebral perfusion,
in other words, the lower the perfusion, the more suppressed
the EEG. Our patients had severe carotid artery stenosis and
relatively insufficient cerebral perfusion. The severe fluctuations
of cerebral blood flow (CBF) during CEA may have further
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TABLE 4 | Intraoperative monitoring values at different time-points.

Variable Intervention group

n = 127

Standard group

n = 128

P-values

Between groups In the group

MAP (mmHg) T1 97.41 ± 9.01 97.36 ± 8.56 0.74 0.000

T2 105.65 ± 12.36 106.01 ± 11.31

T3 96.61 ± 13.09 97.45 ± 11.43

PETCO2 (mmHg) T1 35.37 ± 1.92 35.16 ± 2.00 0.65 0.000

T2 36.83 ± 2.09 36.56 ± 2.28

T3 35.79 ± 1.96 35.63 ± 2.24

PSI* T1 47.50 (17.50) 39.00 (13.00) 0.000 0.02

T2 45 (15) 36 (11)

T3 46.00 (17.00) 36.00 (14.50)

Ipsilateral rSO*
2 T1 68 (5) 66 (6) 0.30 0.000

T2 65 (7) 65 (7)

T3 69 (7) 69 (8)

Contralateral rSO*
2 T1 68 (5) 67 (6) 0.67 0.000

T2 69 (6) 68 (6.5)

T3 69 (6) 68 (6)

Ipsilateral MFVMAC (cm/s)* T1 42.00 (15.00) 39.00 (18.00) 0.12 0.000

T2 30.00 (19.00) 26.00 (18.00)

T3 58.00 (30.00) 52.00 (24.00)

Contralateral MFVMAC (cm/s)* T1 50.00 (19.00) 47.00 (18.00) 0.11 0.48

T2 50.0 (22.50) 48.00 (20.00)

T3 50.00 (21.00) 45.00 (19.00)

Values are expressed as mean ± s.d. or *median (i.q.r.). The measurement time interval after general anesthesia but before clamping the carotid artery was recorded as baseline

reference T1, the time interval after clamping but before declamping was recorded as T2, and the time interval after the declamping and stabilization of cerebral perfusion but before

completion of surgery was recorded as T3. MAP, mean arterial blood pressure; PSI, patient state index; PETCO2, end-expiratory carbon dioxide partial pressure; rSO2, bilateral regional

cerebral oxygenation; MFVMAC, bilateral mean flow velocity of middle cerebral artery.

The P-value is from the RT-ANOVA. The P-value is from the RT-ANOVA.

aggravated hypoperfusion or led to cerebral hyperperfusion.
In our study, the combined monitoring of TCD and NIRS
may minimize the influence of the patient’s hemodynamics on
cerebral perfusion. However, the largest changes in CBF occurred
during S2 and S3, and the duration of EEG suppression was
significantly lower during these stages in the intervention group.
In the intervention group, while adjusting the anesthesia dose
to reduce EEG burst suppression, we also paid close attention
to the effect on CBF. When adjusting the anesthetic dose,
burst suppression could not be minimized if CBF changes
were unfavorable. Therefore, even if the TCD and NIRS
monitors did not show hypoperfusion or hyperperfusion, we still
slightly regulated blood pressure according to the surgical stage.
Although we observed no difference in MAP at each time point
between groups, small adjustments may have slightly improved
CBF, reduce EEG suppression, and thereby reduce POD.

Anesthetic dosage can be reduced using processed EEG (27,
74), and previous studies have shown potentially neurotoxic
effects of general anesthetics, including propofol (75, 76).
Therefore, it is conceivable that POD risk was reduced by lower
anesthetic levels. However, the present results do not support this
premise, at least for the anesthetic doses used and for this specific
population. All patients had severe CS and were prone to vascular
events which had been identified as one of the postoperative

risk factors for the development of delirium. In addition to
adjusting the anesthetic dose during the perioperative period,
we also adjusted blood pressure according to the operation
stage to avoid potential cerebral perfusion problems that may
lead to burst suppression. Moreover, we conducted multimodal
monitoring on all patients, which helped us obtain more
comprehensive information to identify the extent of individual
cerebral perfusion. We adjusted the physiological functions
of patients according to anesthetics/techniques and surgical
procedures, and strictly controlled arterial blood pressure (77)
to avoid insufficient or excessive cerebral perfusion risk related
to POD. All the monitoring we used is non-invasive and has
no significant risk of injury to patient. Therefore, we conclude
that patients with carotid artery stenosis can benefit from
multimodal monitoring during surgery to reduce the onset of
EEG suppression.

The difference in MAP, PETCO2, ipsilateral MFVMCA, and
bilateral rSO2 at all time-points is due to differences in blood
pressure management measures taken at different surgical stages
to ensure that the cerebral perfusion is within desired limits.
Despite the difference in contralateral rSO2, there was no
difference in MFVMCA, likely because TCD monitoring reflects
MFVMCA, while NIRS monitors the oxygenation of the frontal
cortex mainly supplied by the anterior communicating artery
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(ACA). Since the contralateral MFVMCA is not affected by
the surgery, there is no difference at all time-points. The
NIRS monitoring value may have been influenced by oxygen
metabolism of extracranial origin as well as by changes in blood
pressure and arterial oxygen saturation. The differences in PSI
within group at corresponding time-points are likely because
the largest changes in CBF during clamping and declamping
of the carotid artery may also affect EEG, leading to changes
in PSI.

Potential Limitations
The study has several limitations. First, as a single-center trial,
the generalizability of the results may be limited. Second,
postoperative delirium has no objective biomarker and so may
be difficult to diagnose in certain cases (78). Third, POD was
assessed only over 3 days, so transient and later incidences
could have beenmissed. However, the preponderance of evidence
suggests that most cases occur within the first 3 days after
anesthesia and surgery (14, 79). Fourth, the anesthesiologists
were not blinded to group assignment; therefore, when caring for
patients in the intervention group, they might have been more
cautious in themanagement of the patient’s overall hemodynamic
parameters. However, the following measures were adopted
to avoid bias. The combined monitoring of TCD and NIRS
may minimize the influence of the patient’s hemodynamics on
cerebral perfusion. There was no difference in MAP, bilateral
MFVMCA and rSO2 at different time-points between the two
groups. The anesthetists did not participate in postoperative
follow-up, and the investigators responsible for postoperative
follow-up and delirium assessments were blinded to group
assignment and did not participate in anesthesia or perioperative
care. The anesthetists and investigators also did not communicate
patient information. Fifth, these findings may not apply to
patients receiving inhalational anesthetics.

SUMMARY

This randomized clinical trial suggests that
electroencephalography-guided anesthesia management
with both a quantitative EEG index and DSA can reduce
postoperative delirium incidence in patients undergoing CEA,
especially those vulnerable to disruption of cerebral perfusion
and EEG suppression. A slight change in anesthetic management
may play a significant role in modulating postoperative delirium
risk in patients with ischemic cerebral disease (or patients at

risk of cerebral ischemia). In turn, reducing POD incidence may
improve outcome.
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