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Osteoimmunology investigations to-date have demonstrated the significant interactions

between bone surface cells, osteoclasts and osteoblasts, and immune cells. However,

there is a paucity of knowledge on osteocytes, cells embedded in the bone matrix,

and their role in inflammation and inflammatory bone loss. Osteocytes communicate

through various mechanisms; directly via dendritic processes and through secretion of

proteins that can influence the formation and activity of osteoblasts and osteoclasts.

Some osteocyte proteins (e.g., interleukin-6 and RANKL) also have roles within the

immune system. In the context of mechanical loading/unloading, the regulatory role of

osteocytes is well understood. More recent data on osteocytes in various inflammatory

models suggest they may also aid in orchestrating inflammation-induced changes in

bone turnover. In inflammatory conditions, osteocytes express multiple pro-inflammatory

cytokines which are associated with increases in bone resorption and declines in bone

formation. Cytokines are known to also influence cell population growth, maturation,

and responsiveness via various signaling modalities, but how they influence osteocytes

has not been greatly explored. Furthermore, osteocytes may play regulatory roles in

orchestrating bone’s response to immunological changes in inflammatory conditions.

This review will address what is known about osteocyte biology in physiological

conditions and in response to varying immunological conditions, as well as highlight key

areas of interest for future investigations.
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Bone continually adapts to its internal and external environment, undergoing formation and
resorption to maintain bone mass. Bone loss is an imbalance of bone formation and resorption
which occurs in many conditions including disuse, aging, and chronic inflammatory conditions
such as inflammatory bowel disease (1), rheumatoid arthritis (2), psoriasis (3), and systemic
lupus erythematosus (4). While comparatively less studied to disuse or age-related bone loss,
inflammatory conditions are also associated with increased fracture incidence (4–8). Multiple
other conditions with known inflammatory components are also associated with bone loss and
increased bone fragility including type 2 diabetes (9), chronic kidney disease (10), spinal cord injury
(11), and aging-related osteoporosis (12). While the role of immune factors and inflammation on
various bone cells (osteoblasts, osteoclasts, stromal cells, marrow immune cells, bone precursor
cells) have been extensively researched (13), the osteocyte response to inflammatory stimuli has
been comparably less investigated. However, osteocytes have increasingly become appreciated as
key regulators of both osteoclasts and osteoblasts, orchestrating changes in bone turnover.
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INTERACTIONS OF THE IMMUNE SYSTEM

AND BONE

The immune system interacting with bone physiology is being
elucidated in the burgeoning field of osteoimmunology. For
example, cytokines are signaling proteins released by various
cell-types that modulate the direction of an immune response
but can also influence the cellular phenotype of immune and
parenchymal cells. In general, pro-inflammatory cytokines are
grouped as Th1, while anti-inflammatory cytokines as Th2
(14). Notably, cytokines can interact with bone cells leading
to increased bone resorption and decreased bone formation
that, over time, leads to inflammatory bone loss (15). Key
Th1 cytokines include TNF-α and IL-1β, both stimulators of
osteoclastogenesis (16–19). Additionally, these cytokines increase
the production of RANKL, a key osteoclastogenesis regulator
(20–22). TNF-α can also increase production of OPG, the
decoy receptor for RANKL (23). IL-6 has equivocal roles in
bone physiology, but, with TNF-α, IL-6 synergizes to stimulate
osteoclasts and increase production of RANKL and OPG (21).
IL-17 is also a potent stimulus for osteoclastogenesis (24) and
sensitizes osteoclast pre-cursors to RANKL (25).

In addition to stimulating an increase in osteoclasts and bone
resorption, Th1 cytokines interact with osteoblast development
and function. For example, TNF-α inhibits osteoblast genes and
differentiation factors (e.g., RUNX2), and reduces bone collagen
synthesis (20, 26–28). TNF-α also inhibits the anabolic effects
of IGF-I on osteoblasts (29) and induces osteoblast apoptosis
(20, 30). Interleukin-1β (IL-1β) has been shown to also suppress
bone formation (31). In addition to osteoblasts and osteoclasts,
other cell types residing in the bone environment such as bone
marrow stromal cells and osteoblast/osteoclast-precursor cells
can be influenced in their function by cytokines (32, 33). This
illustrates the critical role of immunological factors, such as Th1
cytokines, in bone biology.

Th2 cytokines, such as IL-4 and IL-10, are less well understood
in the context of bone physiology. In cell culture models, both IL-
4 and IL-10 have been shown to inhibit osteoclasts and reduce
RANKL production (34–37). Another cell culture study found
both IL-4 and IL-13 increased OPG mRNA expression; thus,
decreasing RANKL mediated osteoclastogenesis in vitro (38).
Furthermore, IL-10 transgenic knockout mice have low bone
mass and increased fragility which alludes to an influential role
of IL-10 in regulating bone turnover (39). There exist many
other cytokines within the Th1 and Th2 classes and other subsets
(Th9, Th17, Th22, Tfh) that have roles not yet delineated in
bone physiology, highlighting areas of future research. Finally,
the interaction of these cytokines with osteocytes has been
minimally investigated.

OSTEOCYTE BIOLOGY

Osteocytes are the longest living bone cell, making up 90–95%
of cells in bone tissue in contrast to osteoclasts and osteoblasts
making up ∼5% (40). Osteocytes form when osteoblasts become
buried in the mineral matrix of bone and develop distinct

features. Residing within the lacuna of the mineralized bone
matrix, osteocytes form dendritic processes that extend out from
their cell bodies into spaces known as canaliculi. Through these
dendritic processes, osteocytes form networks interfacing with
other osteocytes, cells on bone surfaces, and the marrow (40).
Through these communication networks, osteocytes sense the
local and systemic environment within the bone.

Osteocytes also coordinate the actions of osteoblasts and
osteoclasts via several mechanisms. First, osteocytes express
and release proteins that signal to osteoblasts, osteoclasts, and
other bone-residing cells to respond to environmental changes.
Osteocytes express important factors for the maintenance
of mineral homeostasis including SOST, Phex, DMP1, and
FGF23 (41). Sclerostin, the protein encoded by the SOST
gene, is an antagonist of the Wnt/β-catenin system, with
increased sclerostin expression leading to a suppression of bone
formation (42–44). Osteocytes also produce RANKL and OPG,
critical regulators of osteoclastogenesis. While osteoblasts and
other bone-residing immune cells also produce RANKL, it
is now appreciated that RANKL synthesized by osteocytes is
a significant source of RANKL driving osteoclast formation
for bone remodeling (45–47). Additionally, osteocyte apoptosis
signals to increase osteoclast activity driving targeted bone
resorption (41, 48, 49). Elucidating osteocyte function in the
context of osteoimmunology may provide further insight to the
imbalance of resorption vs. formation seen in inflammation-
induced bone loss.

THE ROLE OF OSTEOCYTES IN

ADAPTATIONS TO MECHANICAL STRAINS

In the past few decades, the central role of osteocytes in
response to mechanical strains has been explored and identified.
Osteocytes sense mechanical strains through fluid flow shear
stress through the lacuna-canalicular network and changes in
interstitial hydrostatic pressure (50–52). Decreased mechanical
strains also induce osteocyte apoptosis leading to decreased bone
mass and strength (53, 54). Some preliminary evidence suggests
that high mobility group box 1 (HMGB1), an alarmin (55),
may be released during osteocyte apoptosis thereby triggering
RANKL and other immune factors (56). It is unknownwhat other
immune-related factors may be released during apoptosis and the
signaling cascades that follow.

Mechanosensory signals also trigger osteocytes to release
various proteins that impact bone turnover. RANKL and
OPG are also known to be mechanosensitive (57) and mice
lacking osteocyte RANKL are protected from disuse-induced
bone loss (46). Furthermore, unloading-induced osteocyte
apoptosis initiates an increase in osteocyte RANKL (54).
Prevention of osteocyte apoptosis in animal models of unloading
mitigates increases in osteocyte RANKL (54, 58). Disuse is also
characterized by elevated osteocyte sclerostin in conjunction with
decreased bone formation rate (59, 60). Other mechanosensitive
osteocyte proteins include insulin-like growth factor-I (IGF-
I) and IL-6 which both are upregulated with loading (60–
63). The role of osteocytes in the mechanosensory capabilities
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of bone highlight the important role these cells play in bone
adaptations to the environment. Some osteocyte proteins known
to have mechanosensory roles such as RANKL and IL-6 are
also signaling molecules in the immune system and play
key roles in inflammatory processes. This suggests that other
cytokines may perhaps have similar dual roles responding
under conditions of loading/unloading and under conditions
of inflammation.

OSTEOCYTES AND CYTOKINES

Burgeoning research has shown cytokines directly impact
osteocyte apoptosis and cause the release of cytokines that
influence bone turnover. In cell culture models, osteocyte
apoptosis can be induced by both TNF-α and IL-1β (64–66).
A mouse infectious osteomyelitis model lead to increases in
osteocyte apoptosis, as well as elevations in gene expression of
TNF-α, IL-1β, IL-6, and IL-17 in the femur; the same treatment in
TNF-α deficient mice resulted in fewer apoptotic osteocytes (67).
We previously demonstrated in rats with inflammatory bowel
disease decreased osteocyte density and increased apoptosis
concurrent with elevated osteocyte TNF-α (68, 69). Therefore,
one mechanism of increased bone resorption in inflammatory
conditions is through the direct effect of pro-inflammatory
cytokines on osteocyte apoptosis which, in turn, increases
osteoclastic driven resorption.

Osteocytes also express pro-inflammatory cytokines. TNF-α is
expressed in the MLO-Y4 osteocyte-like cell culture line (70, 71),
as is IL-6 (61). Cultured human trabecular bone chips expressing
osteocyte-specific genes also express TNF-α, IL-6, IL-1β, and IL-8
(72). Other cell culture osteocyte lines have increased expression
of pro-inflammatory cytokines with exposure to monosodium
urate crystals (73), Brucella abortus infection (74) and orthopedic
implant materials (75). Immunohistochemical analysis of rat
bones demonstrate elevated osteocyte TNF-α, IL-6, and IL-
17 in various inflammatory conditions (68, 69, 76). Therefore,
osteocytes express cytokines that can increase osteoclastogenesis
and inhibit osteoblast formation or activity.

Osteocytes themselves respond to circulating pro-
inflammatory cytokines influencing their cytokine expression.
For example, exposing MLO-Y4 osteocytes in culture to IL-17
increases expression of TNF-α (71). In cultured human bone
chips with osteocyte-enriched cells, gene expression of TNF-α,
IL-1β, and IL-6 is elevated upon treatment combinations of
TNF-α, IL-1β, and IL-6 (72). Based on the supporting data
from these in vitro studies, cytokines influence osteocytes in a
positive-feedback mechanism leading to even greater cytokine
expression. This would suggest osteocytes may amplify an
inflammatory bone state resulting in increased production of
factors altering bone turnover and increasing bone loss.

Many cytokines also alter osteocyte signaling proteins.
Osteocyte-to-osteoclast signaling is enhanced by multiple pro-
inflammatory cytokines largely through RANKL signaling.
Culture media from IL-1β-treated MLO-Y4 cells increased
osteoclastogenesis in vitro (77). Furthermore, blocking IL-17A

prevented the increase in osteocyte RANKL due to continuous
parathyroid hormone exposure (78).

MLO-Y4 cells treated with IL-6/IL-6R and co-cultured with
osteoclast precursors also results in increased osteoclastogenesis
due to elevated RANKL (79). Furthermore, RANKL-positive
osteocytes are elevated in animal models of inflammatory
conditions including periodontitis (80–82), spinal cord injury
(76), and inflammatory bowel disease (68, 69). Furthermore, in
rat models of inflammatory bowel disease and spinal cord injury,
RANKL-positive osteocytes were associated with increases in
osteoclast surfaces (68, 76). In contrast to RANKL, OPG is less
well understood in conditions of inflammation. Treatment of
cultured human osteocytes- with a combination of IL-1β, TNF-
α, and IL-6 upregulates OPG (72). In rodent inflammatory bowel
disease and spinal cord injury models, OPG-positive osteocytes
were elevated (68, 69, 76). Therefore, while the exact role of
OPG is not known, it is known that inflammatory cytokines
regulate osteoclastogenesis in part through osteocyte-mediated
RANKL/OPG signaling.

Inflammatory signals also influence osteocyte proteins
controlling bone formation. Wnt proteins are key mediators
of osteoblastogenesis and govern the formation of the skeletal
development. Both sclerostin and Dickkopf-related-1 (Dkk-1)
inhibit the Wnt signaling pathway in bone. Dkk-1 is upregulated
by TNF-α and blockade against Dkk-1 in transgenic mice
with inflammatory arthritis prevents bone loss (83); however,
osteocyte-specific deletion of Dkk1 did not protect against
inflammatory arthritis-induced bone loss (84). Interestingly,
Dkk1 expression was inhibited in osteoblast cell culture treated
with IL-17A; whether this is also true in osteocytes is unknown
(85). Sclerostin has also been shown to bind to LRP5/6 and
inhibit Wnt signaling in vitro and in vivo (42, 86), and be
transcriptionally activated by TNF-α (87). In human osteocyte-
enriched cell cultures, serum from rheumatoid arthritis patients,
IL-1β alone, and a combination of IL-1β, TNF-α, and IL-6
all increased SOST expression (72). Furthermore, osteocyte
sclerostin is elevated in animal models of high fat diets with
elevated serum and osteocyte TNF-α (87), inflammatory
arthritis (83), periodontitis alveolar bone (81, 82), spinal cord
injury (76), and inflammatory bowel disease (68, 69). Beyond
direct effects of pro-inflammatory cytokines on osteoblasts
and bone formation, the inflammation-induced elevation of
inhibitors of bone formation contributes to a state of low
bone formation.

While outside the scope of this review, additional
osteocyte proteins involved in mineral homeostasis and
metabolism are influenced by inflammatory signals.
Fibroblast growth factor 23 (FGF23), a phosphate regulator
synthesized by osteocytes, has increased expression in
inflammatory conditions (72, 88, 89). IL-17A has been
shown to decrease various genes of osteocyte proteins
involved in mineral metabolism including Dmp1 and
Phex (90). Therefore, it is clear that osteocytes respond to
inflammatory signals through various mechanisms including
increased expression of cytokines and altered expression of
regulatory proteins.
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MECHANOSENSING AND

INFLAMMATORY SIGNALS

Crucial to osteocyte function is sensing and responding to bone
interstitial fluid shear stress andmechanical strains. Furthermore,
there is some overlap in signaling proteins between inflammation
and mechanosensing (sclerostin, RANKL, OPG, etc.). What is
not fully understood is if mechanosensing is tied with osteocyte
inflammatory responses and vice versa. Utilizing pulsatile fluid
flow in MLO-Y4 cells, TNF-α, and IL-1β treatment inhibits fluid
flow-induced increases in calcium uptake and nitric oxide release
indicating a potential blunting of the osteocyte response to
mechanical strains (65). Another investigation foundmedia from
MLO-Y4 cells cultured with IL-1β induced osteoclastogenesis,
while IL-1β-cultured cells that also underwent pulsatile fluid flow
prevented osteoclastogenesis (77). Pulsatile fluid flow reduced
MLO-Y4 expression of TNF-α- and IL-17A-induced increases
in TNF-α and RANKL (71), inhibited TNF-α-induced osteocyte
apoptosis (66), and increased IL-6 production in osteocyte
cultured cells (61).

With aging, osteocytes develop morphological adaptations
and changes in the lacunocanalicular system that may impair
their mechanosensory function and ability to communicate
(91, 92). In addition, osteocytes of aged mice also express a
senescence-associated secretory-phenotype, expressing multiple
pro-inflammatory cytokines including IL-17A, IL-1A, and IL-6,
likely contributing to age-related bone loss (93). Prevention of
the pro-inflammatory secretome of senescent cells in aged mice
with a JAK inhibitor improved bone mass and strength (94). It
has been hypothesized that exercise to increase mechanical strain
on bone could improve the senescent phenotype in aging (95). It
remains to been seen whether a lack of mechanical loading and
a lack of adequate mechanosensory ability or pro-inflammatory
senescent markers occurs first during aging in osteocytes.

To our knowledge, there are no investigations directly
assessing the influence of mechanical loading on osteocyte-
related proteins in animal models of inflammatory conditions
to determine the mechanical loading effects on osteocyte
inflammatory changes. However, it is possible that in
inflammatory pathologies, such as spinal cord injury where
both chronic systemic inflammation and disuse are present,
the inflammatory status with the lack of mechanical loading on
osteocytes could exacerbate bone loss. Further work needs to be
done on the interaction of inflammation and mechanical strains
in osteocytes.

FUTURE DIRECTIONS

With the accumulating knowledge of the role of osteocytes in
inflammatory bone loss, future areas of interest may include

therapeutically targeting osteocytes in inflammatory bone loss
conditions. In inflammatory conditions, bone-specific treatments
like bisphosphonates, anti-RANKL, and anti-sclerostin, all
improve bone outcomes, but have no effect on inflammatory
measures (96–98). Anti-inflammatory treatments, like anti-
TNF, may improve bone mass (99), but potentially have
negative side effects (100, 101). Therefore, viable treatments for
inflammatory conditions are still needed. By directly impacting
osteocytes via senolytic treatment or a JAK inhibitor in aged
mice prevented the inflammatory senescent osteocyte phenotype
(94). Additionally, in rodent models of inflammatory bowel
disease, a soy protein diet and treatment with exogenous
irisin decreased the inflammatory status of osteocytes and
improved bone turnover (69, 102). Other anti-inflammatory
treatments that improve bone in inflammatory conditions,
like resolvin E1 (103), need to be examined for their impact
on osteocytes. Furthermore, low-grade inflammation may be
beneficial in some conditions like fracture healing (104). The
role of other cytokines in bone physiology still needs to be
elucidated as well as the relative contribution of osteocytic pro-
inflammatory cytokines vs. those from other cell types in the
marrow. Finally, the magnitude and duration of mechanical
forces that could influence osteocyte-immune crosstalk has yet to
be examined.

CONCLUSIONS

Osteocytes play a central role in orchestrating changes in bone
turnover. In this review, we present literature that supports an
overlap between classical osteocyte regulatory proteins with
known mechanosensory functions (RANKL, OPG, sclerostin,
etc.) and immune factors that directly impact osteocytes
and their communication with osteoblasts and osteoclasts.
Pro-inflammatory signals stimulate osteocyte apoptosis,
increase osteocyte cytokine production, and alter osteocytic
proteins controlling bone turnover. Therefore, osteocytes are
key players in inflammatory bone loss. This indicates that
osteocytes may be targets for preventing/treating inflammatory
bone alterations.
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