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PET and PET/CT imaging of skeletal metastases
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Abstract

Bone scintigraphy augmented with radiographs or cross-sectional imaging, such as computed tomography (CT) or
magnetic resonance imaging (MRI), has remained the commonest method to diagnose and follow up skeletal metas-
tases. However, bone scintigraphy is associated with relatively poor spatial resolution, limited diagnostic specificity
and reduced sensitivity for bone marrow disease. It also shows limited diagnostic accuracy in assessing response to
therapy in a clinically useful time period. With the advent of hybrid positron emission tomography (PET)/CT
scanners there has been an increasing interest in using various PET tracers to evaluate skeletal disease including
[18F]fluoride (NaF) as a bone-specific tracer and [18F]fluorodeoxyglucose and [18F]choline as tumour-specific
tracers. There is also early work exploring the receptor status of skeletal metastases with somatostatin receptor
analogues. This review describes the potential utility of these tracers in the assessment of skeletal metastases.
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Introduction

Skeletal metastases are common in many cancers and
70% of patients with breast and prostate cancer have
evidence of skeletal involvement at post mortem[1].
Significant morbidity may result from skeletal metastases
including pain, pathological fracture, spinal cord com-
pression, bone marrow suppression and hypercalcaemia.
In some patients with metastatic skeletal disease, survival
may be relatively long (e.g. 24 and 20 months median
survival in breast and prostate cancer, respectively)[2].
Metastatic skeletal disease therefore has a significant
effect on health care resources. Clinical management
is highly dependent on the diagnosis and follow-up
of patients with skeletal metastases and imaging techni-
ques have traditionally played a major role in skeletal
evaluation.

Historically, conventional bone scintigraphy, using
technetium-99m-labelled diphosphonates, (e.g. [99mTc]�
methylene diphosphonate (MDP)) has been most com-
monly used. However, more recent improvements and
development of other modalities including multidetector
computed tomography (CT), whole-body magnetic reso-
nance imaging (MRI) and positron emission tomography
(PET)/CT, has led to their greater use in skeletal disease.
There has been particular interest in PET techniques
as it is possible to use bone-specific tracers such as

[18F]sodium fluoride (NaF) or tumour-specific tracers
such as [18F]fluorodeoxyglucose (FDG) and
[18F]fluorocholine (FC) to evaluate different aspects of
the biology of skeletal metastases and there is some early
work investigating the receptor status of bone metastases
with labelled somatostatin analogues such as
[68Ga]DOTA-D-Phe1-Tyr3-octreotide (DOTATOC).

[18F]Fluoride (NaF) PET

Although the 99mTc-labelled diphosphonates were devel-
oped in the 1970s and 1980s, the positron emitter, NaF,
was first described in 1962[3]. As a result of the improve-
ment in image quality following the development of
clinical PET scanners in the 1990s and subsequently
PET/CT scanners in the 2000s, there has been renewed
interest in using NaF to assess the skeleton.

It is likely that the skeletal clearance of NaF is similar
to the 99mTc-labelled diphosphonates, depending on
blood flow and osteoblastic activity[4]. Evidence suggests
that NaF undergoes high first pass extraction approach-
ing 100% in bone at physiological blood flow rates, there-
fore allowing the estimation of bone blood flow[5]. There
is subsequent chemisorption into bone crystals with the
formation of fluoroapatite and this process occurs prefer-
entially at sites of actively mineralising bone[6,7]. Unlike
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diphosphonates, NaF is not protein bound and as skeletal
uptake is rapid, it is possible to obtain scans as soon as
1 h after injection[8]. High lesion to background ratios are
obtained with NaF at 1 h in both osteoblastic and osteo-
lytic metastases[9]. An injected activity of 250 MBq
allows high quality skeletal images on modern PET ima-
ging systems with a radiation dose to the patient of
approximately 6 mSv[10] (Fig. 1).

NaF-PET was prospectively investigated in 44 patients
with prostate, thyroid and lung cancer, comparing it with
[99mTc]MDP planar bone scintigraphy[11]. Reference
methods included radiographs, CT, MRI and iodine-
131 scintigraphy. NaF-PET was more accurate in detect-
ing skeletal metastases than bone scintigraphy (area
under receiver operating curve (ROC) curves 0.99 and
0.64, respectively) on a lesion-by-lesion basis, but on a
patient-by-patient basis the differences were smaller.
Forty-four patients were correctly defined as positive
for skeletal metastases by NaF-PET compared with 42
with planar bone scintigraphy. The improved accuracy
for individual lesions appeared to depend on anatomical
site with the greatest advantage for NaF seen in the spine
and pelvis. The sensitivity of NaF-PET was the same for
osteoblastic prostate cancer metastases as it was for
osteolytic metastases from lung and thyroid carcinomas.
NaF-PET was also more specific than bone scintigraphy,
with the ability to correctly categorise a greater number

of benign and malignant lesions. Of 108 lesions present
on NaF-PET and bone scintigraphy, NaF-PET correctly
categorised 105 (45 metastases, 60 benign), whereas
bone scintigraphy correctly categorised 87. The authors
proposed that the superior spatial resolution and resul-
tant anatomical localisation with NaF-PET was responsi-
ble for better specificity and no quantitative comparison
was made.

A similar subsequent study from the same group inves-
tigated NaF-PET in patients with breast cancer[12]. NaF-
PET showed a better diagnostic accuracy than planar
bone scintigraphy on a lesion-by-lesion basis (area
under ROC 0.99 and 0.74, respectively) and patient-by-
patient basis (1.0 and 0.82, respectively). A change in
management resulted from detection of metastases in 4
out of 34 patients with NaF-PET compared with the
management strategy that would have been used with
bone scintigraphy.

A limitation of these studies was that for bone scinti-
graphy, only planar images were acquired with no single
photon emission-computed tomography (SPECT) and so
there was an inherent advantage for the PET technique in
which tomographic images are routine. This was
addressed in a subsequent study of 53 patients with
lung cancer where NaF-PET was compared with planar
bone scintigraphy augmented with SPECT of the
spine[13]. Of 12 patients with bone metastases, there

Figure 1 NaF-PET. (A) Maximum intensity projection (MIP) and (B) PET and CT sagittal images of a patient with
metastatic prostate cancer with metastases in the cervical, thoracic and lumbar spine, left second rib, pelvis and left
upper femur.
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were 6 false-negatives with planar scintigraphy, 1 with
planar scintigraphy augmented with spinal SPECT
and no false-negatives with NaF-PET. There was not a
significant difference in the area under the ROC curve
between SPECT and PET (0.944 and 0.993, respec-
tively). Clinical management was changed in 5 patients
as a result of the SPECT findings and in 6 as a result
of the PET findings. These results suggested that the
differences between [99mTc]MDP and NaF imaging
were mainly technical rather than the result of pharma-
cokinetic differences in the tracers. A subsequent larger
study of 103 patients with lung cancer compared NaF-
PET with both planar bone scintigraphy and planar scin-
tigraphy augmented with SPECT of the spine[14]. Of
33 patients with bone metastases, there were 13 false-
negatives with planar bone scintigraphy, 4 with SPECT
and 2 with PET. A statistical difference was found in the
areas under the ROC curves (0.771, 0.875 and 0.989,
respectively). A change in management resulted in 8
patients due to SPECT and in 10 due to PET. A cost-
effectiveness analysis was also undertaken that showed
that the additional cost for each correctly diagnosed
patient was 1272 euros for SPECT and 2861 euros for
PET but with the potential to improve patient outcomes
in the latter.

In a more recent study, NaF-PET was compared with
FDG-PET/CT and planar bone scintigraphy in 126
patients with non-small cell lung cancer[15]. In this
group of patients more skeletal metastatic lesions were
detected with FDG-PET/CT than with NaF-PET overall
(53 vs 40) but there were 4 patients in whom metastases
were only detected with NaF-PET. Although FDG-PET/
CT was more accurate than bone scintigraphy, it remains
uncertain whether it can also replace NaF-PET in staging
the skeleton in lung cancer in this particular scenario.

In one of the first studies evaluating hybrid NaF-PET/
CT in cancer patients with a variety of primary tumours,
it was found that the additional morphological informa-
tion from the CT component of the hybrid scans signifi-
cantly improved specificity compared with NaF-PET
alone[16]. Ninety-four of the 111 metastases corre-
sponded to lytic or sclerotic changes on the CT compo-
nent and 16 out of the remaining 17 lesions showed
normal CT appearances. In only one metastasis did
PET/CT falsely suggest a benign lesion. It was also
found that the low-dose CT component was of sufficient
quality so that a full diagnostic CT was not required for
correlative purposes in most lesions.

A subsequent study from the same group compared
planar bone scintigraphy, SPECT, NaF-PET and NaF-
PET/CT in 44 patients with prostate cancer[17]. SPECT
was more sensitive and specific than planar scintigraphy
and in turn, NaF-PET was more sensitive than SPECT.
NaF-PET/CT was also more sensitive and specific than
planar and SPECT bone scintigraphy. As in the previous
study, the additional morphological information from the
CT component of PET/CT led to an increase in

specificity compared with NaF-PET alone and resulted
in fewer equivocal interpretations. Three of the 25
patients with a new diagnosis of prostate cancer had
bone metastases detected with NaF-PET/CT that were
not detected with planar scintigraphy, leading to manage-
ment with systemic rather than local therapy.

In view of the different mechanisms of uptake of NaF
and FDG in skeletal metastases, some researchers have
postulated combining the two tracers to optimise diag-
nostic information[18,19]. In the earlier study, FDG and
NaF were injected simultaneously (300 MBq and
100MBq, respectively) and compared with a control
group who only had FDG administered. Correlation
with other imaging findings occurred in 88% of the com-
bined group and 78% of the control group. This was not a
statistically significant difference but interobserver agree-
ment in lesion localisation improved from 0.74 in the
control group to 0.95 in the combined group. To some
extent the better skeletal or soft tissue localisation that
resulted from this study has been superseded by com-
bined PET/CT. The later study compared FDG, NaF
and combined FDG/NaF-PET/CT scans in patients
with varied cancers. Development of an image-processing
algorithm in a mouse model allowed images of only the
combined tracer uptake in the skeleton to be produced.
It was found that these corresponded well with the NaF-
PET scans performed as a separate acquisition. This
method allowed separate interpretation of the FDG and
NaF distribution, even though the tracers were injected
together.

Comparisons have also been made in prostate cancer
between NaF and the tumour-specific agent reflecting cell
membrane metabolism, FC. An initial study of 38 men
(17 preoperative and 21 postoperative, with suspected
recurrence)[20] was performed. Sensitivity, specificity
and accuracy for NaF for the diagnosis of bone metasta-
ses was 81%, 93% and 86%, respectively and for FC, 74%,
99% and 85%. The differences in specificity were statisti-
cally significant in keeping with the tumour-specific
nature of FC uptake compared with relatively non-spe-
cific bone uptake of NaF. FC-PET led to a change in
management in 2 patients with bone metastases not
detected by NaF. This was assumed to be due to detec-
tion of metastases in the bone marrow before an osteo-
blastic response was visible. Although more metastases
were detected with NaF in other patients, this did not
change management. It was also noted that sclerotic
lesions with higher density as measured by CT
Hounsfield units (HU), tended to be negative with both
tracers and there was a negative correlation between stan-
dardised uptake value (SUV) and HU measurements.
A subsequent study explored the relationship of FC
with CT density further[21]. It was found that an HU
level 4825 was associated with absence of uptake and
that most of these patients were receiving hormone ther-
apy. This suggested that the lesions may have been ren-
dered metabolically inactive by the hormone therapy and
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that a healing sclerotic response was responsible for the
high density on CT. A longitudinal study would obviously
be of interest in exploring this relationship further.

At the time of writing, a multicentre study is underway
in the United States to assess the use of NaF-PET in
routine use of skeletal staging in cancer[22]. This study
proposes to compare NaF-PET/CT with [99mTc]MDP
bone scintigraphy in 500 patients with breast, prostate
and non-small cell lung cancer. This large collaborative
project will be of great interest in answering any remain-
ing questions regarding skeletal staging with NaF.

In addition to using NaF-PET for skeletal staging, there
are some early data suggesting that NaF can be used to
assess treatment response in metastatic prostate cancer.
A small pilot study of patients with metastatic prostate
cancer confined to the skeleton, being treated with
[223Ra]chloride, used NaF-PET at 6 and 12 weeks[23].
Although serial NaF-PET scans showed no subjective
difference in uptake, it was possible to differentiate
responders from non-responders, as determined by pros-
tate-specific antigen response, by measurement of serial
SUVs. It remains to be seen whether this quantitative
approach works as well in other cancers and with differ-
ent types of therapy.

[18F]Fluorodeoxyglucose

The mechanism of uptake of FDG into bone metastases
differs from NaF and accumulation is assumed to be into
viable, metabolically active tumour cells rather than reac-
tive bone. As uptake of FDG is not restricted to tumour
involving the skeleton, it has the advantage of demon-
strating both skeletal and soft tissue metastases in
patients with cancer.

A few reports specifically describe the use of FDG-PET
in the investigation of bone metastases and compare with
conventional [99mTc]MDP scintigraphy. When compar-
ing FDG-PET with [99mTc]MDP scintigraphy in 110
patients with small cell lung cancer, Bury et al.[24]

found a similar sensitivity on a patient-by-patient basis
(19 out of 21 with bone metastases). However, FDG-
PET correctly confirmed the absence of skeletal involve-
ment in a much larger proportion of cases (87 out of 89
compared with 54 out of 89). This is probably because
FDG activity is more specific for metastatic involvement
compared with [99mTc]MDP, where coincidental benign
skeletal lesions may cause false-positive interpretation of
metastases.

A similar study compared FDG-PET and bone scinti-
graphy and FDG-PET demonstrated a higher sensitivity
and specificity on a lesion-by-lesion basis[25]. Although
the apparent improvement in sensitivity with FDG may
be partly due to the routine acquisition of tomographic
images that were not available for [99mTc]MDP, it is also
likely that the observed differences are due to the fact
that by imaging tumour metabolism directly with FDG,
detection may occur at an earlier stage when only the

bone marrow is involved and before an identifiable
bone reaction, required for abnormal [99mTc]MDP accu-
mulation, has taken place.

In lymphoma, where skeletal involvement is often pre-
dominantly marrow-based, it has been found that FDG-
PET is more sensitive than conventional bone scintigra-
phy[26] and it has been suggested that it might be possible
to replace bone marrow biopsy as a staging procedure in
these patients[27,28] (Fig. 2). There are obvious potential
advantages in sensitivity with FDG-PET in this respect
when marrow involvement spares the iliac crest, but it is
unlikely that FDG-PET could completely replace bone
marrow biopsy, particularly where there is microscopic
involvement or in cases with low-grade lymphomas that
accumulate FDG less avidly. After chemotherapy or
granulocyte colony stimulating factors, it is not uncom-
mon for the bone marrow to show a diffuse increase in
activity that is reactive, a factor that may limit the use of
this method in assessing disease response in bone
marrow[29].

Figure 2 FDG-PET MIP image of a patient with stage
IV Hodgkin disease shows nodal disease above and below
the diaphragm (arrows), spleen (curved arrow) and bone
and bone marrow involvement (arrowheads).
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Much of the literature describing PET and skeletal
metastases compares bone scintigraphy with FDG-PET
in patients with breast cancer[30�32]. Most of the studies
indicate that FDG-PET is more accurate, although some
show this is predominantly because of improved specifi-
city rather than sensitivity[30,31]. It would appear that the
sensitivity for lytic metastases is better with FDG-PET but
that osteoblastic metastases are less FDG avid and may
even be less sensitive compared with bone scintigraphy in
this subgroup[32�39]. Although there seems little doubt
that lytic and sclerotic metastases behave differently
with regard to FDG uptake and that osteoblastic breast
cancer lesions may be associated with a better progno-
sis[33], prior treatment probably influences this relation-
ship[36,40]. Other tumours for which FDG-PET or PET/
CT have shown superior diagnostic accuracy compared
with bone scintigraphy include thyroid cancer[41], naso-
pharyngeal carcinoma[42] and oesophageal carcinoma[43].
However, one study found no advantage of FDG-PET
over bone scintigraphy in a variety of tumour types[44]

and another found bone scintigraphy with SPECT more

sensitive in breast cancer because of the poor sensitivity of
FDG-PET for osteoblastic lesions[39].

Although FDG-PET often detects more skeletal disease
than conventional bone scintigraphy, this is not a univer-
sal finding in all cancers. There have been a number of
reports on the use of FDG in prostate cancer, a tumour
in which skeletal metastases are usually osteoblastic in
nature, in which a lower sensitivity has been found in the
skeleton compared with conventional bone scintigra-
phy[45,46] (Fig. 3).

The reason for a greater avidity for FDG in lytic metas-
tases is unknown but may reflect increased glycolyis or
expression of glucose membrane transporters. It might
also be expected for these more aggressive metastases
to become hypoxic, another factor that is known to
increase FDG accumulation[47]. In contrast, the relative
acellularity that may occur in sclerotic metastases, with
comparatively smaller volumes of tumour tissue in indi-
vidual lesions, may influence the degree of FDG uptake
whilst; the predominant sclerotic process leads to high
uptake of bone-specific tracers such as NaF or MDP.

Figure 3 (A) [99mTc]MDP bone scan and (B) FDG-PET MIP image of a patient with metastatic prostate cancer with
osteoblastic skeletal disease. The bone scan shows a greater number of metastases and a greater lesion to background
ratio than that seen on the FDG-PET scan.
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There are as yet little data available to determine
the value of combined FDG-PET/CT, compared with
FDG-PET alone, in bone metastases but at least one
study suggests a complementary role for the PET and
CT components of the examination by finding a much
higher positive predictive value (PPV) when PET and
CT findings are concordant (98%) compared with PET
positive/CT negative discordant cases (PPV¼61%) and
PET negative/CT positive cases (PPV¼17%)[48]. A
further study showed an improved specificity in the
spine of patients with different types of primary tumour
when using FDG-PET/CT compared with FDG-PET
alone[49].

By reflecting tumour cell viability in bone metastases
directly, FDG-PET has the potential to monitor therapy
response more accurately than bone-specific tracers that
reflect the osteoblastic bone reaction. In a study of 24
women with bone-predominant, advanced breast cancer
it was shown that quantitative changes in FDG-PET cor-
related with overall clinical assessment of response and
changes in tumour markers[50] (Fig. 4). It is possible that
changes in FDG activity to therapy may also be prognos-
tic. A retrospective study of breast cancer patients with
bone-predominant disease showed that a high baseline
SUV was associated with a shorter time to a skeletal-
related event and that non-responders had a shorter
time to progression[51].

Somatostatin receptor PET imaging

Because there is some evidence of therapeutic efficacy of
somatostatin analogues in the treatment of androgen-inde-
pendent prostate cancer[52], there is a requirement for a
non-invasive imaging technique to measure somatostatin
receptor density in metastatic disease and to monitor
response to treatment. A preliminary study of 20 patients
with advanced prostate cancer compared conventional
bone scintigraphy with [68Ga]DOTATOC PET/CT[53].
Only 30% of metastases in the 13 patients with multifocal
disease showed uptake of [68Ga]�DOTATOC with only 2
patients showing the same number of metastases. Of the 6
patients with a scintigraphic superscan, 1 showed diffuse
abnormality, 3 showed some focal abnormalities and 2
showed no correlation with [68Ga]DOTATOC PET/CT.
One patient with a neuroendocrine prostate tumour
showed no PET abnormality. As this somatostatin ana-
logue predominantly targets receptor subtypes 2 and 5,
the authors suggested that future research should concen-
trate on prostate cancer specific somatostatin receptor
subtypes 1 and 4.

Conclusion

A number of PET radiopharmaceuticals are available or
are being developed that have the potential to improve

Figure 4 FDG-PET/CT scans before (A) and after (B) 2 cycles of chemotherapy in a woman with metastatic breast
cancer. A mixed lytic/sclerotic metastasis at baseline shows increased sclerosis and reduced FDG uptake after treatment
indicating a good metabolic response.
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diagnostic accuracy and ability to monitor treatment
response in skeletal metastases. Different aspects of
tumour biology can be assessed, including osteoblastic
activity (NaF), tumour cell metabolism (FDG and FC)
and tumour cell receptors (labelled somatostatin receptor
analogues). The improvement in imaging skeletal metas-
tases is further enhanced with hybrid imaging. PET/CT
has already shown some advantages over PET and with
the future development of PET/MRI, there is potential
for further advances in non-invasive assessment of the
skeleton and bone marrow.
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