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The major genetic risk for late onset Alzheimer’s disease has been associated with
the presence of APOE4 alleles. However, the impact of different APOE alleles on the
brain aging trajectory, and how they interact with the brain local environment in a sex
specific manner is not entirely clear. We sought to identify vulnerable brain circuits in
novel mouse models with homozygous targeted replacement of the mouse ApoE gene
with either human APOE3 or APOE4 gene alleles. These genes are expressed in mice
that also model the human immune response to age and disease-associated challenges
by expressing the human NOS2 gene in place of the mouse mNos2 gene. These mice
had impaired learning and memory when assessed with the Morris water maze (MWM)
and novel object recognition (NOR) tests. Ex vivo MRI-DTI analyses revealed global and
local atrophy, and areas of reduced fractional anisotropy (FA). Using tensor network
principal component analyses for structural connectomes, we inferred the pairwise
connections which best separate APOE4 from APOE3 carriers. These involved primarily
interhemispheric connections among regions of olfactory areas, the hippocampus, and
the cerebellum. Our results also suggest that pairwise connections may be subdivided
and clustered spatially to reveal local changes on a finer scale. These analyses revealed
not just genotype, but also sex specific differences. Identifying vulnerable networks may
provide targets for interventions, and a means to stratify patients.

Keywords: mouse model, Alzheimer’s disease, neurodegeneration, magnetic resonance imaging, tractography,
tract based analysis, morphometric, diffusion tensor (DT) MRI
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INTRODUCTION

The multifactorial nature of Alzheimer’s disease AD has led to
multiple hypotheses for disease onset and progression (Devanand
et al., 2007), yet its etiology is not known. While pathological
biomarkers have been well defined, cross-disciplinary approaches
are critical to integrate knowledge on the spatiotemporal
evolution of AD. Additionally, sensitive tools that permit early
detection and monitoring changes are critical to enable useful
interventions. Analyses of Aβ plaques and tau tangles are
considered to provide the “classical” biomarkers of AD. But
Aβ plaques and tau tangles are accompanied by neuronal
dystrophy and loss (Serrano-Pozo et al., 2011). For the small
percentage of individuals with the mutated forms of these
proteins, the onset and progression of these biomarkers are
clearly dependent on the genetic mutations. However, most
individuals afflicted with AD have a late onset form of AD
(LOAD). There is a long asymptomatic period that often
precedes the overt phases, and during this time other processes
besides those centered directly on Aβ plaque formation may be
activated to cause neurodegenerative diseases. These processes
may involve microglia, astrocytes, and the vasculature (De
Strooper and Karran, 2016). In particular, for LOAD, there
is a pressing need to better understand the role of non-
classical risk factors in AD including age, sex, and genes, and
how they interact to modulate the brain response to stressors
(Sala Frigerio et al., 2019).

One of the best known genetic risk factors for LOAD is
conferred by the APOE4 genotype (Schellenberg, 1995; Huynh
et al., 2017). The APOE4/4 genotype is associated with a 30–55%
risk of developing mild cognitive impairment (MCI) or AD by age
85, compared to a 10–15% risk for the APOE 3/3 genotype. Still,
the precise cause for increased risk, or resilience conferred by
the different APOE alleles, and the mechanisms mediating these
relationships are poorly understood. While these risk factors
may influence the brain levels of Aβ and hyperphosphorylated
tau, it is likely that their underlying mechanisms contributing to
AD onset, progression and overall pathology will vary. Besides
being recognized as a major genetic risk for AD, the presence
of APOE4 has been linked to other neurodegenerative diseases.
These include age related macular degeneration, age related
hearing loss, dementia with Lewy bodies and Parkinson’s disease.
APOE4 provides increased susceptibility to neuromuscular
conditions including diabetic neuropathy and immunodeficiency
viral neuropathy (Bedlack et al., 2000; Pankratz et al., 2006).
Moreover, APOE4 is as a risk factor for cardiovascular disease,
and stroke (Tudorache et al., 2017; Femminella et al., 2018;
Belloy et al., 2019). Due to its complex, not yet completely
understood role, we have examined in this work primarily
phenotypes relevant to AD.

MRI can provide such phenotypes, e.g., early regional atrophy
(Jack et al., 1999), and quantitative biomarkers that can be
analyzed as networks (Torok et al., 2018). This is important
because network connectivity integrates microstructural effects
e.g., neurodegeneration of gray and white matter, or toxicity
associated with Aß presence. We hypothesize that network
approaches are sensitive to subtle changes arising from the

interplay of several factors. While each effect may be small, the
summed effect due to individual biomarkers may be significant.
Here, we will generate a framework for integrating biomarkers
using multimodal approaches (Wiesmann et al., 2016), thereby
allowing us to better predict their pathological significance.

To help understand the mechanisms through which APOE
genes and their products differentially modulate the brain milieu
and circuits to switch from healthy to pathological aging, we
use novel mouse models for the APOE4 associated genetic
risk. We analyze behavioral and imaging markers including
structural connectomics based on high resolution diffusion
weighted imaging (DWI) to help understand the underpinnings
of network vulnerability in aging and AD (Fischer et al., 2015).

The animal models are homozygous targeted replacement
mice, expressing instead of the mouse protein the human
APOE3 and APOE4 isoforms. To model the human immune
response to age and disease associated challenges these double-
transgenic mice only express human NOS2 gene products. This
modification enables nitric oxide (NO) production and immune
activity regulated by NO to better mimic the human response.
Our study includes 12 months old male and female APOE3HN
(APOE3/3 + human NOS2 on a mouse Nos2−/− background),
and APOE4HN (APOE3/3+ human NOS2 on a mouse Nos2−/−

background). Mice were characterized with a behavioral battery
for memory function, and with MRI to determine selective
vulnerability using regional atrophy and DTI parameters. To
these tests we added connectopathy biomarkers extracted using
novel statistical approaches that map brain circuits associated
with selective vulnerability or resilience conferred by APOE
genotypes. While limited in sample size, our study revealed sex
specific differences were also present in the networks associated
with genotype differences. Our efforts will help identify potential
targets for interventions, and future efforts to build models that
explain the influence of APOE genotypes on age, sex, and AD
associated circuit vulnerability.

MATERIALS AND METHODS

Animals
Using mouse models, we sought to identify vulnerable brain
circuits associated with memory dysfunction typical of
pathological aging, and with the highest known genetic risk
for LOAD - the presence of APOE4 genotype relative to APOE3
genotype. To better model the APOE4 associated risk in humans
with AD we have used mouse models named huAPO3/HN and
huAPOE4/HN. In these mice, the human NOS2 gene replaced
the mouse Nos2 gene (HuNOS2+/+/mNos2−/−; abbreviated
HN). More similar to humans, HuNOS2+/+/mNos2−/− mice
show unique redox characteristics compared to mice expressing
either mNos2, or mNos2 knockouts. To “add-in” the impact
of APOE genotype on generation and expression of AD-like
pathology, these novel mouse strains co-express HuAPOE3 or
HuAPOE4 but on the HuNOS2 background described above.
The total number of mice used was 10 APOE3HN mice (4
females, 6 males), and 14 APOE4HN mice (7 males and 7
females), aged to 12 months.
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Behavior Testing
The Morris Water Maze
Mice were handled for 5 days prior to the beginning of
behavioral testing for the purpose of habituation to the
researchers performing the tests. Morris water maze (MWM)
was conducted for 5 days, followed by a novel object recognition
(NOR) test (2 days).

The MWM tests a mouse’s spatial memory and learning
based on their preference for standing on solid ground, as
opposed to swimming. Mice are placed in a quadrant of a pool
with directional cues and are expected to find a clear platform
underneath the water, on which they may stand. Because of
their aversion to swimming and the consistent placement of the
platform, mice are expected to learn that the platform is located
in the same position relative to directional cues and locate it more
and more quickly over time. We assessed learning by measuring
the amount of time a mouse swam, the distance it swam in the
pool, and the percent of the swim time, and swim distance in the
target quadrant in which the platform is located (termed target
swim time and target swim distance, respectively). The MWM
apparatus was a circular pool with 122 cm diameter, and behavior
was tracked using with a ceiling-mounted Logitech camera, and
analyzed with the video analysis software ANY-maze (Stoelting,
Wood Dale, IL, United States). Black mice were allowed to swim
in transparent water and were expected to find a glass platform
(similar indices of refraction do not allow for easy visibility)
located in the south west (SW) quadrant of the pool. Mice were
trained for 5 days undergoing four trials each day. For each trial,
mice were placed in one quadrant of the maze and had to swim
to a 10 cm wide circular platform submerged 1.5 centimeters
below the surface of the water (not visible). Each trial consisted of
placing the mouse into the water at one of four different starting
positions, one in each quadrant and allowing them to swim freely
for 1 min. The time needed for the mice to find the hidden
platform was recorded as well as the swim path length. If they
were unable to locate the platform within the allotted time, they
were guided to the platform and allowed to remain there for 10 s.
Probe trials were conducted on days 3 and 5, 1 h after the last
training trial. During the probe trial the submerged platform was
removed and mice were given 1 min to swim in the pool. The
amount of time spent in the previous location of the target zone
was recorded.

Novel Object Recognition
The NOR test assesses a mouse’s memory through exploration.
Mice traditionally spend more time exploring novel stimuli, so
when they are faced with a stimulus that is novel and one that is
familiar, they are expected to remember the familiar object and
spend more time exploring and engaging with the more novel
object. The day before testing, mice were placed in a 40 cm square
open field arena for 5 min to habituate them to the apparatus and
the test room. 24 h after habituation, mice were acclimated in the
test room for 1 h before beginning trials. Mice first completed
an acquisition trial, in which they were placed in the apparatus
with two identical objects for 5 min. After a 90 min retention
period, mice were then placed in the arena again for 5 min
with two dissimilar objects - one that is familiar, and one that

is novel. 24 h later, the mice were placed in the arena again
for 5 min with a pair of dissimilar objects - one that is the
original familiar object, and one that is novel. After each trial,
the mouse was returned to its cage. Between trials, the apparatus
was cleaned with ethanol solution to eliminate animal clues. The
amount of time spent exploring the novel object and the amount
of time spent exploring both objects were measured. From this
we calculated a recognition index as the time exploring novel
object/(time exploring novel object + time exploring familiar
object)× 100%. The location preference was similarly calculated,
but for two identical objects.

Statistical analyses for behavior tasks was done in JMP (SAS,
Cary, NC, United States)1. Analysis for multiple measurements
acquired in the same animal over time was performed by
repeated measures two-way ANOVA using linear mixed models
fixed effects for genotype and time and random effects for
animals. Tukey HSD was used for post hoc corrections. 2-group
comparisons used a two-tailed t-test, while comparisons between
three or more trials were done using a one-way ANOVA. P < 0.05
was considered significant.

Imaging
Brain specimens were imaged on a 9.4 T, 8.9 cm vertical
bore Oxford magnet, with shielded coils, providing gradients
up to 2000 mT/m (Resonance Research, Inc., Billerica, MA,
United States), and controlled by an Agilent Direct Drive
Console (Agilent Technologies, Santa Clara, CA, United States).
In house made solenoid coils (13 mm diameter) were used
to image brain specimens within the skull, in order to avoid
tissue damage and distortions. To prepare actively stained brain
specimens the animals were anesthetized to a surgical plane and
perfused through the left cardiac ventricle, with outflow from
the right atrium. Saline (0.9%) was used to flush out the blood,
at a rate of 8 ml/min, for ∼5 min. For fixation we used a
10% solution of neutral buffered formalin phosphate containing
10% (50 mM) Gadoteridol (ProHance, Bracco Diagnostics Inc.,
Monroe Township, NJ, United States), at a rate of 8 ml/min for
∼5 min. Gadoteridol reduced the spin lattice relaxation time (T1)
of tissue to ∼100 ms. Mouse heads were stored in 10% formalin
for 12 h, then transferred to a 0.01 M solution of phosphate
buffered saline (PBS) containing 0.5% (2.5 mM) Gadoteridol,
at 4◦C for ∼30 days to rehydrate the tissue. Extraneous
tissue around the cranium was removed prior to imaging, and
specimens were placed in MRI-compatible tubes, immersed in
perfluoropolyether (Galden Pro, Solvay, NJ, United States) for
susceptibility matching.

We used a diffusion weighted MR imaging to derive
microstructural and connectivity information. Our protocol used
compressed sensing DWI with an acceleration factor of 4,
allowing for efficient sampling and reconstruction in a high
performance computing cluster environment (Anderson et al.,
2018b; Wang et al., 2018). The DWI protocol used 46 diffusion
weighted acquisitions, interwoven with 5 non-diffusion-weighted
scans, and the following parameters: TE 12 ms, TR 90 ms, BW
125 kHz, b≈ 4000 s/mm2, diffusion pulse width 4 ms, separation

1https://www.jmp.com
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6 ms, amplitude 130.67 G/cm. Images were acquired over a
22 × 11 × 11 mm field of view, with a matrix 368 × 184 × 184,
over 14 h, and reconstructed at 55 µm isotropic resolution.

Image and Network Analysis
Images were processed using a high-performance computing
pipeline (Anderson et al., 2017, 2018a,b), to perform
diffeomorphic mapping of a symmetric mouse brain atlas,
containing 332 regions, based originally of the one presented in
Calabrese et al. (2015). To perform these processes we employed
at the core of our pipeline advanced normalization tools (Avants
et al., 2008, 2011). Each brain was thus segmented in 332 regions.
Regional and voxel wise analyses were conducted as in Badea
et al. (2019). The Statistical Parametric Mapping SPM toolbox,
version 12 (Friston et al., 1994) was used with cluster false
discovery rate correction.

We have implemented code for tract based analyses2. The
tracts connecting pairs of atlas regions (Anderson et al., 2018a)
were used to build connectomes based on a constant solid angle
(Q-Ball method) method implemented in DIPY (Garyfallidis
et al., 2014). We used a relative peak ratio of 0.5, separation
angle 25◦, and 4 parallel compute threads. We used local tracking
with 1 seed per voxel in the whole brain mask, and 0.5 step size.
We saved 10% of the 3,000,000 tracks, in trk files of∼1.5 GB, and

2https://github.com/portokalh/wuconnectomes

their computations required about 20 min/brain using an iMac
Pro with 3 GHz Intel Xeon W, 10 cores, with 128 GB memory.
Tracts were visualized using DIPY.

Tracts from individual brains were clustered based on a
Euclidian distance metric minimization (Garyfallidis et al., 2012),
then registered (Garyfallidis et al., 2015, 2018) to a reference
brain, before being once more clustered in the space for each
specific population (APOE3HN, and APOE4HN).

We hypothesized that genotype and sex modulates network
properties, and that we can identify vulnerable circuits relevant to
AD. Subnetwork changes were derived using a recently proposed
method (Zhang et al., 2019), called tensor network PCA or
TNPCA, which is a semi-symmetric tensor generalization of
PCA. In short, this works with a tensor network X ∈ RP x P x N ,
given by the concatenation of the adjacency matrices Ai ∈
RP x P for i = 1, . . .N, where P is the number of nodes (atlas
regions), and N is the number of subjects. Zhang et al. (2019)
estimated a CP model for the semi-symmetric tensors (X ∈
RI1 x I2...I..N) by solving:

min
dk, vk, uk,

∣∣∣∣∣∣∣∣X − K∑
k=1

dkvk ◦ vk ◦ uk

∣∣∣∣∣∣∣∣2
2

subject to

uT
k uk = 1, vT

k vk = 1, vT
k vj = 0, j < k

FIGURE 1 | The main elements of our flowchart for characterizing differences between mouse models based on connectivity included image reconstructions and
coregistration of individual DWI acquisitions, brain parcelation in 332 regions, and connectome reconstruction based on a constant solid angle method. TNPCA was
used to derive subgraphs discriminating two genotypes and the resulting selected pairwise connections between nodes were analyzed for tract length and FA
differences. The hippocampus-piriform connections are shown as an example. Hc: hippocampus; Pir: piriform cortex.
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where vk are P sized vectors, constrained to have orthogonal
columns, uk are N sized vectors, and dk are CP scaling
parameters. In our context uk denotes the subject mode, and vT

k vk
the network mode.

The subject modes provides a low dimensional embedding
of the connectome for each subject, and can be associated with
traits (genotype/phenotypes). The weighted sum of network
modes dk ◦ vk ◦ uk provides a principal brain network which
captures the most variation across the population. Thus {vk ◦ vk}
can be seen as basis networks, uk(i) are the normalized
coefficients for each subject i, and dk are the scaling factors.
We are interested in how the connectome varies across levels
of the trait, and for discrete cases such as the genotype, the
problem can be approached using linear discriminant analysis,
while for continuous cases the problem can be approached
using canonical correlation. We used 15 principal components
identified from TNPCA, and the projection weights from a Fisher
linear discriminant to estimate the top 30 pairwise connections,
discriminating amongst our groups/genotypes. These were
further analyzed for differences in bundles length and fractional
anisotropy (FA). The overall process is detailed in Figure 1.

We used Quick bundles (Garyfallidis et al., 2012) for a more
spatially refined analysis based spatial clustering with a distance
of 2 mm, and focused on the top 6 subbundles, for comparing
along the tract properties between genotypes and sexes. Bundle
statistics were evaluated using R3.

RESULTS

We have phenotyped a novel mouse model of genetic
risk for LOAD using behavior, regional and voxel based
MRI analyses, and network connectopathies based on a
recently published dimensionality reduction method called
tensor network factorization. Regional and voxel based analyses
pointed to overlapping sets of regions affected by atrophy and
with lower FA indicative of different microstructural properties.
Our results indicated that even though qualitative differences
between representative animals of the two groups were subtle,
we could separate population groups by genotype based on the
lower dimensional representation relying on the tensor network

3www.r-project.org

FIGURE 2 | Main repeated measured ANOVA (RMANOVA) results for the memory testing based on acquisition performance and probe trial results (mean ± SEM) in
the Morris Water Maze indicate that both APOE3HN and APOE4HN mice learn but there is a significant effect of genotype for both swim time and swim distance. As
swim time and distance to hidden platform decreased, the percentage of time spent and distance swam in the target quadrant increased (A). The probe trials
indicated that both genotypes had a preference for the SW target quadrant, but APOE3HN mice spent more time swimming in the SW quadrant than APOE4HN
mice in the first probe trial (B). E = northeast, NW = northwest, SE = southeast, SW = southwest (target quadrant). N = 11 APOE3HN, N = 14 APOE4HN mice. (C) A
novel object recognition test revealed that animals had equal location preferences (LP), and object recognition indices (RI) 90 min later, however, after 24 h
APOE4HN mice had lower recognition indices relative to APOE3HN mice (t = –2.28, p = 0.04). N = 10 APOE3HN, N = 6 APOE4HN mice (some APOE4HN were not
be tested to preserve the matched ages for MRI). Data show mean values, and standard error bars.
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TABLE 1 | Volume atrophy was observed at the level of the whole brain (mm3) in APOE4HN mice relative to APOE3HN mice, and in select regions (volumes are reported
for one hemisphere, as % of total brain volume).

Structure APOE4HN APOE3HN pFDR CI[1] CI[2] t Cohen d Diff (%)
(mean ± SD) (mean ± SD)

Temporal_association
_cortex (%)

0.243 ± 0.028 0.274 ± 0.023 2.67E-02 −0.054 −0.009 −2.93 −1.21 −11.53

Cingulate_cortex _area_25
(%)

0.037 ± 0.002 0.042 ± 0.002 2.68E-04 −0.007 −0.003 −5.64 −2.34 −11.50

Cingulate_cortex _area_32
(%)

0.175 ± 0.011 0.195 ± 0.02 1.31E-02 −0.034 −0.008 −3.32 −1.37 −10.68

Cingulate_cortex
_area_29b

0.032 ± 0.003 0.035 ± 0.003 1.48E-02 −0.006 −0.001 −3.26 −1.35 −10.46

Ventral_intermediate
_entorhinal_cortex

0.096 ± 0.006 0.107 ± 0.003 3.20E-04 −0.015 −0.007 −5.51 −2.28 −10.30

Accumbens 0.434 ± 0.011 0.475 ± 0.011 2.43E-06 −0.051 −0.032 −9.04 −3.74 −8.67

Cingulate_cortex_area
_24b_prime

0.054 ± 0.003 0.058 ± 0.004 1.61E-02 −0.008 −0.002 −3.22 −1.33 −7.91

Secondary_visual_cortex
_mediomedial_area

0.192 ± 0.009 0.206 ± 0.016 3.26E-02 −0.024 −0.004 −2.82 −1.17 −6.85

Amygdalopiriform
_transition_area

0.026 ± 0.002 0.028 ± 0.001 3.05E-02 −0.003 −0.001 −2.86 −1.18 −6.83

Primary_visual_cortex
_monocular_area

0.409 ± 0.015 0.437 ± 0.032 2.38E-02 −0.049 −0.009 −3.01 −1.25 −6.60

Cingulate_cortex
_area_29c

0.181 ± 0.008 0.193 ± 0.008 7.49E-03 −0.019 −0.005 −3.64 −1.51 −6.35

Dorsal_tenia_tecta 0.056 ± 0.003 0.059 ± 0.003 1.38E-02 −0.006 −0.001 −3.29 −1.36 −6.03

Cerebellar_cortex 4.553 ± 0.157 4.805 ± 0.205 1.10E-02 −0.405 −0.100 −3.43 −1.42 −5.25

Pontine_nucleus 0.126 ± 0.004 0.132 ± 0.006 4.00E-02 −0.010 −0.001 −2.71 −1.12 −4.35

Basal lateral amygdala 0.139 ± 0.005 0.145 ± 0.004 2.29E-02 −0.011 −0.002 −3.04 −1.26 −4.35

Middle_cerebellar
_peduncle

0.159 ± 0.006 0.167 ± 0.005 1.79E-02 −0.012 −0.002 −3.17 −1.31 −4.31

Cingulate_cortex_area_30 0.294 ± 0.011 0.307 ± 0.009 1.90E-02 −0.022 −0.004 −3.14 −1.30 −4.24

Piriform_cortex 5.422 ± 0.077 5.554 ± 0.155 3.62E-02 −0.231 −0.033 −2.76 −1.14 −2.37

TotalBrain (mm3) 488.64 ± 11.21 522.44 ± 17.52 2.30E-04 −45.94 −21.66 −5.77 −2.39 −6.47

FIGURE 3 | Volume atrophy was detected in regions spanning from the rostral to the caudal aspects of the brain, and ranged from 10% for the temporal association
cortex, entorhinal and cingulate cortex, down to 2% for the piriform cortex. The visual cortex, accumbens and amygdalo-piriform transition areas were ∼7% smaller
and the cerebellum was ∼5% smaller in APOE4HN mice, FDR = 5%.
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FIGURE 4 | (A) Voxel based analyses indicated that volume atrophy occurred in vulnerable regions comprising olfactory/piriform (Olf, Pir) cingulate (A24,25,29, 32),
sensory (Ect: ectorhinal, Au: auditory, V1: primary visual cortex) and motor cortex (M1), and the entorhinal cortex (Ent). Deeper gray matter regions with atrophy in
APOE4 carriers included the accumbens (Acb), caudate putamen (CPu), hippocampal formation (Hc, subiculum: DS), amygdala (Amy), as well thalamic nuclei
(mediodorsal: MD) and the cerebellum (Cblm) and pontine nuclei (Pn). Among white matter tracts the anterior commissure (ac), and corpus callosum (cc) also had
areas of atrophy. Results are presented as t maps, FDR cluster-corrected for multiple comparisons, using an initial cluster forming threshold of 0.05 significance, and
the whole brain as a mask (blue color). (B) Voxel based analyses indicative of fractional anisotropy (FA) reductions suggested vulnerable brain networks. These
included the olfactory (Olf) and in particular the piriform cortex (Pir), cingulate cortex (A32), hippocampus (Hc), and the white matter of the corpus callosum (cc) and
cerebellum (Cblm wm). Results are presented as t maps, FDR cluster-corrected for multiple comparisons, using initial cluster forming threshold of 0.05 significance,
and the whole brain as a mask (blue color). The DWI minimum deformation average template serves as the background.

decomposition. Our results identified subgraphs of connected
vulnerable regions, and these included areas known to be
involved in memory function (e.g., hippocampus), as well as in
sensory motor functions (e.g., olfactory areas, and cerebellum).

Learning and Memory Deficits
Since memory is expected to be deficient in animal models of
AD, we tested both spatial and NOR memory in 14 APOE4HN
and 11 APOE3HN animals (one died before being imaged).
Spatial memory was examined through acquisition and probe
trials in the MWM (Figures 2A,B). Swim time (and distance)

to the hidden platform got shorter with time for both groups.
Repeated measures ANOVA (RMANOVA) detected a significant
effect of day F(4,92) = 26.1, p < 0.001 (Figure 2A), and genotype
[F(1,23) = 6.3, p < 0.02], while the interaction term of day by
genotype was F(4,92) = 2.0, p < 0.09. For swim distance there
was a significant main effect of day F(4,83.8) = 34.4, p < 0.0001,
and a significant day× genotype interaction with F(4,83.8) = 3.6,
p < 0.01. Within genotypes there was a significant difference after
Tukey HSD tests for swim distance for APOE3HN mice between
days 1 and 2 (t = 3.5, p < 0.02); 1 and 3 (t = 6.3, p < 0.0001); 1 and
4 (t = 7.3, p < 0.0001); 1 and 5 (t = 8.5, p < 0.0001); 2 and 4 (t = 4,
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TABLE 2 | The top connections for the subnetworks differentiating between APOE3HN and APOE4HN connectomes.

Connection Load Connection Load

1 Hippocampus_right—cerebellar_cortex_left 92.49 16 Cerebellar_cortex_right—corpus_callosum_left 73.48

2 Cerebellar_white_matter_left—cerebellar_cortex_left −91.78 17 Cerebellar_cortex_right—cerebellar_white_matter_left −73.3

3 Piriform_cortex_right—cerebellar_cortex_left 91.36 18 Cerebellar_cortex_left—piriform_cortex_left 72.87

4 Cerebellar_cortex_right—hippocampus_right 89.09 19 Cerebellar_white_matter_left—hippocampus_left 69.75

5 Cerebellar_cortex_right—piriform_cortex_left 89.04 20 Corpus_callosum_right—cerebellar_cortex_right 67.61

6 Cerebellar_white_matter_right—cerebellar_cortex_right −84.69 21 Corpus_callosum_right—cerebellar_white_matter_left 67.04

7 Cerebellar_white_matter_right—hippocampus_left 82.28 22 Gigantocellular_reticular_nucleus_right—piriform_cortex_left −64.24

8 Cerebellar_cortex_right—piriform_cortex_right 80.79 23 Gigantocellular_reticular_nucleus_left—piriform_cortex_left −63.63

9 Hippocampus_right—piriform_cortex_left −80.58 24 Cerebellar_cortex_left—hippocampus_left 61.36

10 Cerebellar_white_matter_right—piriform_cortex_left 79.61 25 Cerebellar_white_matter_right—corpus_callosum_left 61.18

11 Piriform_cortex_right—cerebellar_white_matter_left 78.76 26 Cerebellar_cortex_right—striatum_left 61.04

12 Piriform_cortex_right—hippocampus_left −77.31 27 Cerebellar_white_matter_left—piriform_cortex_left 60.3

13 Cerebellar_cortex_right—hippocampus_left 76.73 28 Cerebellar_white_matter_right—piriform_cortex_right 60.19

14 Corpus_callosum_right—cerebellar_cortex_left 76.46 29 Striatum_right—cerebellar_cortex_left 59.53

15 Cerebellar_white_matter_right—cerebellar_cortex_left −74.67 30 Corpus_callosum_left—cerebellar_cortex_left 58.95

FIGURE 5 | Scatter plot of the top three principal components for the connectome TNPCA analysis. The two genotypes are shown in green: APOE3HN, and purple:
APOE4HN. Sex information is also indicated, although sex was not used as a predictor (female: disk, male: bar).

p < 0.006); 2 and 5 (5.2, p < 0.0001). For genotype APOE4HN
these differences were significant between days 1 and 4 (t = 3.8,
p < 0.01); 1 and 5 (t = 5.8, p < 0.0001); 2 and 4 (t = 3.8, p < 0.01);
2 and 5 (t = 5.7, p < 0.0001); 3 and 5 (t = 3.3, p < 0.04). No
differences were noted between days 4 and 5.

We have measured the percent time spent in the target
quadrant during learning trials and found a significant effect of
day [F(4,92) = 14.3, p < 0.0001] and genotype [F(1,23) = 15.8,
p < 0.0006], with a possible interaction term (p < 0.1). At
day 3 the difference between genotypes was largest (t = 3.5,
p = 0.02). For the percent distance swam in the target
quadrant during the learning trials we found a significant
main effect for day [F(4,83.7) = 13.8, p < 0.0001], for
genotype [F(1,21.7) = 15.7, p < 0.0007] and a significant
interaction [F(4,83.7) = 3.6, p < 0.01]. The differences with
genotype were significant for days 3 (t = 3.6, p < 0.02);
and persisted for day 4 (t = 3.9, p < 0.008). Differences
subsided by day 5.

The first probe trial was performed on the third day and
indicated a significant effect of quadrant only (p < 0.0001).

APOE3HN mice had a significant preference for the SW quadrant
relative to the SE (t = 3.9, p = 0.006), NE (t = 5.3, p < 0.0001), NW
(t = 4.1, p = 0.003), but not for SE. APOE4HN mice preferred
the target SW quadrant over SE (t = 4, p = 0.004) and NE
quadrants (t = 4.3, p = 0.001), but only reached a trend for
NW (2.8, p = 0.1).

The first probe distance swam in the target quadrant
provided a more sensitive marker for the memory deficits,
showing significant genotype (p < 0.003), and quadrant effects
(p < 0.0001). Genotypes had significant differences, with
APOE3HN mice swimming longer in the SW than APOE4HN
mice (t = 3.74, p = 0.008). APOE3HN preferred the SW relative
to NE (t = 6.9, p < 0.0001), NW (t = 5.4, p < 0.0001), SE (t = 4.9,
p = 0.0002). APOE4HN also preferred the SW over NE (t = 4.2,
p = 0.002), and differences reached a trend relative to SE (t = 3,
p = 0.07), but they made no distinction relative to NW.

The second probe swim times performed on the fifth day
also showed an effect of the quadrant (p < 0.0001), but not for
genotype. APOE3HN mice preferred the SW to NE (t = 3.8,
p < 0.006), NW (t = 4.3, p = 0.03), SE (4.3, p = 0.06). APOE4HN
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FIGURE 6 | The piriform cortex-hippocampal interhemispheric connections through the top 6 bundles were ranked according to size (yellow for the first and largest
bundle, orange for the second, red for the third, brown for the fourth, green for the fifth, blue for the sixth. The interhemispheric connections appeared stronger in the
APOE3HN mice relative to APOE4HN mice (A) and (B), according to the size based ranking for the major sub-bundles. This indicated different connectivity patterns
for the two genotypes. Differences in fiber length distributions between the two genotypes are shown in (C), and in FA distributions in (D) using histogram densities.
These indicate a slight shift toward longer length (C), but lower FA values in APOE4HN mice, which may suggest dismyelination (D). After establishing spatial
correspondence through an affine bundle centroid registration, we detected that differences along the bundle containing all connections between the piriform cortex
and hippocampus were not uniform (E). We identified the top 3 sub-bundles accounting for the largest difference between the genotypes (F–H). FA appeared in
general lower for APE4HN mice in sections of two of these subbundles (F,H), but higher in one subbundle (G).

FIGURE 7 | The 2nd ranked connection discriminating between the genotypes involved intrahemispheric cerebellar connections between white and gray matter.
APOE4HN (B) showed consistent deficiencies relative to APOE3HN (A) carriers in fiber length and FA distributions (C,D). These differences were evident in whole
bundle (E) and subbundle analyses (F–H).
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FIGURE 8 | The interhemispheric hippocampal cerebellar connections showed significant differences between APOE3HN (A) and APOE4HN (B) mice in length (C)
and FA (D,E). The top three subbundles with significant differences between genotypes showed lower FA for APOE4HN mice relative to APOE3HN in the largest
subbundle (F), but higher FA for the 2nd and 6th spatially matched subbundles (G,H), and also higher variability for the APOE4HN genotype.

mice also preferred the SW to the NE (t = 3.8, p < 0.0001), NW
(t = 4.8, p < 0.002), SE (p = 3.1, p = 0.05).

The second probe swim distance showed a significant effect
of quadrant (p < 0.004), and genotype (p < 0.0001). Between
genotypes the swim distance in SW was not significantly different.
APOE3HN mice swan longer distance in the SW relative to
NE (t = 5.9, p < 0.0001), NW (t = 5.2, p = 0.0001), SE (4.6,
p = 0.0004). APOE4HN mice also preferred the SW to the NE
(t = 6.3, p < 0.0001), NW (t = 5.6, p < 0.0001), SE (p = 5,
p = 0.0001) (Figure 2C).

During the NOR APOE4HN and APOE3HN mice showed
no location preference for the sites of the two objects presented.
The immediate recognition index was not different between
genotypes. After 90 min, however, APOE4HN mice showed
more similar preferences for the familiar and novel objects
(RI = 0.44 ± 0.07 (SE), CI = [0.28. 0.60]) relative to APOE3HN
mice (0.65 ± 0.06 (SE), CI = [0,53 0.78]). This indicated that
APOE4HN mice did not remember the familiar object used
during the acquisition trial. APOE3HN mice had a higher
recognition index compared to APOE4HN mice at 24 h after the
initial trial (t = 2.3, p = 0.04)].

Volume Loss
The total brain volume for APOE4HN mice was 6% smaller
relative to APOE3HN controls. An ROI (region of interest)
analysis for the 332 brain parcelation revealed significant atrophy
occurred for regions shown in Table 1 and Figure 3.

The largest volume loss in APOE4HN mice relative to
the APOE3HN controls was in the range of ∼10% and
occurred for the cingulate cortex (areas 25, 29b, and 32),

the ventral intermediate entorhinal cortex and the temporal
association cortex. The accumbens, amygdalo-piriform
transition area, and secondary visual cortex were 7% or
smaller in APOE4HN mice relative to APOE3HN mice.
Finally, the cerebellar cortex, middle cerebellar peduncle and
pontine nuclei were ∼4% smaller, while the piriform cortex
was 2% smaller.

Microstructural Integrity
Regional analyses for FA did not survive multiple comparison
correction, but there was a trend for the medial lemniscus to
have higher FA in APOE4HN carriers (p corrected = 0.1). The
cerebral peduncle had a 6% lower FA in APOE4HN mice (p
corrected = 0.1). Similarly, the axial diffusivity differences did not
survive the multiple correction, and the longitudinal fasciculus
of pons in APOE4HN mice had a 4% lower axial diffusivity (p
uncorrected = 0.02), and the cerebellar white matter had 6%
larger radial diffusivity (p uncorrected = 0.02).

Voxel Based Analyses
Voxel based analyses indicated significant volume (Figure 4A)
and FA (Figure 4B) reductions occurred in APOE4 carriers
relative to APOE3 carriers. Areas of atrophy included
the olfactory cortices, hippocampus, subiculum, cingulate
cortex, amygdala and entorhinal cortex, as well as the
cerebellum. Sensory motor cortex areas also suffered
atrophy. Areas with FA reductions were less extensive
than those with volume atrophy and were noted in the
olfactory/piriform and cingulate cortices, hippocampus
and cerebellum.
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FIGURE 9 | Within genotype, between sex (A: female; B: male) analyses for the hippocampal-cerebellar interhemispheric connections. APOE3HN females had
longer connections compared to males and the opposite was true for APOE4HN mice (C). Differences in FA over the whole set of streamlines (D) were subtler in
terms of effect sizes, but clearly evident in our along the bundle analysis. APOE3HN males had overall higher FA values than females, and the opposite was true for
APOE4HN mice (E). The top subbundles with significant genotype differences (F) had also higher FA for APOE3HN males compared to females (bundle 1), while
APOE4HN females had higher FA compared to males. The 2nd ranked bundle showed higher FA in females compared to males of both genotypes, with a more
accentuated difference for APOE4HN mice (H). The 3rd ranked subbundle did not show sex differences for APOE3HN mice, while APOE4HN males showed higher
FA compared to females of the same genotype.
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FIGURE 10 | Intrahemispheric connections between the hippocampus and piriform cortex. The first panel compares the two genotypes; the second panel
compares the two sexes, within the APOE3HN genotype; the third panel compare the two sexes, within the APOE4HN genotype. Fiber length and FA distributions
are shown in Panels 1–3, C,D. Qualitatively males of the two genotypes presented more similar, consistent bundle FA shapes, while females showed more variability
between the genotypes (panels 2E,3E). Overall, females had lower FA along the entire bundle set in both APOE3HN (panel 2E) and APOE4HN mice (panel 3E).
Interestingly, APOE3HN females had larger FA than males for the largest subbundle (panel 2F). However, FA was lower along the same subbundle in APOE4HN
females relative to males of the same genotype (panel 3F), and differences were larger relative to those between males and females of APOE3HN genotype. These
patterns varied by subbundle, and spatially, along the bundles.
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Connectopathies
The tensor network analysis revealed the top connected
subnetwork (Table 2) differentiating the two genotypes. The
top 30 resulting connected subnetworks included predominantly
interhemispheric connections, and 7 distinct anatomical regions:
the hippocampus, piriform cortex, cerebellum (white matter
and gray matter), the caudate putamen/striatum, gigantoreticular
nucleus and the corpus callosum. Intrahemispheric connections
pointed to a role for the cerebellum. The three most frequent
major structures included the piriform cortex, the hippocampus,
and the cerebellum.

Figure 5 shows the scatter plot for the top three principal
components, which explained 61% percent of the variation, while
the top 15 explained 91% of the variation between genotypes.
We selected examined the same graphs to identify whether
sex differences were also apparent within genotypes, but these
differences were less clear in our small sample.

We selected examples among the top ranked connections,
featuring the most frequent regions. We observed that the
interhemispheric connectivity between the hippocampus and
piriform cortex (ranked 9) was stronger in APOE3HN mice
relative to APOE4HN mice, as illustrated qualitatively in
Figures 6A,B showing the top 6 largest bundles, ranked
according to their size. Figures 6C–E compare the distributions
of fiber length, FA, and FA along the whole bundle set for the
two genotypes. Figures 6F–H compare the FA distribution along
spatially matched subbundles between genotypes, indicating that
FA is non-uniform along the bundles.

The second ranked connection pertained to the intracerebellar
connectivity, and APOE4HN mice had consistently shorter
connections, and lower FA along the bundles; both when
analyzing the connectivity of the two nodes, as well as along the
significant sub bundles (Figure 7).

The third example shows the interhemispheric connection
between the hippocampus and cerebellum (Figure 8), which was
the top ranked connection discriminating between genotypes.
Distinct bundles showed larger FA in APOE4HN (overall, and
in subbundles 2 and 6), while the largest subbundle (1) showed
higher FA for the first portion of the bundle but lower FA for
the second half.

A further analysis of the hippocampal-cerebellar
interhemispheric connections revealed within genotype,
between sex differences in the length and FA distributions in
both APOE3HN, and APOE4HN mice, as well as in the spatially
characteristic patterns along the bundles (Figure 9). Sex based
differences based on fiber length were smaller in APOE3HN
mice, compared to those observed in APOE4HN models. The
males appeared to have higher FA along the whole bundle relative
to the females in APOE3HN mice, but the opposite was seen in
APOE4HN mice. The spatial distribution of these effects was
not uniform throughout the brain or along subbundles. This
illustrates that sex specific differences may be harder to detect in
the absence of detailed bundle analytics performed in spatially
aligned bundles.

We have examined the intrahemispheric connections
between the hippocampus and piriform cortex (Figure 10),

and observed larger variability within the APOE4HN genotype
relative to APOE3HN, as indicated by the width of the confidence
intervals (particularly in panel 1G). Qualitatively males of the
two genotypes presented more similar/or consistent bundle FA
shapes, and females showed more variability in the FA curve
shape between the genotypes (panel 2E, and 3E, arrows). Overall,
females had lower FA along the entire bundle set in both
APOE3HN (panel 2E) and APOE4HN mice (panel 3E). However,
we observed lower FA values along the largest subbundle in
APOE4HN females relative to males of the same genotype
(panel 3F), and larger differences relative to those between
males and females of APOE3HN genotype (where females had
larger FA overall). We noted a spatially varying pattern of FA
changes along bundles, possibly denoting different myelination,
or microenvironment properties.

Together, differences in behavioral responses, morphometry,
FA and connectivity denote that APOE4HN and APOE3HN
mice may use different strategies for learning and memory; and
that an association of multiple factors probably contributed to
the observed behavioral impairment. We have found that the
bundle analysis may confer increased sensitivity to genotype
and sex differences, by investigating changes beyond the level
of associating the connectivity between two regions with a
single entry in the connectome matrix. Our along the bundle
analyses revealed rather than a uniform effect, a spatially
varying pattern of FA changes along bundles, possibly denoting
increased sensitivity to local connectivity, myelination, or
microenvironment properties.

DISCUSSION

There is a rapid growth in the number of people affected by
Alzheimer’s disease, yet we do not know its etiology or have
effective treatments. To examine factors which contribute to the
switch from normal to pathological aging we focused on the
APOE polymorphic alleles. The causes for increased risk, or
conversely resilience, conferred by the major APOE alleles are not
known. The APOE4/4 genotype is the main genetic risk for late
onset Alzheimer’s disease (AD), and is associated with a 30–55%
risk of developing mild cognitive impairment or AD by age 85,
compared to 10–15% for the APOE3/3 genotype.

To help understand the mechanisms through which APOE
genes and their products differentially modulate the brain
and its circuits, we implemented a multi-disciplinary approach
using homozygous targeted replacement APOE3 and APOE4
mice expressing the major human APOE isoforms, under
the control of the mouse endogenous ApoE promoter. To
model the human immune response to aging we used double-
transgenic mice that express human NOS2 gene products.
This modification enables NO production and immune activity
regulated by NO to better mimic the human response. Mice
were characterized with a cognitive behavioral battery for
memory alterations typical of AD, and with MRI to determine
selective vulnerability of associated brain networks. Our imaging
measures were based on volume and DWI; and our analyses
of brain connections provided insight into networks properties.
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We aimed to reveal how APOE genotypes differentially confer
vulnerability or resilience to select brain circuits during aging,
and for different sexes. Identification of vulnerable networks
may help understand the etiology of neurodegenerative disease,
and facilitate targeted interventions. Monitoring such changes
with sensitive biomarkers may help stratify patients, and assess
response to therapies.

Our behavioral tests determined that APOE4HN mice have
deficits in the learning and memory function as tested in the
MWM during learning trials and during the first probe tests at
3 days, but not at 5 days. The NOR also indicated deficits as
the recognition index was lower when tested at 24 h, but not
90 min after the initial objects presentations. These deficits in
long term memory for APOE4HN mice suggest perturbations in
brain networks involved in memory function.

APOE4HN had 6% smaller brains when compared to age
matched APOE3HN controls, and the regions accounting
for these differences included the entorhinal and temporal
association cortex, the cingulate cortex and amygdala
(McGaugh et al., 1996), suggesting alterations in emotional
memory in addition to the demonstrated spatial and object
recognition memory effects we have measured. Interestingly,
the amygdalopiriform transition area, and the accumbens were
also smaller in APOE4HN mice. Sensory and motor areas
such as the olfactory areas/the piriform cortex, the visual and
motor cortex areas, and the cerebellum and its connections
also suffered atrophy. These regional changes point to spatially
extensive network alterations in APOE4HN mice. Voxel based
analyses confirmed these findings and added information due to
increased sensitivity to smaller clusters of atrophy in the primary
motor cortex, striatum, septum, subiculum, and the mediodorsal
thalamic nuclei. We found changes in the volume of the pons and
cerebellum, which have been traditionally thought to be involved
only in late stages of AD, but have also been shown in age related
tauopathy, independently of Aβ presence (Josephs et al., 2017).
Fractional anisotropy and connectivity also helped distinguish
APOE4 from APOE3 carriers. Interestingly, hyper functional
connectivity (Wang et al., 2017) in MCI APOE4 carriers may
suggest a compensatory role for the cerebellum at early stages.
When present, cerebellar pathology has been associated with
increased rates of cognitive dysfunction (Liang and Carlson,
2019), and to be predictive of conversion from MCI to AD.
Moreover, in cases of accelerated neurodegeneration, such as
chronic traumatic encephalopathy (CTE) following repeated
traumatic brain injury (TBI), the cerebellum appears to be one of
the most vulnerable brain regions and exhibiting pathology early
on (Liang and Carlson, 2019).

This is in contrast with the traditional view associating the
cerebellum exclusively with motor coordination and learning, but
supported by more recent studies, which have revealed a role for
the cerebellum in cognitive functions such as attention, language,
working memory, emotion, and in visuospatial navigation
(Timmann and Daum, 2007; Baillieux et al., 2008; Timmann
et al., 2010). Viral tracer studies have recently demonstrated
previously unknown connections between the cerebellum and
hippocampus – in particular a polysynaptic circuit from
the cerebellar fastigial nucleus with a thalamic relay in the

LDDM/LDVL and VL, which in turn synapses on the subiculum,
retrosplenial cortex, and rhinal cortex, which all project to
the hippocampus (Bohne et al., 2019). These connections are
indicative of a role in spatial navigation. Our studies support that
APOE4 carriers have differences in such pathways connecting
the cerebellum with the hippocampus and also with the piriform
cortex, and these differences co-exist with alterations in spatial
learning and memory, as well as remote memory for object
recognition. Our study suggests that more attention needs
to be given to understanding the role of the cerebellum in
neurodegenerative diseases, and associated cognitive deficits.

White matter tracts with reduced volume included the
corpus callosum, anterior commissure and the middle cerebellar
peduncles. FA reductions, commonly seen as indicators of altered
microstructural integrity in white matter tracts, were found
mostly in the corpus callosum and the cerebellar white matter.
In addition hippocampal projection pathways had lower FA, and
we noted FA reductions in CA1 areas, where from projections
connect to the subiculum and the entorhinal cortex, but also
to the basolateral amygdala (BLA), which sends projections to
the medial frontal cortex, and the accumbens (also the bed
nucleus of stria terminalis, and central amygdaloid nucleus)
(Mandyam, 2013).

The complexity of these relationships and the extent of
the networks involved demands the development of integrative
methods followed by dimensionality reduction strategies. Here
we have used a recently developed method (Zhang et al., 2019)
for assembling structural connectomes into tensor networks,
and mapping those into a reduced dimensional space to
identify significant subnetworks associated with traits. This relies
on a generalization of principal component analysis. In our
case the top 15 principal components explained 91% of the
variance. The tensor network principal component analysis
helped reveal the top 30 connections, including seven unique
structures that best distinguished amongst our two genotypes.
A significant portion of these connections were interhemispheric.
We found that the pairwise connectivity between two nodes,
most often used in standard connectometry studies contain rich
information that can be further exploited to reveal genotype
and sex differences. The histogram based analyses for tract
length and FA were supplemented by bundle specific analyses
on spatially clustered sub-bundles, and illustrated different
wiring patterns and properties in APOE4HN and APOE3HN,
as well as between sexes within each genotype. We paid
particular attention to the interhemispheric connections between
the hippocampus and piriform cortex, the cerebellum and
hippocampus, and the intrahemispheric cerebellar connections.
Prompted by the frequency of appearance for the piriform cortex
and hippocampus in the top list of connections we also examined
the properties of their intrahemispheric connections (Figure 10),
and these confirmed the male associated differences between
genotypes, while showing a stronger tendency for lower FA along
these projections for APOE4HN mice.

The main limitations of this study come from the small sample
size, and the fact that we pooled our bundles for statistical
analysis rather than stratifying them by animal. We argue this
provides a first step approach to study differences with genotypes
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in animal cohorts which provide virtually genetically identical
replicates. Also, formalin fixation may affect tissue properties
and cause shrinkage, and we have tried to control these factors
by preserving the same interval between animal sacrifice and
imaging. Further studies should include more replicates of each
sex to infer sex specific interactions between vulnerable networks
and APOE alleles.

We note that APOE-HN mice do not express mutated APP
leading to prevalent amyloid pathology, therefore our study
could not address the mechanism of interaction between the
various APOE alleles and Aß. However, the literature suggests
that APOE4 exerts an effect on the pathogenesis on AD
through Aß and also Aß independent pathways (Huang, 2010).
While the deposition of Aβ is apoE isoform-specific, it is not
clear whether and how they influence the accumulation and
progression of tau pathology (Balu et al., 2019). APOE isoforms
also affect neuroinflammation, vascular function, metabolism,
synaptic plasticity, and transcription regulation (Liao et al., 2017).
In addition to the human APOE alleles, our mouse models have
a murine NO synthase 2 knockout background (mNos2−/−)
(Colton et al., 2006, 2014). In place of the mouse Nos2 gene
these express a functional human NOS2 gene (Vitek et al., 2006).
These modifications lead to reduced immune-activated NOS2
expression and iNOS production compared to wild type rodents.
This allows to model the human innate immune response, in
particular with respect to the redox microenvironment, and NO
production (Hoos et al., 2014). Mouse models on this genetic
background expressing APP mutations present multiple AD like
phenotypes (Wilcock et al., 2008; Colton et al., 2014; Kan et al.,
2015; Badea et al., 2016). Here we assessed the differential effects
of the interaction of the humanized NOS background with
APOE3 and APOE4 alleles.

Our current study cannot rule out developmental effects
in our mice, however, human studies point to APOE4
associated differences in asymptomatic and young carriers
(Reiter et al., 2012; Piers, 2018), which may change in time
(Koelewijn et al., 2019). Further studies should explore in
more detail the relation between behavioral, imaging, and
connectome markers.

Our findings parallel other investigations in the study of
connectivity alterations associated with APOE status in human
carriers and mouse models (Heise et al., 2014; Wiesmann et al.,
2016; Luo et al., 2017; Korthauer et al., 2018). These studies
support the presence of alterations in both functional and
structural connectomes, and report separately such biomarkers.
They generally point to a role for the hippocampus and its
connection, and vascular function through perfusion changes,
which changes may affect cognition. The importance of
multimodal approaches (Wiesmann et al., 2016) and developing
a framework for integrating such biomarkers has long been
recognized (Madden et al., 2009), and connectomes present
such an opportunity.

We argue that unique entries in a connectome contain rich
information which can be further exploited at finer scales,
and perhaps using different modalities. In our analyses we
found significant differences in the size based ranking of the
subbundles, indicating different wiring patterns in mice with

different APOE alleles, and perhaps compensatory mechanisms –
which are not evident at the level of whole bundle/pairwise
connectivity analysis. The high resolution imaging allowed
us to infer subdivisions of the bundles, based on spatial
geometric relationships, and these remain to be validated using
complementary methods. APOE4HN mice had consistently
lower FA along the cerebellar connections, while the patterns for
the interhemispheric hippocampal-cerebellar and hippocampal-
piriform connections varied by subbundles, and position along
the bundle, with lower FA for the largest subbundle in
APOE4 carriers, but higher FAs were also observed. We
observed frequently higher variability in APOE4HN mice, and
in APOE4HN females compared to males. An examination of
sex based differences in the hippocampal cerebellar connections
indicated more consistency between the males of APOE4HN and
APOE3HN genotypes, with females showing more differences
with genotype in the FA curve shape (Figure 9E), and females
of the same genotype showing more variability (Figures 9E–G).
We note that the connections we analyzed run also through gray
matter, rather than just white matter. Thus the associated FA
values may be affected by aging and pathology, which led to
increased FA values in gray matter.

We identified changes in volume and FA in areas which
have been associated with amyloid deposition in AD patients,
such as the entorhinal cortex, hippocampus, cingulate cortex
and amygdala. However, our animal models do not have APP
mutations predisposing them to abundant amyloid deposition,
which suggests that the regions we have identified may be part of a
vulnerable brain network prone to the development, propagation
and deposition of misfolded proteins, proteinopathies, or
involved in other pathological processes as well. While some of
the significant differences in the connectome identified decreased
FA along the tracts connecting these regions, the reverse was
also noted. Such findings have also been reported in human
APOE4 carriers, particularly at younger ages, and the effects
are not uniform throughout the brain. We believe that FA
may show different patterns, not only between genotypes or
sexes, but even along bundles and these differences can be due
to changes in the local brain microenvironment, toxicity, or
myelination. Compensatory mechanisms can also play a role. In
Figure 6 we note that the subbundle 5 passes largely through gray
matter, so we may observe changes due to gliosis in the vicinity
of such bundles.

We also found changes in the striatum gigantocellular
reticular nuclei, cerebellum and cortical motor related regions.
These results support the role of APOE4 (Serrano-Pozo et al.,
2011) as a risk factor for Parkinson’s disease (Pankratz et al.,
2006), where alpha synuclein may also be preferentially deposited
in the CA2–CA3 regions of the hippocampus, insula, amygdala
and cingulate cortex (Harding and Halliday, 2001; Bertrand
et al., 2004). This points to shared mechanisms and vulnerable
networks across neurodegenerative conditions such as AD
and PD. Approximately 25% of AD patients develop PD,
and 50% of PD patients develop AD after 65 years of age
(Hansen et al., 1990). Moreover, 70% of LOAD patients display
α-synuclein-positive LB-like inclusions in the amygdala and
limbic structures (Trojanowski et al., 1998; Hamilton, 2000).
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Identifying differences between these vulnerable networks, based
on multivariate biomarkers may help stratify patients, as
e.g., dementia with Lewy bodies can be distinguished from
Parkinson’s disease dementia based on the presence of Aβ

deposits in the striatum (Duda et al., 2002) and hippocampus
(Masliah et al., 1993).

We have shown that behavioral and imaging markers
corroborate to help identify vulnerable networks in novel
mouse models of pathological aging, relying on the genetic risk
factor conferred by APOE4 alleles. We have also tried to gain
insight into the rich information behind one single entry in a
connectome. Imaging and DWI based connectomics provided
multiple sensitive biomarkers to monitor the integrity of these
networks or their failure in aging and disease. We hope that
future work will address the mechanism underlying the switch
from normal to pathological aging, and will help monitor the
effects of interventions.

DATA AVAILABILITY STATEMENT

All datasets generated for this study are included in the
article/supplementary material.

ETHICS STATEMENT

The animal study was reviewed and approved by Duke IACUC.

AUTHOR CONTRIBUTIONS

AB, WW, CC, and DD designed the research. AB, WW, MW,
RA, YQ, JS, and JW performed the research and analyzed the
data. AB, WW, SK, and EG contributed new analytical tools.
GJ founding director of CIVM, helped build and maintain
the imaging resources at CIVM. AB, CC, WW, JS, and DD
wrote the manuscript.

FUNDING

This work was supported by the National Institutes of Health
through K01 AG041211, R01 AG045422, R56 AG051765, R56
AG 057895, R01AG057895, R01 MH118927, and R01 AG066184.
We are grateful for NSF support through the REU initiative
at Duke (Award 1659615). Imaging was performed at the
Center for In Vivo Microscopy (CIVM), supported through
P41 EB015897.

ACKNOWLEDGMENTS

We thank all CIVM-ers for their efforts to build and maintain
this imaging resource, and a collaborative learning environment.
We also thank Dr. Zhengwu Zhang and Dr. Richard O’Brien for
helpful discussions.

REFERENCES
Anderson, R. J., Cook, J. J., Delpratt, N., Nouls, J. C., Gu, B., McNamara, J. O., et al.

(2018a). Small animal multivariate brain analysis (SAMBA) – a high throughput
pipeline with a validation framework. Neuroinformatics 17, 451–472.

Anderson, R. J., Wang, N., Cook, J. J., Cofer, G. P., Dibb, R., Johnson, G. A., et al.
(2018b). A high performance computing cluster implementation of compressed
sensing reconstruction for MR histology. Proc. Intl. Soc. Mag. Reson.
Med. 26.

Anderson, R. J., Cook, J. J., Delpratt, N. A., Nouls, J. C., Gu, B., McNamara,
J. O., et al. (2017). Small Animal multivariate brain analysis (SAMBA): a high
throughput pipeline with a validation framework. arXiv[preprint]

Avants, B. B., Epstein, C. L., Grossman, M., and Gee, J. C. (2008). Symmetric
diffeomorphic image registration with cross-correlation: evaluating automated
labeling of elderly and neurodegenerative brain. Med. Image Anal. 12, 26–41.
doi: 10.1016/j.media.2007.06.004

Avants, B. B., Tustison, N. J., Song, G., Cook, P. A., Klein, A., and Gee, J. C. (2011).
A reproducible evaluation of ANTs similarity metric performance in brain
image registration. Neuroimage 54, 2033–2044. doi: 10.1016/j.neuroimage.2010.
09.025

Badea, A., Delpratt, N. A., Anderson, R. J., Dibb, R., Qi, Y., Wei, H., et al. (2019).
Multivariate MR biomarkers better predict cognitive dysfunction in mouse
models of Alzheimer’s disease. Magn. Reson. Imaging 60, 52–67. doi: 10.1016/j.
mri.2019.03.022

Badea, A., Kane, L., Anderson, R. J., Qi, Y., Foster, M., Cofer, G. P., et al. (2016).
The fornix provides multiple biomarkers to characterize circuit disruption in a
mouse model of Alzheimer’s disease. Neuroimage 142, 498–511. doi: 10.1016/j.
neuroimage.2016.08.014

Baillieux, H., De Smet, H. J., Paquier, P. F., De Deyn, P. P., and Marien, P. (2008).
Cerebellar neurocognition: insights into the bottom of the brain. Clin. Neurol.
Neurosurg. 110, 763–773. doi: 10.1016/j.clineuro.2008.05.013

Balu, D., Karstens, A. J., Loukenas, E., Maldonado Weng, J., York, J. M.,
Valencia-Olvera, A. C., et al. (2019). The role of APOE in transgenic

mouse models of AD. Neurosci. Lett. 707:134285. doi: 10.1016/j.neulet.2019.
134285

Bedlack, R. S., Strittmatter, W. J., and Morgenlander, J. C. (2000). Apolipoprotein E
and neuromuscular disease: a critical review of the literature. Arch. Neurol. 57,
1561–1565.

Belloy, M. E., Napolioni, V., and Greicius, M. D. (2019). A quarter century of APOE
and Alzheimer’s disease: progress to date and the path forward. Neuron 101,
820–838. doi: 10.1016/j.neuron.2019.01.056

Bertrand, E., Lechowicz, W., Szpak, G. M., Lewandowska, E., Dymecki, J.,
and Wierzba-Bobrowicz, T. (2004). Limbic neuropathology in idiopathic
Parkinson’s disease with concomitant dementia. Folia Neuropathol. 42,
141–150.

Bohne, P., Schwarz, M. K., Herlitze, S., and Mark, M. D. (2019). A new projection
from the deep cerebellar nuclei to the hippocampus via the Ventrolateral and
Laterodorsal Thalamus in mice. Front. Neural Circ. 13:51. doi: 10.3389/fncir.
2019.00051

Calabrese, E., Badea, A., Cofer, G., Qi, Y., and Johnson, G. A. (2015). A diffusion
mri tractography connectome of the mouse brain and comparison with
neuronal tracer data. Cereb. Cortex 25, 4628–4637. doi: 10.1093/cercor/bhv121

Colton, C. A., Vitek, M. P., Wink, D. A., Xu, Q., Cantillana, V., Previti, M. L.,
et al. (2006). NO synthase 2 (NOS2) deletion promotes multiple pathologies
in a mouse model of Alzheimer’s disease. Proc. Natl. Acad. Sci. U.S.A. 103,
12867–12872. doi: 10.1073/pnas.0601075103

Colton, C. A., Wilson, J. G., Everhart, A., Wilcock, D. M., Puolivali, J., Heikkinen,
T., et al. (2014). mNos2 deletion and human NOS2 replacement in Alzheimer
disease models. J. Neuropathol. Exp. Neurol. 73, 752–769. doi: 10.1097/NEN.
0000000000000094

De Strooper, B., and Karran, E. (2016). The cellular phase of Alzheimer’s disease.
Cell 164, 603–615.

Devanand, D. P., Pradhaban, G., Liu, X., Khandji, A., De Santi, S., Segal, S., et al.
(2007). Hippocampal and entorhinal atrophy in mild cognitive impairment:
prediction of Alzheimer disease. Neurology 68, 828–836. doi: 10.1212/01.wnl.
0000256697.20968.d7

Frontiers in Neuroinformatics | www.frontiersin.org 16 December 2019 | Volume 13 | Article 72

https://doi.org/10.1016/j.media.2007.06.004
https://doi.org/10.1016/j.neuroimage.2010.09.025
https://doi.org/10.1016/j.neuroimage.2010.09.025
https://doi.org/10.1016/j.mri.2019.03.022
https://doi.org/10.1016/j.mri.2019.03.022
https://doi.org/10.1016/j.neuroimage.2016.08.014
https://doi.org/10.1016/j.neuroimage.2016.08.014
https://doi.org/10.1016/j.clineuro.2008.05.013
https://doi.org/10.1016/j.neulet.2019.134285
https://doi.org/10.1016/j.neulet.2019.134285
https://doi.org/10.1016/j.neuron.2019.01.056
https://doi.org/10.3389/fncir.2019.00051
https://doi.org/10.3389/fncir.2019.00051
https://doi.org/10.1093/cercor/bhv121
https://doi.org/10.1073/pnas.0601075103
https://doi.org/10.1097/NEN.0000000000000094
https://doi.org/10.1097/NEN.0000000000000094
https://doi.org/10.1212/01.wnl.0000256697.20968.d7
https://doi.org/10.1212/01.wnl.0000256697.20968.d7
https://www.frontiersin.org/journals/neuroinformatics/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroinformatics#articles


fninf-13-00072 December 7, 2019 Time: 16:45 # 17

Badea et al. Vulnerable Networks in Models of AD Risk

Duda, J. E., Giasson, B. I., Mabon, M. E., Lee, V. M., and Trojanowski, J. Q. (2002).
Novel antibodies to synuclein show abundant striatal pathology in Lewy body
diseases. Ann. Neurol. 52, 205–210. doi: 10.1002/ana.10279

Femminella, G. D., Taylor-Davies, G., Scott, J., and Edison, P. (2018). Do
cardiometabolic risk factors influence amyloid, tau, and neuronal function
in APOE4 carriers and non-carriers in Alzheimer’s disease trajectory?
J. Alzheimer’s Dis. 64, 981–993. doi: 10.3233/JAD-180365

Fischer, F. U., Wolf, D., Scheurich, A., and Fellgiebel, A. (2015). Altered whole-
brain white matter networks in preclinical Alzheimer’s disease. Neuroimage
Clin. 8, 660–666. doi: 10.1016/j.nicl.2015.06.007

Friston, K. J., Worsley, K. J., Frackowiak, R. S., Mazziotta, J. C., and Evans, A. C.
(1994). Assessing the significance of focal activations using their spatial extent.
Hum. Brain Mapp. 1, 210–220. doi: 10.1002/hbm.460010306

Garyfallidis, E., Brett, M., Amirbekian, B., Rokem, A., van der Walt, S., Descoteaux,
M., et al. (2014). Dipy, a library for the analysis of diffusion MRI data. Front.
Neuroinform. 8:8. doi: 10.3389/fninf.2014.00008

Garyfallidis, E., Brett, M., Correia, M. M., Williams, G. B., and Nimmo-Smith,
I. (2012). QuickBundles, a method for tractography simplification. Front.
Neurosci. 6:175. doi: 10.3389/fnins.2012.00175

Garyfallidis, E., Cote, M. A., Rheault, F., Sidhu, J., Hau, J., Petit, L., et al.
(2018). Recognition of white matter bundles using local and global streamline-
based registration and clustering. Neuroimage 170, 283–295. doi: 10.1016/j.
neuroimage.2017.07.015

Garyfallidis, E., Ocegueda, O., Wassermann, D., and Descoteaux, M. (2015).
Robust and efficient linear registration of white-matter fascicles in the space of
streamlines. Neuroimage 117, 124–140. doi: 10.1016/j.neuroimage.2015.05.016

Hamilton, R. L. (2000). Lewy bodies in Alzheimer’s disease: a neuropathological
review of 145 cases using alpha-synuclein immunohistochemistry. Brain Pathol.
10, 378–384. doi: 10.1111/j.1750-3639.2000.tb00269.x

Hansen, L., Salmon, D., Galasko, D., Masliah, E., Katzman, R., DeTeresa, R., et al.
(1990). The Lewy body variant of Alzheimer’s disease: a clinical and pathologic
entity. Neurology 40, 1–8.

Harding, A. J., and Halliday, G. M. (2001). Cortical lewy body pathology in the
diagnosis of dementia. Acta Neuropathol. 102, 355–363.

Heise, V., Filippini, N., Trachtenberg, A. J., Suri, S., Ebmeier, K. P., and Mackay,
C. E. (2014). Apolipoprotein E genotype, gender and age modulate connectivity
of the hippocampus in healthy adults. Neuroimage 98, 23–30. doi: 10.1016/j.
neuroimage.2014.04.081

Hoos, M. D., Vitek, M. P., Ridnour, L. A., Wilson, J., Jansen, M., Everhart, A., et al.
(2014). The impact of human and mouse differences in NOS2 gene expression
on the brain’s redox and immune environment. Mol. Neurodegener. 9:50. doi:
10.1186/1750-1326-9-50

Huang, Y. (2010). Aβ-independent roles of apolipoprotein E4 in the pathogenesis
of Alzheimer’s disease. Trends Mol. Med. 16, 287–294. doi: 10.1016/j.molmed.
2010.04.004

Huynh, T. V., Davis, A. A., Ulrich, J. D., and Holtzman, D. M. (2017).
Apolipoprotein E and Alzheimer’s disease: the influence of apolipoprotein E
on amyloid-beta and other amyloidogenic proteins. J. Lipid Res. 58, 824–836.
doi: 10.1194/jlr.R075481

Jack, CR Jr, Petersen, R. C., Xu, Y. C., O’Brien, P. C., Smith, G. E., Ivnik, R. J.,
et al. (1999). Prediction of AD with MRI-based hippocampal volume in mild
cognitive impairment. Neurology 52, 1397–1403.

Josephs, K. A., Murray, M. E., Tosakulwong, N., Whitwell, J. L., Knopman,
D. S., Machulda, M. M., et al. (2017). Tau aggregation influences cognition
and hippocampal atrophy in the absence of beta-amyloid: a clinico-imaging-
pathological study of primary age-related tauopathy (PART). Acta Neuropathol.
133, 705–715. doi: 10.1007/s00401-017-1681-2

Kan, M. J., Lee, J. E., Wilson, J. G., Everhart, A. L., Brown, C. M., Hoofnagle, A. N.,
et al. (2015). Arginine deprivation and immune suppression in a mouse model
of Alzheimer’s disease. J. Neurosci. 35, 5969–5982. doi: 10.1523/JNEUROSCI.
4668-14.2015

Koelewijn, L., Lancaster, T. M., Linden, D., Dima, D. C., Routley, B. C., Magazzini,
L., et al. (2019). Oscillatory hyperactivity and hyperconnectivity in young
APOE-varepsilon4 carriers and hypoconnectivity in Alzheimer’s disease. eLife
8:e36011. doi: 10.7554/eLife.36011

Korthauer, L. E., Zhan, L., Ajilore, O., Leow, A., and Driscoll, I. (2018). Disrupted
topology of the resting state structural connectome in middle-aged APOE ε4
carriers. Neuroimage 178, 295–305. doi: 10.1016/j.neuroimage.2018.05.052

Liang, K. J., and Carlson, E. S. (2019). Resistance, vulnerability and resilience: a
review of the cognitive cerebellum in aging and neurodegenerative diseases.
Neurobiol. Learn. Mem. doi: 10.1016/j.nlm.2019.01.004 [Epub ahead of print].

Liao, F., Yoon, H., and Kim, J. (2017). Apolipoprotein E metabolism and functions
in brain and its role in Alzheimer’s disease. Curr. Opin. Lipidol. 28, 60–67.
doi: 10.1097/MOL.0000000000000383

Luo, X., Qiu, T., Jia, Y., Huang, P., Xu, X., Yu, X., et al. (2017). Intrinsic functional
connectivity alterations in cognitively intact elderly APOE ε4 carriers measured
by eigenvector centrality mapping are related to cognition and CSF biomarkers:
a preliminary study. Brain Imaging Behav. 11, 1290–1301. doi: 10.1007/s11682-
016-9600-z

Madden, D. J., Bennett, I. J., and Song, A. W. (2009). Cerebral white matter
integrity and cognitive aging: contributions from diffusion tensor imaging.
Neuropsychol. Rev. 19, 415–435. doi: 10.1007/s11065-009-9113-2

Mandyam, C. D. (2013). The interplay between the hippocampus and amygdala
in regulating aberrant hippocampal neurogenesis during protracted abstinence
from alcohol dependence. Front. Psychiatry 4:61. doi: 10.3389/fpsyt.2013.
00061

Masliah, E., Mallory, M., DeTeresa, R., Alford, M., and Hansen, L. (1993). Differing
patterns of aberrant neuronal sprouting in Alzheimer’s disease with and without
Lewy bodies. Brain Res. 617, 258–266. doi: 10.1016/0006-8993(93)91093-8

McGaugh, J. L., Cahill, L., and Roozendaal, B. (1996). Involvement of the amygdala
in memory storage: interaction with other brain systems. Proc. Natl. Acad. Sci.
U.S.A. 93, 13508–13514. doi: 10.1073/pnas.93.24.13508

Pankratz, N., Byder, L., Halter, C., Rudolph, A., Shults, C. W., Conneally, P. M.,
et al. (2006). Presence of an APOE4 allele results in significantly earlier onset
of Parkinson’s disease and a higher risk with dementia. Mov. Disord. 21, 45–49.
doi: 10.1002/mds.20663

Piers, R. J. (2018). Structural brain volume differences between cognitively intact
ApoE4 carriers and non-carriers across the lifespan. Neural. Regen. Res. 13,
1309–1312. doi: 10.4103/1673-5374.235408

Reiter, K., Alpert, K. I., Cobia, D. J., Kwasny, M. J., Morris, J. C., Csernansky, J. C.,
et al. (2012). Cognitively normal individuals with AD parents may be at risk
for developing aging-related cortical thinning patterns characteristic of AD.
Neuroimage 61, 525–532. doi: 10.1016/j.neuroimage.2012.03.083

Sala Frigerio, C., Wolfs, L., Fattorelli, N., Thrupp, N., Voytyuk, I., Schmidt, I.,
et al. (2019). The major risk factors for Alzheimer’s disease: age, sex, and
genes modulate the microglia response to abeta plaques. Cell Rep. 27, 1293.e6–
1306.e6. doi: 10.1016/j.celrep.2019.03.099

Schellenberg, G. D. (1995). Genetic dissection of Alzheimer disease, a
heterogeneous disorder. Proc. Natl. Acad. Sci. U.S.A. 92, 8552–8559. doi: 10.
1073/pnas.92.19.8552

Serrano-Pozo, A., Frosch, M. P., Masliah, E., and Hyman, B. T. (2011).
Neuropathological alterations in Alzheimer disease. Cold Spring Harb. Perspect.
Med. 1:a006189. doi: 10.1101/cshperspect.a006189

Timmann, D., and Daum, I. (2007). Cerebellar contributions to cognitive
functions: a progress report after two decades of research. Cerebellum 6, 159–
162. doi: 10.1080/14734220701496448

Timmann, D., Drepper, J., Frings, M., Maschke, M., Richter, S., Gerwig, M., et al.
(2010). The human cerebellum contributes to motor, emotional and cognitive
associative learning. A Review. Cortex 46, 845–857. doi: 10.1016/j.cortex.2009.
06.009

Torok, J., Maia, P. D., Powell, F., Pandya, S., Raj, A., Alzheimer’s Disease, et al.
(2018). A method for inferring regional origins of neurodegeneration. Brain
141, 863–876. doi: 10.1093/brain/awx371

Trojanowski, J. Q., Goedert, M., Iwatsubo, T., and Lee, V. M. (1998). Fatal
attractions: abnormal protein aggregation and neuron death in Parkinson’s
disease and Lewy body dementia. Cell Death Differ. 5, 832–837. doi: 10.1038/sj.
cdd.4400432

Tudorache, I. F., Trusca, V. G., and Gafencu, A. V. (2017). Apolipoprotein E – a
multifunctional protein with implications in various pathologies as a result of
its structural features. Comput. Struct. Biotechnol. J. 15, 359–365. doi: 10.1016/j.
csbj.2017.05.003

Vitek, M. P., Brown, C., Xu, Q., Dawson, H., Mitsuda, N., and Colton, C. A.
(2006). Characterization of NO and cytokine production in immune-activated
microglia and peritoneal macrophages derived from a mouse model expressing
the human NOS2 gene on a mouse NOS2 knockout background. Antioxid.
Redox. Signal. 8, 893–901. doi: 10.1089/ars.2006.8.893

Frontiers in Neuroinformatics | www.frontiersin.org 17 December 2019 | Volume 13 | Article 72

https://doi.org/10.1002/ana.10279
https://doi.org/10.3233/JAD-180365
https://doi.org/10.1016/j.nicl.2015.06.007
https://doi.org/10.1002/hbm.460010306
https://doi.org/10.3389/fninf.2014.00008
https://doi.org/10.3389/fnins.2012.00175
https://doi.org/10.1016/j.neuroimage.2017.07.015
https://doi.org/10.1016/j.neuroimage.2017.07.015
https://doi.org/10.1016/j.neuroimage.2015.05.016
https://doi.org/10.1111/j.1750-3639.2000.tb00269.x
https://doi.org/10.1016/j.neuroimage.2014.04.081
https://doi.org/10.1016/j.neuroimage.2014.04.081
https://doi.org/10.1186/1750-1326-9-50
https://doi.org/10.1186/1750-1326-9-50
https://doi.org/10.1016/j.molmed.2010.04.004
https://doi.org/10.1016/j.molmed.2010.04.004
https://doi.org/10.1194/jlr.R075481
https://doi.org/10.1007/s00401-017-1681-2
https://doi.org/10.1523/JNEUROSCI.4668-14.2015
https://doi.org/10.1523/JNEUROSCI.4668-14.2015
https://doi.org/10.7554/eLife.36011
https://doi.org/10.1016/j.neuroimage.2018.05.052
https://doi.org/10.1016/j.nlm.2019.01.004
https://doi.org/10.1097/MOL.0000000000000383
https://doi.org/10.1007/s11682-016-9600-z
https://doi.org/10.1007/s11682-016-9600-z
https://doi.org/10.1007/s11065-009-9113-2
https://doi.org/10.3389/fpsyt.2013.00061
https://doi.org/10.3389/fpsyt.2013.00061
https://doi.org/10.1016/0006-8993(93)91093-8
https://doi.org/10.1073/pnas.93.24.13508
https://doi.org/10.1002/mds.20663
https://doi.org/10.4103/1673-5374.235408
https://doi.org/10.1016/j.neuroimage.2012.03.083
https://doi.org/10.1016/j.celrep.2019.03.099
https://doi.org/10.1073/pnas.92.19.8552
https://doi.org/10.1073/pnas.92.19.8552
https://doi.org/10.1101/cshperspect.a006189
https://doi.org/10.1080/14734220701496448
https://doi.org/10.1016/j.cortex.2009.06.009
https://doi.org/10.1016/j.cortex.2009.06.009
https://doi.org/10.1093/brain/awx371
https://doi.org/10.1038/sj.cdd.4400432
https://doi.org/10.1038/sj.cdd.4400432
https://doi.org/10.1016/j.csbj.2017.05.003
https://doi.org/10.1016/j.csbj.2017.05.003
https://doi.org/10.1089/ars.2006.8.893
https://www.frontiersin.org/journals/neuroinformatics/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroinformatics#articles


fninf-13-00072 December 7, 2019 Time: 16:45 # 18

Badea et al. Vulnerable Networks in Models of AD Risk

Wang, N., Anderson, R. J., Badea, A., Cofer, G., Dibb, R., Qi, Y., et al. (2018). Whole
mouse brain structural connectomics using magnetic resonance histology.
Brain Struct. Funct. 223, 4323–4335. doi: 10.1007/s00429-018-1750-x

Wang, Z., Dai, Z., Shu, H., Liao, X., Yue, C., Liu, D., et al. (2017). APOE Genotype
effects on intrinsic brain network connectivity in patients with amnestic mild
cognitive impairment. Sci. Rep. 7:397. doi: 10.1038/s41598-017-00432-0

Wiesmann, M., Zerbi, V., Jansen, D., Haast, R., Lutjohann, D., Broersen, L. M., et al.
(2016). A dietary treatment improves cerebral blood flow and brain connectivity
in aging apoE4 mice. Neural. Plast. 2016:6846721. doi: 10.1155/2016/68
46721

Wilcock, D. M., Lewis, M. R., Van Nostrand, W. E., Davis, J., Previti, M. L.,
Gharkholonarehe, N., et al. (2008). Progression of amyloid pathology to
Alzheimer’s disease pathology in an amyloid precursor protein transgenic
mouse model by removal of nitric oxide synthase 2. J. Neurosci. 28, 1537–1545.
doi: 10.1523/jneurosci.5066-07.2008

Zhang, Z., Allen, G. I., Zhu, H., and Dunson, D. (2019). Tensor network
factorizations: relationships between brain structural connectomes and traits.
Neuroimage 197, 330–343. doi: 10.1016/j.neuroimage.2019.04.027

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2019 Badea, Wu, Shuff, Wang, Anderson, Qi, Johnson, Wilson,
Koudoro, Garyfallidis, Colton and Dunson. This is an open-access article distributed
under the terms of the Creative Commons Attribution License (CC BY). The use,
distribution or reproduction in other forums is permitted, provided the original
author(s) and the copyright owner(s) are credited and that the original publication
in this journal is cited, in accordance with accepted academic practice. No use,
distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Neuroinformatics | www.frontiersin.org 18 December 2019 | Volume 13 | Article 72

https://doi.org/10.1007/s00429-018-1750-x
https://doi.org/10.1038/s41598-017-00432-0
https://doi.org/10.1155/2016/6846721
https://doi.org/10.1155/2016/6846721
https://doi.org/10.1523/jneurosci.5066-07.2008
https://doi.org/10.1016/j.neuroimage.2019.04.027
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroinformatics/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroinformatics#articles

	Identifying Vulnerable Brain Networks in Mouse Models of Genetic Risk Factors for Late Onset Alzheimer's Disease
	Introduction
	Materials and Methods
	Animals
	Behavior Testing
	The Morris Water Maze
	Novel Object Recognition

	Imaging
	Image and Network Analysis

	Results
	Learning and Memory Deficits
	Volume Loss
	Microstructural Integrity
	Voxel Based Analyses
	Connectopathies

	Discussion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Acknowledgments
	References


