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Phenotype-oriented network 
analysis for discovering 
pharmacological effects of  
natural compounds
Sunyong Yoo   1,2, Hojung Nam3 & Doheon Lee   1,2

Although natural compounds have provided a wealth of leads and clues in drug development, the 
process of identifying their pharmacological effects is still a challenging task. Over the last decade, 
many in vitro screening methods have been developed to identify the pharmacological effects of natural 
compounds, but they are still costly processes with low productivity. Therefore, in silico methods, 
primarily based on molecular information, have been proposed. However, large-scale analysis is 
rarely considered, since many natural compounds do not have molecular structure and target protein 
information. Empirical knowledge of medicinal plants can be used as a key resource to solve the 
problem, but this information is not fully exploited and is used only as a preliminary tool for selecting 
plants for specific diseases. Here, we introduce a novel method to identify pharmacological effects 
of natural compounds from herbal medicine based on phenotype-oriented network analysis. In this 
study, medicinal plants with similar efficacy were clustered by investigating hierarchical relationships 
between the known efficacy of plants and 5,021 phenotypes in the phenotypic network. We then 
discovered significantly enriched natural compounds in each plant cluster and mapped the averaged 
pharmacological effects of the plant cluster to the natural compounds. This approach allows us to 
predict unexpected effects of natural compounds that have not been found by molecular analysis. When 
applied to verified medicinal compounds, our method successfully identified their pharmacological 
effects with high specificity and sensitivity.

Natural compounds and their derivatives have been used as a valuable source of medicinal agents. To date, an 
impressive number of modern drugs have been derived from natural sources, many based on their use in herbal 
medicine1–3. Herbal medicine has accumulated considerable knowledge about the medicinal use of plants over 
the last thousand years. Additionally, herbal medicine is presumed to be safe, harmless and without side effects 
because of its natural origins4,5. Recent surveys showed that approximately 70–80% of the world’s population 
depends on herbal medicine for their primary health care6,7. However, only a small number of plant species have 
been investigated by scientists and approved for commercial purposes while more than 35,000 plant species are 
used for medicinal purposes worldwide8,9. Therefore, a better understanding of herbal medicine through scientific 
analysis will provide new insights for drug development.

Most previous studies on finding medicinal agents from herbal medicine were performed by in vitro assess-
ment. The plant associated with the disease of interest was selected from herbal medicine. Then, the natural com-
pound or plant itself was extracted, and its biological activities were confirmed by in vitro screening methods10–13. 
However, large-scale experiments are required to analyze a large number of constituent natural compounds, and 
the problem increases exponentially as the number of plants under consideration increases. Therefore, in silico 
approaches, such as similarity-based, network-based or mechanism-based methods, have been proposed to fil-
ter potential medicinal agents from numerous natural compounds14–17. Most of these studies have used herbal 
medicine information only as a preliminary tool to select plants or natural compounds for a certain disease. They 
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focused on molecular analysis, such as molecular structure or target protein similarity, to predict the potential 
effects of natural compounds. However, many natural compounds do not have molecular structural information 
available, and their target protein information remains mostly unknown (Supplementary Fig. 1). Hence, these 
approaches often encounter obstacles to large-scale analysis18–20.

The accumulated knowledge of herbal medicine, especially information on the efficacy of medicinal plants, 
can be used as a key resource to overcome this limitation. Even if no molecular information on many natu-
ral compounds is available, large-scale analysis can be performed by investigating the relationship between the 
known efficacy of plants and natural compounds from information on herbal medicine. For this purpose, we 
should consider the following characteristics of herbal medicine: (i) The efficacy of medicinal plants is described 
in various phenotype terms (Supplementary Fig. 2). The efficacy information contains both high-level concepts, 
such as inflammation and hormone imbalance, and low-level concepts, such as aortitis and diabetic retinop-
athy (Supplementary Fig. 3). Furthermore, similar concepts, such as synonyms and symptoms of diseases, are 
described in various forms. Therefore, to utilize the information on plant efficacy, these complex associations 
should be considered. For example, when extracting plants associated with urination, we can achieve more rel-
evant results by examining phenotypes associated with urination, such as dysuria, urethral stones, and urinary 
tract abnormalities. (ii) Medicinal plants contain numerous natural compounds21. Unlike a single-target drug, 
herbal medicines consist of complex multicomponent mixtures of natural compounds. Moreover, even if we 
select plants that are associated with a particular disease, they are likely to be associated with many other diseases. 
Therefore, analyzing which natural compound in the plant is associated with a particular disease is difficult.

Here, we present a phenotype-oriented network analysis to identify pharmacological effects of natural com-
pounds from herbal medicine. To address the characteristics of plant efficacy information in herbal medicine, the 
relationships between known plant efficacy and 5,021 phenotypes were quantified by applying a random walk 
with restart (RWR) algorithm, taking into account the hierarchy of the phenotypic network. This approach allows 
us to extract plant clusters with similar efficacy by considering complex phenotype associations. We then hypoth-
esized that significantly enriched natural compounds in a plant cluster would be closely related to the efficacy 
associated with the plant cluster. To test this hypothesis, we investigated the predicted pharmacological effects 
of natural compounds based on the verified and candidate effect sets. We found that our predictions covered a 
large number of the results reported in previous work. More importantly, this approach solved the bottleneck by 
predicting pharmacological effects of natural compounds that were difficult to analyze due to a lack of molecular 
information. In conclusion, the novelty of our method is threefold: (i) It is the first phenotype-based in silico 
method that identifies pharmacological effects of natural compounds from herbal medicine without molecular 
analysis. (ii) Large-scale analysis can be performed by addressing the characteristics of herbal medicine system-
atically. (iii) It can be used as a preliminary tool to screen medicinal agents from numerous natural compounds.

Materials and Methods
Phenotype-oriented network analysis.  We designed a novel algorithm to identify pharmacological 
effects of natural compounds from herbal medicine. The algorithm consists of four steps (Fig. 1): (i) constructing 
phenotype vectors of plants by investigating the relationships between known plant efficacy and thousands of 
phenotypes in a phenotypic network; (ii) extracting plant clusters with similar efficacy by applying hierarchical 
clustering to phenotype vectors; (iii) finding significantly enriched natural compounds from the plant clusters; 
and (iv) identifying potential pharmacological effects of the natural compounds.

We generated phenotype vectors that cover a large number of quantified pharmacological effects of plants 
(Fig. 1a). Each phenotype vector contains 5,021 phenotypes defined by Medical Subject Headings (MeSH) and 
Online Mendelian Inheritance in Man (OMIM) (Supplementary Data 1). In the phenotypic network, phenotype 
nodes close to the root node have broad concepts, phenotype nodes distant from the root node have narrow 
concepts. Therefore, we assigned the edge weight between nodes in the phenotype network based on semantic 
similarity, which measures how similar two phenotypes are by determining closeness in a hierarchy. Next, the 
pharmacological effects of the plants were quantified by applying the RWR algorithm to the edge-weighted phe-
notypic network. The initial values of the phenotypic network were assigned to the known efficacy of plants, and 
their diffusion states were calculated by the RWR algorithm. In this process, we generated phenotype vectors for 
2,286 plants.

Next, hierarchical clustering was performed to extract plant clusters from the phenotype vectors (Fig. 1b). In 
contrast to previous studies that selected plants with a specific phenotype, we extracted plant clusters with similar 
efficacy by taking into account a large number of phenotypes with their hierarchical relationships. For example, 
Viola tricolor, Thymus vulgaris and Chamaecyparis obtusa have been clustered because they are known to be 
effective in respiratory-related diseases or symptoms, such as scrofula, pertussis, and panting. Each plant cluster 
consists of an average of 3.6 plants containing an average of 43.3 natural compounds. Since each plant cluster 
contains a large number of natural compounds, the relationship between the pharmacological effects of the plant 
cluster and the natural compounds is complex. To solve this problem, we extracted significantly enriched natu-
ral compounds from plant clusters by using Fisher’s exact test (Fig. 1c) and selecting natural compounds with a 
p-value lower than a threshold value. Finally, we investigated the potential pharmacological effects of the natural 
compounds (Fig. 1d). Our underlying hypothesis was that statistically significant natural compounds present in a 
plant cluster would have the pharmacological effects of the plant cluster. Therefore, the phenotype vectors of the 
plants belonging to the plant cluster were averaged and mapped to the enriched natural compounds.

Data collection.  Plant and natural compound information was collected from KTKP (http://www.koreantk.
com/ktkp2014/), TCMID22, TCMSP16, TCM@Taiwan23, TCM-ID24 and KAMPO (http://kampo.ca/), covering 
Korean, Chinese and Japanese herbal medicine. The phenotypic network was taken from the 2017AA version of 
the Unified Medical Language System (UMLS)25, which provides integrated information on various terminologies 
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related to biomedicine. The Metathesaurus is the main component of the UMLS and is organized by biomedical 
concepts, where each distinct concept is assigned a concept unique identifier (CUI). We collected CUIs with 
broader (RB) and narrower (RN) relationships from the MRREL lists, resulting in a total of 786,002 CUIs and 
2,487,620 relations (Supplementary Data 2).

To validate the proposed method, we collected the following information. Drug information was acquired 
from DrugBank v.4.026. Potential effects of natural compounds were collected from CTD27 and ClinicalTrials.
gov28. Compound-gene associations were collected from DrugBank26, DCDB v.2.029, CTD27, TTD30, BindingDB31, 

Figure 1.  A systematic overview of the phenotype-oriented network analysis. (a) Phenotype values of a plant 
were obtained by calculating the quantified relationship between phenotypes on the phenotypic network. In 
the phenotypic network, the RWR algorithm was performed based on the known efficacy of the plant (star), 
and the RWR results are shown as colored nodes. The phenotype vector of a plant was constructed based on the 
RWR results. (b) Plants with similar pharmacological effects were grouped by applying hierarchical clustering 
analysis to the matrix of phenotype vectors. Hierarchical clustering was performed by using the pvclust. The 
approximately unbiased p-values (bracketed values) calculated for each branch in the clustering represent the 
support in the data for the observed subtree clustering. Clusters with p-value over 0.95 (red box) are strongly 
supported by the data. (c) All natural compounds contained in the plant cluster were extracted. For each natural 
compound (ci), Fisher’s exact test was performed to check whether the natural compound was significantly 
enriched in the cluster. Finally, natural compounds with p-values (pi) of Fisher’s exact test lower than a threshold 
value (λ) were selected. (d) The pharmacological effects of an enriched natural compound were obtained by 
mapping the averaged phenotype vectors of the plant cluster enriched this specific natural compound.
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MATADOR32 and STITCH33. Gene-phenotype associations were collected from CTD27, DisGeNET34 and 
OMIM35. We also obtained protein-protein interaction (PPI) network data from BioGrid v.3.0.13636 and CODA 
v.1.037.

Quantifying the pharmacological effects of medicinal plants.  We constructed a phenotypic network 
based on the hierarchical relationship of UMLS25 and then calculated semantic similarity to measure the quanti-
tative distance between phenotypes (Fig. 2a).

A relation between two general phenotype concepts, such as inflammation and hormonal imbalance, implies 
a reasonably large difference, while one between two specific concepts, such as diabetes mellitus and diabetic 
retinopathy, represents a small difference. Therefore, we applied the semantic similarity measure proposed by Wu 
& Palmer (wup)38 and defined by the following equation (Fig. 2b).
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where lcs(c1, c2) is the lowest common subsumer of concepts c1 and c2. We assigned the edge weights of the pheno-
typic network based on the semantic similarity scores between phenotype nodes. Next, we performed the RWR 
algorithm to investigate the quantified pharmacological effects of medicinal plants in the edge-weighted pheno-
typic network. RWR simulates a random walker from its seed nodes and iteratively transmits the node values to 
the neighbor nodes with probabilities proportional to the corresponding edge weights39–41. First, we assigned ini-
tial values to seed nodes in the phenotypic network based on the known efficacy information of a plant (Fig. 2c). 
Second, we calculated the transition probability from a node to its neighbor nodes. We assumed the transition 
probability to be the value of the quantified relationship between phenotypes on the phenotypic network. The 
transition probability vector of each node at time step t + 1 was defined as

Figure 2.  Quantifying the pharmacological effects of medicinal plants in the phenotypic network. (a) A 
phenotypic network was constructed based on the UMLS hierarchical relationships. (b) A semantic similarity 
between two phenotype concepts was calculated by considering the depth of the phenotypes and the distance 
between phenotypes. (c) In the phenotypic network, the RWR algorithm was performed based on the known 
efficacy of the plant (circle), and the RWR results are shown as colored nodes. (d) A transition matrix (W) is 
generated by the column normalization of the adjacency matrix based on the edge weights.
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where r represents the restarting probability of the random walker at each time step, which we set to 0.7 in this 
study. W denotes a transition matrix that is the column normalization of the adjacency matrix based on the edge 
weight of the phenotypic network42 (Fig. 2d). pt represents the probability vector of each node at time step t, and 
p0 represents the initial probability vector. The RWR algorithm simulates the random walker until all nodes reach 
the steady state (pt+1 − pt < 10−8). We defined a list of phenotype values of a plant as a phenotype vector.

Clustering plants based on phenotype similarity.  We merged all phenotype vectors into a matrix and 
applied hierarchical clustering to extract plants with similar pharmacological effects. Hierarchical clustering was 
performed by using R module pvclust43, which involves multiscale bootstrap resampling of 1,000 iterations to 
assess statistical significance. We selected clusters with an approximately unbiased (AU) p-value greater than a 
specific threshold. The AU p-value indicates the extent to which a cluster is strongly supported by the data, and 
a higher AU p-value indicates stronger support for the clustering. In this study, we set the threshold of the AU 
p-value to 0.95. In the clustering process, the correlation was calculated by the cosine distance. This analysis 
identified 51 plant clusters, each with similar pharmacological effects, among 5,021 phenotypes (Supplementary 
Data 3).

Extracting significantly enriched natural compounds.  Significantly enriched natural compounds in 
plant clusters were identified by performing Fisher’s exact test. Fisher’s exact test assesses the null hypothesis 
of independence applying hypergeometric distribution of the numbers in a contingency table44. To construct 
the contingency table of each natural compound in the plant cluster, the number of plants was counted based 
on whether they were included in the cluster and whether they contain the natural compound. We performed 
Fisher’s exact test for each natural compound in the plant clusters with different p-value thresholds, including 
0.1, 0.01 and 0.001 (Supplementary Table 1). The results indicated that the performance was best at 0.001, so we 
set the p-value threshold to 0.001 in this study. The average number of significantly enriched natural compounds 
per plant cluster was 2.4. Finally, we investigated the potential pharmacological effects of natural compounds by 
calculating the arithmetic mean values of the phenotype vectors of the plants belonging to the plant cluster.

Performance evaluation.  Tevaluate the performance of the proposed method, we used precision, recall, the 
area under the receiver operating characteristic curve (AUROC), and the area under the precision-recall curve 
(AUPR) defined by the following equations.
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where P, N, TP, TN, FP and FN denote the numbers of real positives, real negatives, true positives, true negatives, 
false positives and false negatives, respectively.

Results
Performance evaluation.  Our method predicts pharmacological effects of natural compounds based on 
phenotype-oriented network analysis. To examine the quantitative performance of the proposed method, we 
calculated the average area under the curve (AUC) scores of the receiver operating characteristic (ROC) and 
precision-recall (PR) curves (Fig. 3). We used 21 drugs from DrugBank and 92 compounds from CTD as our 
gold and silver standard datasets, respectively, for assessment of the prediction of the therapeutic and potential 
candidate effects.

As a result, we obtained the AUROC and AUPR scores for therapeutic (AUROCT = 0.725 ± 0.085, 
AUPRT = 0.649 ± 0.080) and potential candidate effect (AUROCP = 0.754 ± 0.077, AUPRP = 0.685 ± 0.071) 
predictions. For this purpose, we averaged the AUROC and AUPR scores based on the natural compounds 
(Fig. 3a). To examine the importance of the hierarchical relationships, we compared the prediction performance 
with and without considering hierarchical relationships. The results showed that the performance decreased 
when hierarchical relationships were not considered in predicting therapeutic (AUROCT = 0.689 ± 0.079, 
AUPRT = 0.605 ± 0.082) and potential candidate effects (AUROCP = 0.719 ± 0.060, AUPRP = 0.644 ± 0.073). 
Furthermore, we compared our method with a network-based approach, the target-closeness method, which 
predicts drug efficacy by calculating the closeness between drug targets and disease genes45. The results indi-
cated that our method, which uses herbal medicine information without any molecular analysis, exhibited 
better performance than the target-closeness method (AUROCT = 0.706 ± 0.089, AUPRT = 0.622 ± 0.068, 
AUROCP = 0.727 ± 0.081, AUPRP = 0.653 ± 0.062) in both therapeutic and potential candidate effect prediction. 
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Next, we calculated the ROC and PR performance for each phenotype and averaged them to normalize the occur-
rence of different phenotypes (Fig. 3b) to determine whether our method focuses only on the prediction of a 
particular phenotype or not. For this purpose, we calculated the phenotype ranking for each natural compound 
based on a phenotype vector and then calculated the ROC and PR of the phenotype based on the ranking in 
all natural compounds. The results confirmed that when phenotype occurrence is normalized, similar perfor-
mance in predicting therapeutic (AUROC = 0.715 ± 0.061, AUPR = 0.631 ± 0.064) and potential candidate effects 
(AUROC = 0.728 ± 0.066, AUPR = 0.661 ± 0.068) is obtained. These results indicate that our phenotype-oriented 
network analysis is relevant for predicting the pharmacological effects of natural compounds.

Next, by examining how the results of the proposed method differ from the results of the target-closeness 
method, we investigated whether it could be used as an alternative resource for drug discovery in the future. 
We first sorted the predicted pharmacological effects of natural compounds obtained from our method and the 
target-closeness method by their scores and then checked the rank correlation. The results confirmed that the 
rank correlation (rc) between the two sets was very low (rc = 0.0019) and that there was no significant difference 
in the rank correlation scores of our results and a random set (rc = 0.0012). Next, we extracted the top 10% of phe-
notypes from our method and from the target-closeness method and calculated the Tanimoto coefficient (Tc) to 
investigate how similar the two sets were. The results confirmed that the Tanimoto coefficient between the results 
of our method and of the target-closeness method was very low (Tc = 0.065 ± 0.013) and was not significantly 
different from the Tanimoto coefficient between our results and a random set (Tc = 0.051 ± 0.010). Overall, these 
findings indicate that the results of our method and of the target-closeness method are statistically significantly 
different. The results show that the proposed method is complementary to molecular analysis and can be used as 
a tool to predict the pharmacological effects of natural compounds.

In contrast to the target-closeness method, which analyzes the compound efficacy via protein interaction 
information starting from known molecular targets, our method identifies statistically significant compounds 
and their efficacy by using information on the known efficacy of plants and on their constituent compounds. This 
discrimination provides a new way to analyze natural compounds. Previous molecular-based approaches are dif-
ficult to apply to natural compounds since the molecular target information on natural compounds is very limited 
(Supplementary Fig. 1). As an alternative method, we have been able to make new predictions by using the effi-
cacy information of medicinal plants accumulated in herbal medicine and plant chemical composition informa-
tion. Consequently, our method has produced novel predictions by analyzing new aspects of natural compounds.

Figure 3.  Performance evaluation of identifying pharmacological effects of natural compounds. (a,b) Average  
AUC scores of ROC and PR for our method (blue), our method without considering hierarchical relationships (light 
blue) and the target-closeness method (gray) to evaluate the performance of the prediction of pharmacological effects 
of natural compounds. The known therapeutic and potential candidate effects were used as gold and silver 
standard positive sets, respectively. Average AUC scores were calculated based on (a) natural compounds and 
(b) phenotypes.



www.nature.com/scientificreports/

7ScIEnTIfIc RePortS |  (2018) 8:11667  | DOI:10.1038/s41598-018-30138-w

External literature validation.  To validate the reliability of our method, we confirmed whether the 
predicted natural compounds and their candidate effects were identified in the external literature. We first 
ranked the predicted pharmacological effects of the 1,294 natural compounds by their scores and made three 
independent sets by selecting the top 10%, bottom 10% and random 10% of results containing 495,602 natu-
ral compound-phenotype associations. For the pharmacological effects of the selected natural compounds, we 
counted co-occurrences (nc) from PubMed abstracts, calculated the Jaccard index and conducted Fisher’s exact 
test (nf) (Table 1). We also performed the Mann-Whitney U test and calculated the corresponding p-values to 
check for significant differences in the literature evidence for the high-scored, low-scored and random sets46. A 
p-value from the Mann-Whitney U test lower than 0.05 was considered statistically significant.

The average co-occurrence for the high-scored set (nc = 1.41) was 12.8 and 3.8 times larger than the aver-
age co-occurrence of the low-scored set (nc = 0.11) and the random set (nc = 0.37). We also normalized the 
co-occurrence value by the Jaccard index to correct for the differences in the frequencies of natural compounds 
and of phenotypes. The average Jaccard index value of the high-scored set (JI = 2.2 × 10−4) was 20.0 and 2.8 times 
higher than the values of the low-scored set (JI = 1.1 × 10−5) and the random set (JI = 7.8 × 10−5). Furthermore, 
we performed Fisher’s exact test to find the significant associations (p-value < 0.001). To obtain the Fisher’s test 
value for each association, the number of PubMed abstracts that included both the natural compound and the 
target phenotype was counted. The number of significant associations of the high-scored set (nf = 3,281) was 4.4 
and 2.8 times higher than those of the low-scored set (nf = 746) and the random set (nf = 1,136). In addition, the 
p-values of the Mann-Whitney U test indicated that the difference in the literature evidence among the high-, 
low-scored and random sets was significant. These results show that our method can be used as a tool to identify 
pharmacological effects of natural compounds.

Novel pharmacological effects of natural compounds.  Our method uses herbal medicine informa-
tion without molecular analysis to predict pharmacological effects of natural compounds, enabling us to discover 
effects previously undetected by the target-closeness method. To find novel pharmacological effects of natural 
compounds, we first filter out meaningless associations. For this purpose, we selected a cutoff for the prioritized 
list of phenotypes of each natural compound according to the F1-measure, the harmonic mean of precision and 
recall. The F1 score was calculated for the threshold of phenotype values from 0 to 0.95 with intervals of 0.05, and 

Co-occurrence Jaccard index Fisher’s exact testa

High-scored (H) 1.41 2.2 × 10−4 3,281

Low-scored (L) 0.11 1.1 × 10−5 746

Random (R) 0.37 7.8 × 10−5 1,136

Mann-Whitney 
U test, p-value

H vs L <0.001 <0.001 <0.001

H vs R <0.001 <0.001 <0.001

L vs R 0.028 0.73 0.052

Table 1.  Literature validation was performed by comparing the co-occurrence, Jaccard index and Fisher’s exact 
test values among high-scored, low-scored and random sets. Statistical significance was calculated by the p-
value of the Mann-Whitney U test. ap-value threshold of Fisher’s exact test is 0.001.

Compound Phenotype Score
Literature 
evidence

Puerarin Stroke
Fever

0.773
0.731

PMID: 28072733
PMID: 22401764

Berberine Insomnia
Jaundice

0.819
0.731

PMID: 28579756
PMID: 415839

Quercitrin Amenorrhea
Stomach pain

0.804
0.707

PMID: 22212502
PMID: 26758066

Spermidine
Hemorrhage
Deafness
Mental

0.765
0.729
0.705

PMID: 14913342
PMID: 19001365
PMID: 21501848

Choline
Anaemia
Constipation
Psoriasis
Eczema

0.818
0.791
0.775
0.762

PMID: 15571243
PMID: 13135586
PMID: 10730754
PMID: 14896505

Genistein Stroke
Malaria

0.773
0.758

PMID: 29063799
PMID: 27585499

Eugenol Retention of urine
Urinary tract infection

0.853
0.771

PMID: 28733207
PMID: 28792229

Daidzein Stroke 0.773 PMID: 26558782

Amentoflavone Asthma 0.755 PMID: 27916586

Ononin Chronic disease 0.726 PMID: 19103273

Table 2.  Literature evidence on the predicted pharmacological effects of natural compounds.
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the best performance was obtained at 0.20. Based on this threshold value, the predicted pharmacological effects 
of natural compounds were filtered (Supplementary Data 4). Next, we found the PubMed evidence of predicted 
pharmacological effects of 10 natural compounds through manual curation (Table 2) and analyzed the results 
that differed from those of the target-closeness method. For instance, puerarin was investigated as a treatment 
for stroke47. However, the calculated distance between the target proteins of puerarin and the stroke-associated 
proteins in the molecular network shows that they are far away from each other (average shortest distance = 3.32), 
close to random (p-value < 0.001). Therefore, that the target-closeness method does not appear to show that 
puerarin can be used as a treatment for stroke. However, in our method, puerarin receives a high score for stroke 
(score = 0.773) and is proposed as a potential medicinal agent because many medicinal plants that contain 
tocopherol are known to be effective against stroke in herbal medicine. Furthermore, we can predict additional 
pharmacological effects of puerarin, such as the treatment of fever, epistaxis and perspiration, that have not been 
reported in DrugBank and CTD. From these results, we believe that our method can be used as an alternative tool 
to identify potential pharmacological effects of natural compounds.

Discussion
Herbal medicine has methodically collected information on medicinal plants for thousands of years and can be 
used as an important resource in drug development, in combination with information on natural compounds 
obtained by modern high-throughput screening techniques. Here, we introduce a phenotype-oriented network 
analysis to predict pharmacological effects of natural compounds from herbal medicine. The efficacy information 
in herbal medicine includes both high- and low-level phenotype concepts, and there are various associations 
between these concepts, such as synonym, symptom, superordination and subordination. Moreover, since nat-
ural sources are composed of various natural compounds, determining which natural compound is associated 
with a particular phenotype is difficult. In this study, the relationships between known plant efficacy and 5,021 
phenotypes were quantified by considering the hierarchy of the phenotypic network. This approach enabled the 
extraction of plant clusters with similar efficacy by considering complex phenotype associations. From the plant 
clusters, we can identify significantly enriched natural compounds and their potential pharmacological effects.

The proposed method is meaningful in that pharmacological effects of natural compounds were identified 
by utilizing herbal medicine information, in contrast to conventional methods that focus on molecular analysis. 
This approach enables large-scale analysis since it can be applied even in the absence of molecular information on 
natural compounds. In evaluating the prediction performance, we confirmed the successful prediction of phar-
macological effects of natural compounds by comparing the results with those of the target-closeness method, 
which relies on molecular analysis. We also found that the predicted results of the proposed method and of the 
target-closeness method did not overlap. This result indicates that the proposed method enabled us to identify 
pharmacological effects of natural compounds that went undetected by the target-closeness method.

There are some additional considerations to improve our method. First, molecular information is not taken 
into account in the current study. We mentioned the lack of molecular information on natural compounds as a 
problem of conventional methods. However, this limitation can be solved with further experiments and improved 
techniques. We expect more accurate predictions to be made by using both herbal medicine and molecular infor-
mation appropriately. Second, advanced methods are needed to predict the pharmacological effects of natural 
compounds. Currently, we extract significantly enriched natural compounds from the plant cluster and map the 
averaged pharmacological effects of the plant cluster to the natural compounds. However, the pharmacological 
effects of the natural compounds and the plant cluster cannot be the same and will require further advanced anal-
ysis for precise prediction. Nevertheless, these limitations can be taken into account through further improve-
ments. We believe that this study enables us to perform large-scale analysis and to provide a new direction for 
future study by systematically addressing the characteristics of herbal medicine information.
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