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Due to the dyeing process, learning samples used for color prediction of pre-colored
fiber blends should be re-prepared once the batches of the fiber change. The
preparation of the sample is time-consuming and leads to manpower and material
waste. The two-constant Kubelka-Munk theory is selected in this article to investigate
the feasibility to minimize and optimize the learning samples for the theory since it has
the highest prediction accuracy and moderate learning sample size requirement among
all the color prediction models. Results show that two samples, namely, a masstone
obtained by 100% pre-colored fiber and a tint mixed by 40% pre-colored fiber and
60% white fiber, are enough to determine the absorption and scattering coefficients of a
pre-colored fiber. In addition, the optimal sample for the single-constant Kubelka-Munk
theory is also explored.

Keywords: color matching, pre-colored fiber, Kubelka-Munk theory, mixing theory, fabric, absorption coefficient,
scattering coefficient

INTRODUCTION

In the textile industry, blending two or more pre-colored fibers to produce a variety of colors
is an important coloring method, which has special color perception effects such as structural
non-uniform or mottled appearance (Jolly et al., 2021). One of the most important tasks for the
industry is to find the appropriate proportion of the pre-colored fibers to exactly match the color
of a target sample required by the customer. To solve this problem, a color prediction model is
required to describe the relationship of the spectral reflectance between a fabric and its individual
pre-colored fiber. Assuming that Rλ is the spectral reflectance of the fabric at wavelength λ, and
Ri,λ (i = 1,2,. . . ,n) is the spectral reflectance of the ith pre-colored fiber that composes the fabric
at fractional concentration ci (ci ≥ 0 and

∑n
i=1 ci = 1), the general purpose of a color prediction

model can be formulated as follows:

Rλ = F(c1, c2, . . . , cn, R1,λ, R2,λ, . . . , Rn,λ) (1)

It is obvious that given the spectral reflectance and the corresponding fractional concentration of
the pre-colored fibers, the mapping function F aims to predict the color of the fabric obtained
by mixing the fibers. In turn, the fractional concentration can be evaluated by the inverse of the
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mapping function according to the spectral reflectance of the
fabric and the pre-colored fibers that compose the fabric.

Depending on the mechanism that constructs the mapping
function, the color prediction model can be divided into
three types, namely, empirical model, physical model, and
artificial intelligence model. The most direct and simplest
empirical model regards the mapping (blending) process as a
linear function (system) (Hemingray and Westland, 2016). The
spectral reflectance of the fabric is a linear combination of the
spectral reflectance of the pre-colored fibers weighted by the
corresponding fractional concentration. That is,

Rλ =

n∑
i=1

ciRi,λ (2)

It has been proved that the performance of Eq. 2 is poor
in practice. To improve the performance, many efforts have
been devoted to finding new functions that map the spectral
reflectance into new space in which the mapped data are additive.
The main idea of these improvements is to seek the mapping
functions that satisfy the following equation:

F(Rλ) =

n∑
i=1

ciF(Ri,λ) (3)

Several empirical mapping functions have been reported in the
literature so far to accommodate Eq. 3 (Aldeeson et al., 1961;
Love et al., 1965; Minato, 1977). To the best of our knowledge, the
most representative ones for predicting the color of fiber blends
are the Stearns-Noechel function (Stearns and Noechel, 1944;
Rong et al., 2007) and the Friele function (Friele, 1952; Philips-
Invernizzi et al., 2002a). The Stearns-Noechel function (Stearns
and Noechel, 1944) has the following form:

F(Rλ) =
1− Rλ

b(Rλ − 0.01)+ 0.01
(4)

where b is an empirical constant for the function. Subsequent
studies on the function have revealed that the constant varies
with fiber types and wavelengths (Philips-Invernizzi et al., 2002b;
Rong and Feng, 2006, Sabir, 2011). It should be determined
experimentally again once another type of fiber is used to
blend the fabric that limits the universality and practicality
of the function.

The Friele function (Friele, 1952) can be expressed as follows:

F(Rλ) = e−σ(1−Rλ)2/(2Rλ) (5)

where σ is the Friele parameter. This function has a similar
drawback with the Stearns-Noechel function since the
Friele parameter also varies with fiber types and should be
redetermined experimentally (Miller et al., 1963, Philips-
Invernizzi et al., 2002a). Although previous studies have
recommended several values for different fiber types, the
parameters should be redetermined experimentally for the
same fiber type as producing regions, harvesting methods, and
growing environments influence the quality of the fiber and then
lead to the variation of the parameter.

The most commonly used physical model in color prediction
of fiber blends is the single-constant and two-constant Kubelka-
Munk (K-M) theory (Burlone, 1983, 2007; Walowit et al.,
1988; Amirshahi and Pailthorpe, 1994). The theory includes
two parts, namely, the K-M theory (Kubelka and Munk, 1931;
Kubelka, 1948, 1954) and the mixing theory, proposed by Duncan
(1949). The K-M theory is a special solution to the general
radiative transfer problem that characterizes the radiance of light
propagating inside a layer (Yang and Kruse, 2004). It maps
the spectral reflectance of the fabric into the absorption and
scattering characteristics of the fabric. For an opaque sample, the
K-M theory is formulated as follows:

F(Rλ) =

(
K
S

)
λ

=
(1− Rλ)2

2Rλ

(6)

where Kλ is the absorption coefficient and Sλ is the scattering
coefficient of the sample. Although they are the optical
characteristics of the fabric, they cannot be measured
directly. Therefore, they are estimated from the spectral
reflectance of the fabric.

The mixing theory describes the relationship of absorption
and scattering coefficients between a fabric and its individual
fiber. It assumes that the absorption and scattering coefficients
of each fiber are additive when weighted by the corresponding
fractional concentration, and the sum is the absorption coefficient
Kλ and scattering coefficient Sλ of the fabric blended by the fibers.
That is,

Kλ =

n∑
i=1

ciki,λ (7)

Sλ =

n∑
i=1

cisi,λ (8)

where ki,λ and si,λ are the absorption and scattering coefficients
of the ith fiber that composes the fabric. Eqs 7, 8 together with
K-M theory are known as the two-constant K-M theory since
it contains two independent parameters, kλ and sλ , for each
pre-colored fiber. The ratio between absorption and scattering
coefficients of the fabric can be calculated by Eq. 7 divided by
Eq. 8 as follows: (

K
S

)
λ

=

∑n
i=1 ciki,λ∑n
i=1 cisi,λ

(9)

Under the condition that the fibers composing the fabric have
a similar scattering ability, Eq. 9 can be further simplified as
follows: (

K
S

)
λ

=

∑n
i=1 ciki,λ

sλ
=

n∑
i=1

ci

(
k
s

)
i,λ

(10)

It indicates that the absorption and scattering coefficient ratio
of the fabric can be a linear combination of those of the fibers
composing the fabric when the fibers have a similar scattering
ability. Equation 10 together with the K-M theory is referred
as the single-constant K-M theory since it only includes one
independent parameter, (k/s)λ , for each pre-colored fiber.
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During the past several decades, great progress has been made
in the field of artificial intelligence techniques. Artificial neural
network (ANN) model, as an important branch of artificial
intelligence, has been widely used in textile engineering in
recent years to predict the color changes that take place after
certain production processes (Shamsnateri et al., 2006; Shamey
and Hussain, 2008; Furferi and Carfagni, 2010b; Almodarresi
et al., 2013; Hwang et al., 2015; Jawahar et al., 2015, Kan
and Song, 2015). ANN is an information processing system
that simulates the structure and function of the human brain.
A learning process is required to train the values of the weights
and biases of the network. It works as a black box, producing
outputs according to the inputs it receives with powerful
processing capability and non-linear mapping properties. Furferi
and Governi (2011) first applied ANN to the color prediction
of pre-colored fiber blends and concluded that the prediction
results are reliable. Then, they also combined the K-M theory
with ANN to implement the color prediction of fiber blends
(Furferi et al., 2016). The non-linear mapping properties of
ANN bypassed the linear additive assumption that derives
Eq. 10 in single-constant K-M theory which enhanced the
performance of single-constant K-M theory. Shen et al. (2016)
also combined the Stearns-Noechel model with ANN to enhance
the performance of Stearns-Noechel model. Hemingray and
Westland (2016) proposed a novel approach to using ANN
to predict the color of fiber blends where rather than using
a single network, a set of small neural networks was used,
each of which predicted reflectance at a single wavelength. The
results showed that the novel approach is more robust than the
conventional approach when the number of training examples
was small. In general, all these studies indicate that ANN can
be used for the color prediction of pre-colored fiber blends,
but it requires adequate samples for learning; otherwise, its
results are poor.

Comparisons of these models have also appeared in
the literature in recent years (Furferi and Carfagni, 2010a;
Hemingray and Westland, 2016). Taken together, it can be
concluded that the ANN model has the highest prediction
accuracy when the learning samples are adequate; the two-
constant K-M theory comes second; then comes the Stearns-
Noechel model and the Friele model; and the single-constant
K-M theory has the worst accuracy. In terms of prediction
accuracy, the ANN model and the two-constant K-M theory
are more suitable for the color prediction of pre-colored fiber
blends since their average color difference is usually less than
the threshold value of 0.8 set for quality inspection. Due to the
dyeing process, even though the fibers are dyed in the same
equipment with the same dye, their color, however, can vary
significantly if they belong to different batches. This means
that the optical characteristics of the dyed fibers are variable,
and new learning samples are required to be prepared to train
the parameters in the prediction models. Yet, the preparation
process is time-consuming and also leads to manpower and
material waste (Furferi et al., 2015). To find the appropriate
proportion of the pre-colored fiber for a fabric, a skilled
technician only needs about six rounds of adjusting. Thus, the
learning samples required by the model should be as less as

possible. As for the ANN model and the two-constant K-M
theory that can meet the accuracy requirement for practical
production, if n pre-colored fibers are used to obtain the
fabric, to match the color of the fabric, the number of learning
samples required by the ANN model is massive, while the
traditional two-constant K-M theory needs n ladders, each
of which includes several samples obtained by mixing the
white (or black) fiber and the pre-colored fiber at different
fractional concentrations.

Based on this point of view, the two-constant K-M theory is
selected in this study to investigate the feasibility to minimize
and optimize the learning samples for the theory. The single-
constant K-M theory is also explored to reveal the mechanism
that leads to the prediction error. The minimum samples required
by the theories to determine the parameters are analyzed, and
these samples are compared to find the optimal learning samples
according to the revealed mechanism.

EXPERIMENT

Materials
Cotton fibers (1.67 dtex and average 37 mm long) dyed by
four reactive dyes are selected in this work as pre-colored
fibers. Together with the raw undyed fibers, a total of five
fibers (White 01, Green 09, Blue 72, Red 18, and Yellow 03)
are used. First, the fibers are fed to a carding machine three
times to obtain homogeneous mixtures. Second, the mixtures
are spun into yarns using open-end spinning with a count of
29.2 tex and a twist coefficient of 450 atex. Then, the yarns
were knitted into single jersey fabrics with 24 threads/inch
as experimental samples. Two sets of samples are prepared
in this study. Set A has 22 samples mixed by three pre-
colored fibers, namely, White 01, Green 09, and Blue 72.
Green 09 and Blue 72 are mixed with White 01 individually
in fractional concentration increments of 20%, respectively, to
prepare 11 ladder samples. Other samples are prepared by 7
binary and 4 ternary mixtures of these pre-colored fibers. This
set is used to analyze the feasibility to optimize the learning
samples for the theory.

Another Set B including 50 samples mixed by all the five
fibers is used to test the validity of the proposed methods. Eight
samples are mixed according to the conclusion drawn from the
first set, namely, Green 09, Blue 72, Red 18, and Yellow 03 that are
mixed with White 01 in fractional concentrations of 40%:60% and
60%:40%. The other samples are mixed by randomly mixing these
five pre-colored fibers. There are 10 binary mixtures, 18 ternary
mixtures, and 9 quaternary mixtures besides five pure samples
with 100% fractional concentration.

Measurement
After spinning and weaving into knitted fabrics, the spectral
reflectance of the samples was measured by the Ci7800 benchtop
sphere spectrophotometer. The measurement geometry was d/8◦,
and the measurement aperture used was 25 mm. The original
spectral data were measured at 10 nm intervals within the range
of 360–750 nm. To reduce the potential measure error, each
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sample was measured three times, and the average was calculated
as the measure result. The wavelength range of 400–700 nm
was taken providing the 31-dimensional spectral data at last to
implement the color prediction.

The K-M theory does not take the discontinuity of the
refractive index existing in the interface between air and fabric
into account. A correction to the measured spectral reflectance is
necessary before inducing the measured spectral reflectance into
the theory. The equation used for the correction is well-known
as the Saunderson correction (Saunderson, 1942). Assuming that
collimated light from the air strikes the fabric, a portion r1
is reflected back to the air. In turn, a portion r2 is reflected
back when the light enters the interface from the fabric. After
infinite internal reflection, the relationship between the measured
spectral reflectance Rm,λ and the corrected spectral reflectance
Rc,λ can be represented as follows:

Rc,λ =
Rm,λ − αk1

1− k1 − k2(1− Rm,λ)
(11)

where α is the adjustable factor that changes with the measuring
geometry. For measuring with specular component included,
α = 1. Otherwise, α = 0. α = 0 is adopted in this study to
implement the correction since the samples are measured by d/8◦
measurement geometry with specular components excluded.
According to our experience, k1 = 0.08 and k2 = 0.5 are utilized to
implement the correction.

Evaluation
Three metrics are adopted to evaluate the accuracy of the
prediction results. The root mean squared error (RMSE) between
the predicted and targeted spectral reflectance is selected as the
spectral metric. The CIEDE2000 color difference 1E00 under the
CIE standard illuminant D65 and the CIE 1931 standard observer
is calculated as the colorimetric metric (Penacchio et al., 2021).
Influenced by the factors such as weighting precision and mixture
homogeneity of the pre-colored fibers, the predicted and targeted
concentrations often differ. Thus, the Euclidean distance between
the predicted and targeted fractional concentrations is adopted as
the concentration error (CE) metric.

MATERIALS AND METHODS

Determination of Absorption and
Scattering Coefficient Ratio
The single-constant K-M theory only involves the absorption and
scattering coefficient ratio of the pre-colored fibers. The ratio can
be calculated by Eq. 6 with the corrected spectral reflectance of
its masstone (pure sample with 100% fractional concentration).
Due to the intense absorption ability of the masstone obtained by
the pure pre-colored fiber, its spectral reflectance is usually very
small. However, the direct use of the sample will result in a higher
color prediction error since the measure noise has a relatively
significant influence on the small spectral data. Thus, the tint
mixed by the pre-colored fiber and the white fiber is utilized in
practice to reduce the influence of the measure noise and then

to improve the accuracy of the calculated ratio. Given the ratio
(k/s)w,λ of the white fiber, according to Eq. 10, the ratio (K/S)tint,λ
of a tint can be expressed as follows:(

K
S

)
tint,λ
= c ·

(
k
s

)
λ

+ (1− c)
(

k
s

)
w,λ

(12)

where (k/s)λ is the absorption and scattering coefficient ratio of
the pre-colored fiber; c is its fractional concentration in the tint;
subscript w and tint represent the white and the tint, respectively.
The traditional methods usually prepare several tints and use
the least square regression method to solve the absorption and
scattering coefficient ratio of the pre-colored fiber. In this study,
only one tint sample is used, and then, the ratio can be calculated
by: (

k
s

)
λ

=
(K/S)tint,λ − (1− c)(k

/
s)w,λ

c
(13)

The numerator and denominator in Eq. 13 should keep
a linear relationship in theory because the absorption and
scattering coefficient ratio of the pre-colored fiber is constant
(Völz, 2002). In fact, the linear relationship, however, is not
strictly obeyed. As shown in Figures 1A,B, their relationships
are always a concave curve. This phenomenon has also been
found in other industries dealing with colorants such as paints
(Berns and Mahnaz, 2007) and printing ink (Berns, 1993), while
a convex curve has been found in dyes’ color prediction (Yang
et al., 2009) since the means of its vertical and horizontal
coordinates are different from that here. Figures 1C,D is the
absorption and scattering coefficient ratios of Green 09 and
Blue 72 calculated by different tints. With the increase of the
pre-colored fiber, the calculated ratio increases. It indicates
that the absorption ability of the fabric is enhanced with
the addition of the pre-colored fiber, and this is the reason
that leads to the non-linear relationship in Figures 1A,B. It
can be inferred that the tint that is selected to determine
the ratio has influence on the color prediction accuracy. On
the contrary, the absorption and scattering coefficient ratio
calculated by the least square regression method lies between
those calculated by the 60% tint and the 80% tint. In another
words, an optimal tint exists in the color matching of pre-
colored fiber blends, and the optimal tint is the tint with about
80% fractional concentration of the pre-colored fiber. Thus, a
tint mixed by 80% pre-colored fiber and 20% white fiber is
enough to determine the absorption and scattering coefficient
ratio of pre-colored fiber if the ratio of the white fiber is pre-
known.

Determination of Absorption and
Scattering Coefficients
Due to the weak absorption and intense scattering ability, the
scattering coefficient of the white fiber can be assumed as a unit
at all wavelengths. Then, the absorption coefficient of the white
fiber can be determined as (k/s)w,λ by applying Eq. 6. As for the
pre-colored fiber, Eq. 9 can be transposed and collected as follows:(

K
S

)
λ

· sλ − kλ =
1− c

c
·

[(
k
s

)
w,λ

−

(
K
S

)
λ

]
(14)
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FIGURE 1 | The absorption and scattering coefficient ratios of Green 09 and Blue 72. (A) The relationship between optical property and fractional concentration of
Green 09. (B) The relationship between optical property and fractional concentration of Blue 72. (C) The absorption and scattering coefficient ratios of Green 09. (D)
The absorption and scattering coefficient ratios of Blue 72.

where kλ and sλ are the absorption and scattering coefficients
of the pre-colored fiber. To determine these two unknowns, at
least two samples are required. The traditional methods usually
prepare several tints and use the least square regression method
to solve the absorption and scattering coefficients. In this study,
two samples are selected to construct the simultaneous equations
to solve the unknowns. The masstone is chosen as one of the
samples because it can be easily prepared without weighting and
mixture. Another sample can only be a tint mixed by the pre-
colored fiber and the white fiber. The simultaneous equations
become:

(K
S
)

masstone,λ · sλ − kλ = 0(K
S
)

tint,λ · sλ − kλ =
1−c

c ·

[(
k
s

)
w,λ
−
(K

S
)

tint,λ

]
(15)

Then, the absorption and scattering coefficients of the pre-
colored fiber can be calculated as follows:

sλ =
1
c
·

{
(1− c) ·

[(
k
s

)
w,λ

−

(
K
S

)
tint,λ

]/[(
K
S

)
tint,λ
−

(
K
S

)
masstone,λ

]}
(16)

kλ =
1
c
·

{
(1− c) ·

(
K
S

)
masstone,λ

·

[(
k
s

)
w,λ

−

(
K
S

)
tint,λ

]/[(
K
S

)
tint,λ
−

(
K
S

)
masstone,λ

]}
(17)

The relationship between the terms in the braces and the
fractional concentration in Eqs 16, 17 should be linear in theory
since the absorption and scattering coefficients of the pre-colored
fiber are constant. As analyzed above, the linear relationship,
however, is not strictly obeyed in practice. Figures 2A–D shows
the relationships of Green 09 and Blue 72. Compared with
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FIGURE 2 | The relationships between optical property and fractional concentration. (A) The relationship for absorption coefficients of Green 09. (B) The relationship
for absorption coefficients of Blue 72. (C) The relationship for scattering coefficients of Green 09. (D) The relationship for scattering coefficients of Blue 72.

Figures 1A,B, the relationships in Figures 2A–D become more
linear. It means that the two-single K-M theory has better color
prediction accuracy than the single-single K-M theory. Besides,
the tint that is selected in the two-single K-M theory has less
influence than that in the single-single K-M theory. On the
contrary, with the use of the masstone samples, the curve shapes
between two different fibers may be opposite [i.e., (a) vs. (b); (c)
vs. (d)], whereas the curve shapes of the same fiber are similar
[i.e., (a) and (c); (b) and (d)]. An optimal tint may exist here
for the two-constant K-M theory. The absorption and scattering
coefficients of Green 09 and Blue 72 calculated by different tints
are shown in Figures 3A–D. It can be inferred that the optimal
tint is the tint with about 40% fractional concentration of the
pre-colored fiber.

RESULTS AND DISCUSSION

The aim of color matching is to find the concentrations that
minimize the difference between the predicted and targeted
spectral reflectance from optical constants. According to the
methods to evaluate the difference, the optimization objective of
the color matching can be divided into two types: colorimetric
matching and spectrophotometric matching. The optimization
objective of colorimetric matching is to minimize the color
difference between the predicted and targeted samples. It can be

expressed as follows:

min f (c1, c2, .., cn) =

[ 3∑
i=1

(Tpredicted,i − Ttargeted,i)
2

]1/2

(18)

where Ti (i = 1,2,3) is the tristimulus of the samples; the fractional
concentrations need to satisfy the constraint that ci ≥ 0 and∑n

i=1 ci = 1. The corresponding linear iterative algorithms that
solve this problem have also been proposed in the literature
(Allen, 1974; Amirshahi et al., 1995; Karbasi et al., 2008).
Moreover, a new matching strategy based on the equalization of
the first three principal component coordinates of the predicted
sample and targeted sample in a 3D eigenvector space has been
reported in recent years (Agahian and Amirshahi, 2008; Shams-
Nateri, 2009; Mohtasham et al., 2012). Although it shows a
better performance than the colorimetric matching in terms of
spectral and colorimetric accuracy, its matching principle and
optimization procedure are similar to that of the colorimetric
matching. The optimization objective of spectrophotometric
color prediction is to minimize the RMSE of the spectral
reflectance between the predicted and targeted samples. That is,

min f (c1, c2, .., cn) =

[∑
λ

(Rpredicted,λ − Rtargeted,λ)2

]1/2

(19)
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FIGURE 3 | The absorption and scattering coefficients of Green 09 and Blue 72. (A) The absorption coefficients of Green 09. (B) The absorption coefficients of Blue
72. (C) The scattering coefficients of Green 09. (D) The scattering coefficients of Blue 72.

TABLE 1 | Statistical results of single-constant K-M theory for Set A.

Fractional concentration of pre-colored fiber (%) 1 E00 RMSE (%) CE (%)

Max Mean Max Mean Max Mean

20 6.8218 3.5025 0.1836 0.0882 0.2828 0.1060

40 5.6149 2.2917 0.1429 0.0559 0.2619 0.0599

60 4.0521 1.6587 0.1010 0.0423 0.1640 0.0485

80 3.5534 1.4654 0.1390 0.0449 0.1663 0.0815

100 5.1579 1.8859 0.2110 0.0693 0.2414 0.1342

Least square 2.9208 1.5062 0.1109 0.0421 0.1283 0.0621

where the concentrations need to satisfy the constraint that ci ≥ 0
and

∑n
i=1 ci = 1. It is notable that comparisons between these

two types of optimization objectives have also been made (Sluban,
2007). To eliminate the metamerism phenomenon and achieve
the unconditional match, spectrophotometric matching was

adopted in this article. The constrained non-linear optimization
algorithm, active-set algorithm, was applied to solve the
spectrophotometric optimization objective.

Statistical results of the single-constant K-M theory for set A
are shown in Table 1. It indicates that the tint used to determine
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TABLE 2 | Statistical results of two-constant K-M theory for Set A.

Concentration of colored pigment (%) 1 E00 RMSE (%) CE (%)

Max Mean Max Mean Max Mean

20 0.7644 0.1313 0.0179 0.0040 0.0600 0.0210

40 0.6419 0.1045 0.0162 0.0032 0.0399 0.0147

60 0.6043 0.1494 0.0199 0.0051 0.0461 0.0193

80 0.5375 0.1643 0.0187 0.0051 0.0536 0.0201

Least square 0.5759 0.1307 0.0163 0.0041 0.0350 0.0135

TABLE 3 | Statistical results of two-constant K-M theory for Set B.

Concentration of colored pigment (%) 1 E00 RMSE (%) CE (%)

Max Mean Max Mean Max Mean

40 1.9919 0.5367 0.0251 0.0102 0.1244 0.0243

60 2.6699 0.6888 0.0326 0.0115 0.2219 0.0589

FIGURE 4 | Six pairs of randomly selected matching samples. (A) The targeted samples (top) and predicted samples (bottom). (B) Spectral reflectance of targeted
samples (solid lines) and predicted samples (dashed lines).

the absorption and scattering ratio has a remarkable influence on
the color prediction accuracy of the single-constant K-M theory.
For all the tints, the maximum of the mean color difference
reaches 3.5025 1E00, while the minimum is 1.4654 1E00, which
is even better than that (1.5062) of the least square regression
method; the maximum of the mean spectral error reaches 0.0882,
while the minimum is 0.0423 which is very close to that (0.0421)
of the least square regression method; the maximum of the
mean CE reaches 0.1342, while the minimum is 0.0485, which
is even better than that (0.0621) of the least square regression
method. Moreover, the prediction accuracy is improved at first
with the increase of the fractional concentration of the pre-
colored fiber and then declines with the further increase of
the fractional concentration. The optimal sample for the single-
constant K-M theory can be selected as a tint with about 80%
pre-colored fiber. This conclusion adheres to the inference drawn
in the above section.

Statistical results of the two-constant K-M theory for set A
are shown in Table 2. Its average accuracy also shows that the
prediction accuracy of the two-constant K-M theory is improved

at first with the increase of the fractional concentration of the
pre-colored fiber and then declines with the further increase of
the concentration. The best performance of the two-constant
K-M theory occurs when the tint has 40% pre-colored fiber. Its
mean color difference is 0.1045 1E00, which is better than that
(0.1307) of the least square regression method. Its mean spectral
error is 0.0032, which is better than that (0.0041) of the least
square regression method. Its mean CE is 0.0147, which is very
close to that (0.0135) of the least square regression method. This
phenomenon also adheres to the inference drawn in the above
section. It means that the two samples, namely, a masstone and a
tint mixed by 40% pre-colored fiber and 60% white fiber, are the
best choice for the two-constant K-M theory.

With a masstone and an optimal tint (mixed by 40% pre-
colored fiber and 60% white fiber) for each pre-colored fiber,
the two-constant K-M theory is implemented again on Set B
to further verify the findings. Statistical results are collected in
Table 3. It shows that the mean color difference of the optimal
tint is 0.5367 1E00; the mean RMSE is 0.0102; and the mean
CE is 0.0243. The performance is still better than that of the
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tint mixed by 60% pre-colored fiber and 40% white fiber. Thus,
it can be concluded that the two samples, a masstone and a
tint mixed by 40% pre-colored fiber and 60% white fiber, are
enough to determine the absorption and scattering coefficients
of a pre-colored fiber for the two-constant K-M theory. Six pairs
of matching samples are randomly selected to intuitively test the
results. As shown in Figure 4A, the color difference between the
predicted and targeted samples is undistinguishable. Figure 4B
shows the spectral reflectance of these samples. The spectral
reflectance of each pair shows a high degree of coincidence.

On the whole, two samples with certain fractional
concentrations are enough for the two-constant K-M theory,
and one sample is enough for the single-constant K-M theory.
This can save sample preparation time, reduce the waste of
resources and labor force, and increase productivity. On the
contrary, the color prediction accuracy of the two-constant K-M
theory is significantly better than that of the single-constant K-M
theory for pre-colored fiber blends. It indicates that the optical
characteristics of pre-colored fiber blends match the general
assumptions that derive the two-constant K-M theory well, but
fail to match the specific prerequisite for the derivation of the
single-constant K-M theory. This result conforms to the above
finding that the relationship between the optical characteristics
and fractional concentrations of the two-constant K-M theory
is more linear than that of the single-constant K-M theory. The
two-constant K-M theory is more suitable for the color matching
of the pre-colored fiber blends.

CONCLUSION

The single-constant K-M theory and the two-constant K-M
theory were examined to match the color of pre-colored fiber
blends. The accuracy and the optimal samples used for the
theories were evaluated based on the match results. It shows
that the best sample for the single-constant K-M theory is a
tint obtained by mixing 80% pre-colored fiber and 20% white
fiber. A masstone obtained with 100% pre-colored fiber and a

tint mixed by 40% pre-colored fiber and 60% white fiber are
the best choice for the two-constant K-M theory. The findings
can significantly reduce the samples required to be prepared
in implementing the color matching, which can save time and
raw materials for the companies. It also shows that due to the
typical optical characteristics of the pre-colored fiber blends, the
accuracy of the two-constant K-M theory is better than that of
the single-constant K-M theory. The two-constant K-M theory
is more suitable for the color matching of the pre-colored fiber
blends. For further research, the applicability of the two-constant
K-M theory for five or more pre-colored fiber blending needs to
be investigated.
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