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Abstract

In agricultural landscapes, the amount and organization of crops and semi-natural habitats

(SNH) have the potential to promote a bundle of ecosystem services due to their influence

on ecological community at multiple spatio-temporal scales. SNH are relatively undisturbed

and are often source of complementary resources and refuges, therefore supporting more

diverse and abundant natural pest enemies. However, the nexus of SNH proportion and

organization with pest suppression is not trivial. It is thus crucial to understand how the

behavior of pest and natural enemy species, the underlying landscape structure, and their

interaction, may influence conservation biological control (CBC). Here, we develop a gener-

ative stochastic landscape model to simulate realistic agricultural landscape compositions

and configurations of fields and linear elements. Generated landscapes are used as spatial

support over which we simulate a spatially explicit predator-prey dynamic model. We find

that increased SNH presence boosts predator populations by sustaining high predator den-

sity that regulates and keeps pest density below the pesticide application threshold. How-

ever, predator presence over all the landscape helps to stabilize the pest population by

keeping it under this threshold, which tends to increase pest density at the landscape scale.

In addition, the joint effect of SNH presence and predator dispersal ability among hedge and

field interface results in a stronger pest regulation, which also limits pest growth. Consider-

ing properties of both fields and linear elements, such as local structure and geometric fea-

tures, provides deeper insights for pest regulation; for example, hedge presence at crop

field boundaries clearly strengthens CBC. Our results highlight that the integration of spe-

cies behaviors and traits with landscape structure at multiple scales is necessary to provide

useful insights for CBC.

Author summary

In the agricultural context, the loss of semi-natural surfaces often results in high pest

abundance requiring elevated pesticide loads. Habitat heterogeneity resulting from the
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agricultural intermixing of arable fields and semi-natural areas is key to allow organism

fluxes across agro-ecological interfaces by influencing ecological processes. Semi-natural

habitats (SNH) are often restricted to linear structures, such as hedgerows, but they play

an important role by hosting a large number of species. However, the effect of hedgerows

is controversial, as it could result in a positive, ineffective or negative effect for CBC. Usu-

ally, the impacts of landscape structure on pest population dynamics and resulting CBC

are assessed through field experiments with a specific focus, which cannot be generalized,

lack flexibility and are limited by the need to manipulate relatively large landscapes. Here,

we tackle the challenge to investigate the controversial role of semi-natural habitats for

CBC by presenting a simulation-based approach, which allows us to characterize the joint

influence of landscape structure and species traits on CBC service. Our study corroborates

that spatial heterogeneity, species traits and their interactions are fundamental for CBC.

We show that hedge presence alone is not sufficient to lead to strong pest reduction, but

hedge-based predators help to maintain the pest density under the pesticide threshold.

Instead, SNH presence coupled with appropriate predator traits leads to stronger decrease

of pest population. Moreover, we highlight an important scaling effect of SNH, which at

the local scale has an even more important impact on CBC as local properties are

considered.

1. Introduction

Agricultural landscape simplification results in substantial loss of semi-natural mosaics and of

non-crop field margins. It is often associated with high pest abundance, which in turn requires

a higher pesticide input [1,2]. Consequently, a negative relationship emerges between intensity

of agriculture and agricultural landscape biodiversity [3] because of a partial replacement and

suppression of the ecological services provided by communities of beneficial organisms [4,5].

Habitat heterogeneity is key to allow cross-system fluxes of organisms across agro-ecological

interfaces by influencing ecological dynamics within those habitats [6,7] and potentially

increasing predator abundance and diversity in agricultural systems [8,9]. In addition, com-

plex landscape favours habitat and resource diversity for predators thanks to increased avail-

ability of alternative preys, higher microclimate heterogeneity, the presence of refuges from

their own predators and for overwintering [10]. In arable land, semi-natural habitat (SNH) is

typically restricted to hedgerows. These linear structures play an important role as relatively

perennial line corridors because of their temporal stability with respect to crop fields. Their

presence supports predator dispersal and movement to escape from disturbances and to find

food resources scattered in time and space [11,12].

While SNH favours the presence or abundance of functional groups of organisms in land-

scapes, it can also result in ineffective conservation biological control (CBC) [12,13] with no,

or even negative effects on pest control [12–14]. A meta-analysis revealed that pest pressure in

complex landscapes is reduced in 45% of cases, not affected in 40% of cases and increased in

15% of cases [9]. The analysis in [15] highlights the difficulty of stating general and systematic

pest and predator interactions and responses; it is based on a very large pest control dataset

from which a remarkable variability in pest and enemy responses to different landscape met-

rics is found. For example, the effect of landscape structure on pests remains inconclusive, as

many crop pests also benefit from nearby non-crop habitat [12–14]. It may occur that SNH

offers more complementary resources to pests rather than to predators to complete their life

cycle [6]. Predator abundance is not always enough to guarantee a consistent reduction of pest
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species [16] in case of the presence of alternative prey (known as dilution effect) [17], or

increased intra-guild predation [18]. Life history traits, in particular those traits related to mat-

ing systems, competitive skills, movement abilities and habitat use, are also of major impor-

tance by affecting species’ responses to landscape heterogeneity and being readily linked with

ecological processes [19]. Thus, effect direction and magnitude jointly depend on organisms

and landscapes under study [20,21].

In general, the impacts of landscape structure on pest population dynamics are investigated

through empirical correlative approaches with global descriptors at landscape level, due to the

difficulty of manipulating large landscapes for local analyses and due to the lack of the spatio-

temporal dimension. The main drawback of these approaches is the difficulty of linking corre-

lation levels to population dynamic processes, such as local population growth or migration

behavior [22]. A complementary approach, combining theoretical modeling and computer

simulations, consists in coupling generative landscape models with population dynamics mod-

els to explore how different landscape configurations, including the hedge network structure,

affect CBC [23].

A major goal of this work is to implement a general simulation-based approach to obtain

theoretical insights on CBC by incorporating landscape effects and species traits, which can

serve as basis to formulate practical recommendations. In order to assess what are the main

factors that influence the predator-pest population densities in complex landscapes, following

questions are investigated: (i) Can landscape composition and configuration reduce the num-

ber of pesticide applications by enhancing CBC? (ii) How do species traits related to dispersal,

predation and population demography modify the effect of landscape heterogeneity? Specifi-

cally, we develop a stochastic landscape model to simulate realistic agricultural landscape com-

positions and configurations of fields and linear elements for crop and semi-natural allocation.

The generated landscapes are used as spatial support over which we simulate spatially explicit

predator-pest dynamics. The population model accurately links 2D diffusion on surface, 1D

diffusion on linear elements, and the flux interchanges among them to put particular attention

on the linear element integration; see S1 and S2 Videos. Predators use hedges as their natural

habitat where their population naturally develops, but they can also move into crop field to

feed on pests. Pests consider crop fields as their natural habitats where they show positive

growth, while they are not influenced by hedge elements. Our study explores how the joint

consideration of spatial heterogeneity, landscape structure, species traits and their interactions

helps to achieve effective CBC. We present and discuss results in the following sections; the

technical description of our model and statistical methods is given in Model and method

section.

2 Results

2.1 Sensitivity of predator density, pest density and pesticide applications

to model parameters

Fig 1 shows the results of a Sobol sensitivity analysis, where sensitivity indices are denoted by

Ivariable in the following and are calculated from replicated simulations with the same underly-

ing parameter configuration. The sensitivity analysis of the mean of model outputs across

landscape replicates (Fig 1A right) shows that variations in mean predator population density

are mainly explained by predator migration (Ir12
¼ 50%) and by the proportion of hedges

(IPh ¼ 41%), whereas interactions among parameters have little impact on the outputs. For the

mean pest population density and the average number of pesticide applications, crop propor-

tion (IPc ¼ 78% and IPc ¼ 83%, respectively) and pest growth rate (Iru ¼ 17% and Iru ¼ 15%,
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respectively) are the most important parameters to explain model output variability, again

with only little interaction between model parameters (Fig 1B right). Complete results for pes-

ticide applications are given in the S1 Text.

The sensitivity analysis of standard deviation of model outputs across landscape replicates

gives different importance to the input variables as compared to the mean values. For the pred-

ator density, crop proportion (Pc), predator migration (ρ12), hedge proportion (Ph) and spatial

crops and hedges aggregation (φ) explain respectively 55%, 19%, 9% and 9% of the variability

of model outputs (Fig 1A left). For the pest and pesticide applications, results are consistent

with the results obtained for the mean. However, interactions between model parameters are

important to explain variations in the standard deviation of predator and pest density, as well

Fig 1. Sobol sensitivity analysis. Total sensitivity indices (light grey bar) and first-order sensitivity indices (black bar) of space-time averaged values for predator

density (a) and pest density (b), based on the mean (right) or on the standard deviation (left) calculated over replicated simulations. The length of the bar

indicates the mean of the sensitivity index, and the solid line indicates its 95% confidence interval.

https://doi.org/10.1371/journal.pcbi.1009559.g001
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as of pesticide applications among landscape replicates. This implies that particular landscape

structures, characterized by a combination of several descriptors, have to be considered to

fully understand the drivers of predator-pest dynamics.

2.2 Landscape structure effects on the predator-pest dynamics

Estimated coefficients of landscape variables (denoted Evariable in the following) on predator

density highlight a positive effect of hedge proportion (EPh ¼ 0:40� 0:05), a negative effect of

crop proportion (EPc ¼ � 0:20� 0:04) and a positive interaction among both variables

(EPh :Pc
¼ 0:08� 0:02), which implies that hedges can buffer the negative effect of increased

crop proportion. Migration from hedges to fields (Er12
¼ 0:56� 0:01) has the highest positive

effect on predator density with again a positive interaction with crop proportion.

As expected, crop proportion ðEPc ¼ 1:50� 0:16Þ; as well as spatial crop and hedge aggregation

(Eφ = 0.55� 0.02), have a strong positive effect on pest density. Both variables interact negatively

(Eφ:Pc
¼ � 0:11� 0:01), as high aggregation results in an increase of the size of contiguous crop

fields, which lowers the effect of increased crop proportion. The positive effect of crop proportion

is lowered by its interaction with hedge proportion ðEPh :Pc
¼ 0:03� 0:06Þ and also with predator

migration from hedge to fields ðEPc :r12
¼ 0:06� 0:06Þ. Counterintuitively at first sight, an increase

in hedge proportion ðEPh ¼ 0:09� 0:11Þ has a positive effect on pest density. Indeed, predator

presence over all the landscape helps to stabilize the pest population by keeping it under the thresh-

olds that would trigger a pesticide application. This is further confirmed by the fact that hedge pro-

portion (EPh ¼ 0:32� 0:57), predator spillover from hedges to fields (Er12
¼ 0:61� 0:34) and

concurrence of high crop proportion and aggregation (Eφ:Pc
¼ 0:24� 0:09) have a positive effect

on the presence of pesticide applications, but a negative effect on pesticide application numbers

(EPh ¼ � 0:11� 0:07; Er12
¼ � 0:19� 0:08; Eφ:Pc

¼ � 0:07� 0:01).

Among species traits, predator migration from hedges to fields (Er12
¼ � 0:13� 0:12) has

the highest negative impact on pest density. Pest diffusion (EDu ¼ � 1:03� 0:01), due to a

dilution effect, and the predating rate (Eβ = −0.24� 0.01), have also a negative impact on the

pest, while the growth rate (Eru ¼ 0:41� 0:01) contributes positively to pest density. Fig F in

S1 Text shows all estimated effects and their confidence intervals for predator and pest density

and pesticide application presence/absence and number, see also Table 1.

By checking the sensitivity of our results with respect to the pesticide application variables

(i.e., pesticide application efficacy [optimal vs realistic] and pesticide thresholds [low vs high],

see S1 Text), we find that there is no variation of the direction of the estimated effects, but the

magnitude of the effect can increase or decrease depending on the scenario considered. Specif-

ically, when pest reduction is lower due to low pesticide efficacy, or, when pest reduction is

slower due to an elevated pesticide threshold, hedges show a more important effect in slowing

down pest dynamics thanks to predator presence providing a more efficient CBC.

2.3 Effect on pesticide application at local scale

Locally, presence of pesticide applications is negatively influenced by field area and perimeter

(EArea = −0.32 ± 0.01, EPerimeter = −0.10±0.03). These effects reflect both a slower pest diffusion

in large fields and higher predator incoming fluxes to fields with long perimeter. Conversely,

when pesticide applications occurred in a field, the total number of pesticide applications

increases with field perimeter due to spillover form the neighborhoods. An increase in the num-

ber of adjacent crop fields produces a positive effect on the presence (EAdjC ¼ 0:74� 0:01) and

number (EAdjC ¼ 0:20� 0:002) of pesticide applications, while an increase in the number of
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adjacent hedges leads to a negative effect on the presence (EAdjH ¼ � 0:07� 0:01) and number

(EAdjH ¼ � 0:05� 0:001) of pesticide applications. Whereas in the global model the increase of

hedge proportion is associated with a positive effect on the presence of pesticide applications,

we attribute the negative effect at local level to the fact that the predator tends to locally maintain

the pest density under the pesticide threshold, especially after a first pesticide application. The

number of pesticide applications in adjacent fields is positively correlated to their local presence

(EAdjTr ¼ 2:99� 0:01) and number (EAdjTr ¼ 0:13� 0:001), indicating local proliferation of the

pest. Fig G in S1 Text shows all estimated local effects and confidence intervals for pesticide

application presence/absence and number, see also Table 1.

3 Discussion

Sustainable management of pests and diseases in agro-ecosystems requires a better under-

standing of how landscape structure drives and alters population dynamics. By simulating dif-

ferent landscape configurations including linear corridors, and the predator-pest dynamics,

the present research aims at characterizing the joint influence of landscape structure and spe-

cies traits on CBC service. Our study corroborates that spatial heterogeneity, landscape struc-

ture (i.e., the size and physical arrangement of patches), species traits and their interactions

play a key role for CBC.

High crop proportion is the major determinant of increasing pest population and results in

an increased number of pesticide applications over the whole landscape. Indeed, increasing

crop proportion in fragmented landscapes ensures food availability to the pest all over the

landscape [1,2,12]. In highly aggregated landscapes, the size of contiguous crop patches is

already large enough to sustain a relatively large pest population, thus lowering the effect of an

increase in crop proportion [14]. The effects of crop proportion and spatial crop and hedge

aggregation are intimately linked to pest growth rate and dispersal capability. Indeed, unfavor-

able landscape properties for the pest (i.e., low proportion and high fragmentation) can be

compensated by a higher growth rate. However, the effect of dispersal is a double-edged sword

since high dispersal helps spreading on fragmented landscapes but comes with a larger amount

of propagules lost in unsuitable habitats, potentially leading to a dilution effect [3,24,25].

As expected, hedge proportion (i.e., SNHs) positively affects predator presence in agricul-

tural landscapes. In addition, the predator’s ability to move between SNHs and crop habitats is

the parameter that increases most strongly the predator density, since it enables predators to

Table 1. Estimated coefficients (only those discussed in the text). Estimated coefficient on predator and pest density (absence (P/absence (P/A) and number (No.) of

pesticide applications (right) at landscape and patch level. + indicates a positive effect, - a negative effect, NS a non significant effect.

Density Pesticide application

Coefficient Predator Pest Coefficient P/A No.

Landscape EPh + + Landscape EPh + -

EPc - + Er12
+ -

EPh :Pc
+ + Eφ:Pc

+ -

Er12
+ - Patch Earea - -

Eφ:Pc
NS - Eperim - +

EPc :r12
+ + EAdjC + +

EDu + - EAdjH - -

Eβ + - EAdjTr + +

Eru + +

https://doi.org/10.1371/journal.pcbi.1009559.t001
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reach complementary resources in crop fields more easily. Predator fluxes from adjacent habi-

tat is reported to have a major impact on pest populations in crop fields [3,12,26]. Spillover

from hedges to fields not only depends on predator propensity to forage outside their natural

habitat, but also on semi-natural patch connectivity and on crops and predator reservoir inter-

face [27]. Thus, different combinations of SNH proportion and aggregation influence land-

scape structural connectivity and are also important determinants of predator efficiency in

regulating crop pests [27].

In our representation, hedges are modeled as a source of predators where these have logistic

growth. This is a simplification for predator dynamics in their natural habitat, as we do not

consider potential prey presence in hedges and predator foraging behavior in crop fields. For

example, the growth rate, instead of being constant, could depend on the time spent in the

fields and on the number of consumed preys. In addition, predating rate and consumption

rate are crucial in determining the efficiency of CBC [28]. Here, these parameters are not iden-

tified as influential in the dynamics, maybe because they are assumed identical (parameter β in

our model). Finally, another strong assumption of our model is that we refer to a selective pes-

ticide application which does not affect predator mortality, such that we do not explore a

broad-spectrum pesticide scenario. In general, broad-spectrum pesticides are more commonly

applied [17], but there are pest management programs where selective insecticides have been

proved to be particularly effective in combination with a CBC strategy by weaving together

direct targeted reduction in pest numbers with predator conservation [17,29]. Moreover,

introducing broad-spectrum pesticide application effects may result in secondary pest break-

outs [30–32], where pests benefit from the predator reduction. Then, additional pesticide loads

would be necessary to decrease pest density, which in turn continuously decimates the preda-

tor population [33]. Therefore, the effect of SNH and predators, and their relationships for

CBC outcomes, would be confused and masked. In our work, an indirect effect could be

observed: in crop fields, a positive predator growth rate relies only on pest availability, such

that a strong pest reduction due to pesticide applications is automatically translated into a

strong impact on predator density when such pesticide applications occur.

In our analysis, we found that the predator’s ability to disperse from hedges to crop fields

has a major influence on pest density and related pesticide applications. High crop proportion

enhances pest density, but this effect is counter-balanced by the joint effect of hedge propor-

tion and predator spillover from hedges to fields, which favors predator pressure and reduces

pesticide applications. Indeed, hedges ensure an increased functional landscape connectivity,

which enables predators to successfully disperse and feed on complementary resources in the

fields. Interestingly, however, we found that if SNHs can sustain a high population of predators

[25], this is not sufficient to achieve a decrease in pest density. Indeed, by keeping the pest pop-

ulation density under the pesticide application threshold, the predator population can favor its

spread across the landscape, thus increasing pest density at the landscape scale, even if fewer

pesticide applications are applied. Most of the studies consider the amount of SNH as a proxy

for predator presence and focus on how landscape structure directly influences CBC. However,

as highlighted by our results (see also [34]), the extent to which species are influenced by land-

scape heterogeneity depends on their traits. For example, [35] argue that predators with an ori-

ented movement are better able to deliver pest control services. They discuss the interplay

among predator mobility, proportion of crop and SNHs. More generally, predator fluxes from

SNH are expected to be particularly strong when (i) predator attack rates on prey are high, (ii)

predator movement abilities are substantial, and (iii) predator mortality rates in the recipient

habitat are low [34]. However, we point out that the predator we model is a generalist predator

that does not show strong aggregation behaviour towards pests. Pests represent a predator

resource in field, but predators can persist in the landscape also without pests as they have a
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positive growth in hedges. Different outcomes would be probably observed when considering

a specialist predator showing an aggregating behaviour around local pest outbreaks [36]. As

for example in [36], specialist predators are found to be more effective agents in suppressing

local outbreaks than generalist ones.

The amount of predator spillover from hedges to fields, and the distance over which pest

and predator can spread, both depend on local configurational variables such as field size,

shape, amount of shared edge, and connectivity [20]. Large fields can support high pest vol-

umes, but it has been demonstrated that the relationship between field size and pest density

can take several forms depending on assumptions, conditions and species considered [37].

Our results show a negative effect of large field area on the need and quantity of pesticide

applications, which, according to [37], may come from the elevated growth rate of the prey

combined with its good dispersal ability. By contrast, a high number of pesticide applications

is favoured by long field perimeters, as these facilitate high fluxes of pest coming in from sur-

rounding fields. However, when a hedge is present on a field boundary, we observe a reduction

in numbers of pesticide applications, as there is an increase of predator spillover from hedges

into fields [9]. Interestingly, we show a contrasted effect of hedges depending on the scale con-

sidered. At global scale, the proportion of hedges shows a positive effect on pest density and

has a negative effect only on the presence of pesticide application. At local scale, an elevated

number of hedges on crop boundaries shows an even more important impact on CBC by nega-

tively affecting both the local presence and number of pesticide applications [25].

Landscape simplification is a major driver of pest abundance and consequently has strong

impacts on the necessity of pesticide applications and their frequency. We find that natural

habitat enhances predator population, but it does not systematically translate into a strong cor-

relation with pest density decrease. However, a relatively high predator density often helps

maintaining pest density below the threshold level above which pesticides are applied, thus

preventing highly localized pest densities. However pest population can already have a moder-

ate density level over substantial surfaces and therefore may quickly propagate in every point

of the space. Indeed, in our model the hedges are generally expected to play a positive role, but

our results at global scale show that the final outcome must be analyzed in a much more

nuanced way. By contrast, predator spillover from hedges to fields is fundamental for CBC; it

reduces pest density and guarantees high predator fluxes and different habitat connectivity. At

field scale, landscape geometric features, hedge presence and habitat connectivity are able to

influence predator-pest dynamics, and therefore they affect the number of pesticide applica-

tions. This highlights the importance of conducting a multi-scale analysis to consider the dif-

ferences in outcomes at landscape and patch scale for pest CBC [14]. In most of our analyses,

we considered global outputs by averaging pest and predator densities over crop fields. How-

ever, populations are obviously structured in space and time. Thus, a complementary analysis

studying how landscape structure impacts spatio-temporal predator-pest dynamics would

bring deeper insights on pest outbreak determinants. Moreover, a larger number of pest and

predator species, inter/intra-species interactions and also different trophic network structures,

could be considered in future work to better understand the role of pest and predator diversity

on CBC efficacy.

4 Models and methods

4.1 Stochastic landscape model

The landscape is represented through a vectorial approach, which is appropriate for represent-

ing the highly regular geometric patterns of agricultural landscapes [38,39]. It is composed of

polygons representing fields, separated by edges. Landscape elements are characterized by
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their geometry (e.g., vertex coordinates, size and shape), and by categorical information defin-

ing the land-cover (e.g., crop or natural habitat). The landscape geometric structure is fixed

and based on a real landscape with an extent of 5.55 km. The landscape is transformed into a

T-tessellation [40,41] composed of 188 polygons with a total of 577 edges.

We use Gaussian random fields (GRFs) to allocate a proportion of polygons and edges as

crops representing the principal culture and hedges to provide SNHs, respectively. A threshold

on the simulated GRF values is set to attribute specific landscape elements depending on the

value being below or above the threshold. By definition, a GRF denoted byW is a random sur-

face over continuous 2D space, for which the multivariate distribution of the values (W(x1),W
(x2),. . .,W(xn)) observed at a finite number of locations x1, x2,. . .,xn in the landscape corre-

sponds to a multivariate normal distribution, characterized by its mean vector and its covari-

ance matrix S. The mean is fixed to 0 and the exponential correlation function is used for S,

such as Sij ¼ e
�
jxi � xj j
φ

� �

, where |xj−xi| is the Euclidean distance between any two points xj and

xi. The range parameter φ�0 governs the strength of clustering of category allocation to land-

scape elements. To handle the interactions between the allocation of hedge and crop, we simu-

lated two correlated GRFs for crop (Wc(s)) and hedge (Wh(s)):

WcðsÞ ¼ rWhðsÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � r2

p
~WðsÞ; ð1Þ

where ρ2[−1, 1] controls the correlation betweenWh and ~W , which is a GRF independent

fromWh. The parameter used for the landscape models with their range of values can be

found in Table 2. Fig 2 shows an example of four landscapes simulated according to different

proportions and aggregation levels of hedges and crop fields.

Table 2. Description of parameter values. �Spatial aggregation is the parameter controlling the adjacency of crop elements among each other and hedge elements

among each other.

Parameters Description Values Units References

Min max

For landscape model

φ Spatial aggregation of hedges and crops� 5.55/100 5.55 km

Pc Proportion of crop 0 1 -

Ph Proportion of hedges 0 1 -

% Correlation between crops and hedges GRFS 0.5 -

Parameters for population dynamic mode

Dv
2

2D diffusion rate of the predator 0.000625 0.012 km2d−1 Corbett et al., 1996; Pearce et al. 2006

1/mv Lifespan of the predator 20 66 d1 Pearce et al. 2006

β Predating rate 0.01 0.010 pest−1d−1 Pearce et al. 2006

ρ21 Migration rate of the predator from field to hedge 0.05 km−1d−1

Dv
1

1D diffusion rate of the predator 0.012 km2d−1 Corbett et al., 1996; Pearce et al. 2006

rv Intrinsic growth rate of the predator on hedges 0.010 0.020 d−1 Xia et al., 1999

Khi Carrying capacity of hedges for the predator 1 predators km−2

ρ12 Migration rate of the predator from hedge to field 0 0.05 d−1

Du 2D diffusion rate of the pest 0.000625 0.012 km2d−1 Corbett et al., 1996; Pearce et al. 2006

ru Intrinsic growth rate of the pest 0.010 0.020 d−1 Xia et al., 1999

Cit Carrying capacity of 2D system for the pest 20 (without pesticide) 0.1

(after pesticide)

pests km−2

1/mu Lifespan of the pest 20 66 d Pearce et al. 2006

https://doi.org/10.1371/journal.pcbi.1009559.t002
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4.2 Predator-pest model

We developed a spatially explicit predator-pest model based on a system of partial differential

equations. The model is built on a previously developed model that considers both 2D diffu-

sion on polygons and 1D diffusion on edges [11]. Simulations are performed over a [0,100]-

time interval representing a cropping season with a time step of 1 day. The model parameters

and their range of simulated values are reported in Table 2. Numerical simulations of the spa-

tio-temporal partial differential equation system of predator-pest dynamics are performed

using the Freefem++ finite-element framework [42]. The predator-pest dynamics is illustrated

by snapshots at different time step (Fig 3) and by plots of the temporal dynamics in Figs B-D

in S1 Text, and by S1 Video for the pest and S2 Video for the predator for the whole simulation

period over the spatial domain.

4.2.1 Predator dynamics. We model a generalist predator not showing strong aggregation

behavior around pests. Hedges are the predator’s main habitat, which feeds on pests when

moving into the fields. Using notations t for time and x for a spatial location, we thus assume

the following 1-dimensional reaction-diffusion model for the predator density vhi on the edge

hi:

@tvhi ¼ @xxD
v
1
vhi þ rvvhi 1 �

vhi
Khi

 !

if the edge hicarries a hedge;

vhi ¼ 0 otherwise;

ð2Þ

8
>><

>>:

where Dv
1

is the diffusion parameter of the predator along hedges, rv is the intrinsic growth rate

of the predator, and Khi is the carrying capacity of the hedge i. If two hedges are linked together

at one of their endpoints, then the dynamics in Eq (7) apply continuously across the junction.

In addition, the predator forages on fields where it feeds on the pest. The population density

vOi
of predators in a field Oi is modelled by a reaction-diffusion equation with mobility

Fig 2. Simulation examples. Examples of simulated landscape structures with interacting elements using the following

allocation categories: for fields, (i) crop (green) and (ii) non-crop (white); for edges, (i) hedge (blue) and (ii) no-hedge

(black). First row: low (a) and high (b) proportions of crop and hedges (0.2 and 0.8, respectively), with fixed parameter

configuration for aggregation and fixed correlation between crop and hedges (0.5). Second row: low (c) and high (d)

crop and hedge aggregation level from left to right, with fixed proportion of crop and hedges (0.5) and fixed

correlation between crop and hedges (0.5).

https://doi.org/10.1371/journal.pcbi.1009559.g002
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parameter within field Dv
2
, predating rate β, and life span 1/mv:

@tvOi
¼ DDv

2
vOi
� mvvOi

þ buOi
vOi

ð3Þ

4.2.2 Pest dynamics. We suppose that edges do not modify directly pest population

dynamics. Writing uhi for the pest density in an edge hi, we set

uhi ¼ 0 for all i: ð4Þ

The pest is a specialist of the principal crop and, without dispersal, it shows positive growth

only in crop fields. The bidimensional reaction-diffusion model for the pest density uOi
in field

uOi
is

@tuOi
¼ DDu

2
uOi
þ ruuOi

1 �
uOi

Cit

� �

� buOi
vOi

for Oi with crop;

@tuOi
¼ DDu

2
uOi
� muuOi

� buOi
vOi

for Oi with non� crop;
ð5Þ

8
><

>:

where Du
2

is the diffusion parameter of the pest in fields, ru is its intrinsic growth rate on crop

category, β is the predating rate, and 1/mu is the life span of the pest on non-crop fields.

In a crop field, a pesticide application is performed when the average pest population den-

sity in that field exceeds a given threshold, which we here fix to 0.2 pests km-2. Pesticide appli-

cations strongly reduce the carrying capacity Cit of the field i (Eq (5)):

Cit ¼ KOi
if no pesticide application is applied;

Cit ¼
KOi

200
during the period et for which the pesticide application is efficient:

ð6Þ

8
<

:

Fig 3. Snapshots of pest and predator spatial dynamics. Simulation of predator-pest population dynamics at different time intervals t = {1, 70, 100}. At the

initial stage, the pest density (first line) is very low, followed by random introduction of pest. As time proceeds, the pest density increases (from left to right), and

predator density (last line) also increases and diffuses to surrounding fields. At the final time step, high pest density arises where predators are absent.

https://doi.org/10.1371/journal.pcbi.1009559.g003
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This results in a pesticide application efficacy providing a 99.5% pest reduction, which can be

considered an ideal-optimal case in practice. More realistic values of pesticide application effi-

cacy should be around 70% [43,44]; this alternative scenario is analyzed in S1 Text, where the

sensitivity to the pesticide application threshold is also tested.

Instead of a applying a reduction of the carrying capacity, we could have used an additional

linear mortality term to account for the effects of pesticide applications, but this would have

implied the modification of both growth and carrying capacity. For that reason, and to keep

the model parsimonious, possible effects of pesticide applications are assumed to change only

the carrying capacity (Eq 6), which is equivalent to using quadratic additional mortality term.

We point out that here we set the carrying capacity as a general saturation level for pest and

predator densities, but it does not necessarily correspond to the number of individuals per

km2. Similarly, mortality other than for predating or pesticide applications could have

occurred in crop fields, but we have opted against this option for the sake of parsimony.

4.2.3 Coupling predator-pest dynamics over the entire landscape. Using the framework

described in [11], the dynamics described by Eqs (2) to (6) are coupled over the full landscape

using the following assumptions (see S1 Text): (i) edges (with or without a hedge) do not rep-

resent a barrier for the pest, (ii) edges without a hedge do not represent a barrier for the preda-

tor, (iii) the predator is attracted by hedges, thus migration from fields to hedges (ρ21) is

relatively high, (iv) the predator shows aversion to move outside its natural habitat, thus

migration from hedges to fields (ρ12) is lower than migration from fields to hedges. We con-

sider reflecting conditions on landscape boundaries, meaning that in- and out-fluxes between

the landscape and its surrounding environment are equal.

Since pest population grows in crop habitat but not in non-crop habitat in our model, an

increase in pest density with a higher crop proportion is expected. Similarly, since predators

prefer hedges, higher hedge proportion favours predator movement through the landscape,

thus, increasing predator density and predating pressure.

4.3 Pest arrival and spatio-temporal design

Initially, the predator is present in all hedges at carrying capacity. The pest is introduced ran-

domly in space and time. The average number of pest inoculations in a single simulation is

proportional to the proportion of crop field area in the landscape, and we draw the actual

number of inoculations from a Poisson distribution. The maximal average number of pest

inoculations is 25 and arises when the crop is grown in all fields. Inoculated crop fields are

picked at random with probability depending on their relative surface.

4.4 Statistical methoh2ds for analyzing simulation outputs

We define an experimental design based on Sobol’s sequences leading to 11,500 distinct

parameter configurations [45–47]. For each parameter combination, we consider 15 landscape

replicates, leading to a total of 172,500 simulations. We first conduct a Sobol sensitivity analy-

sis on the mean and standard deviation of predator density, pest density and number of pesti-

cide applications by averaging the outputs over landscape replicates and crop fields. First-

order indices were estimated with Sobol–Saltelli’s method [48,49], whereas total indices are

estimated with Sobol–Jansen’s method [48,50]. These analysis are performed within the R soft-

ware version 3.0.3 (R Team, 2003), using the packages fOptions (v. 3010.83) and sensitivity (v.

1.11).

Then, to further explore direction and magnitude of variations in response variables with

respect to landscape parameters, we applied Generalized Linear Models (GLMs). Pest and

predator densities, and pesticide application numbers (if different from 0), are analysed as
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response variable by using the Gamma distribution with log-link function. Additionally, pres-

ence/absence of pesticide applications during a simulation is analyzed using a GLM with bino-

mial distribution. We develop GLM formulas containing covariable interactions (see Table 2)

up to second order, and we use a step-wise variable selection algorithm based on the Bayesian

Information Criterion (BIC) in order to iteratively select the “best subset” of variables for each

model.

Finally, we use Generalized Linear Mixed-Effect models to analyze occurrences of pesticide

applications by taking into account their spatial position in the landscape. We use the log-

transformed area (Area) and perimeter (Perimeter) to take into account the geometrical prop-

erties of the fields, and we use the number of adjacent crop fields (AdjC), the number of adja-

cent hedges (AdjH), and the number of pesticide applications applied in the adjacent crop

fields (AdjTr) to take into account the composition and dynamics in local neighbourhoods. In

addition, we include the estimated linear effects from the global models as offsets. The random

effect is structured by the landscape simulation to account for its specific dynamics. By analogy

with the global GLMs, the presence/absence of pesticide applications is analyzed using the

binomial response distribution, and numbers of pesticide applications are analyzed with the

Gamma distribution for the response variable with a log-link function. Again, we consider pre-

dictor interactions up to 2nd order. These analyses are performed using the R package lme4

with R version 3.2.3 [51].

Supporting information

S1 Text. Supplementary Information of the paper: “More pests but less pesticide applica-

tions: ambivalent effect of landscape complexity on conservation biological control”. More

details about the model and results.

(PDF)

S1 Video. Supplementary video of pest dynamic: a video illustrating an example of spatio-

temporal pest dynamics.

(GIF)

S2 Video. Supplementary video of predator dynamic: a video illustrating an example of

spatio-temporal predator dynamics.

(GIF)
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