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ABSTRACT
The genus Armillaria has high edible and medical values, with zones of antagonism often occurring 
when different species are paired in culture on agar media, while the antagonism-induced meta-
bolic alteration remains unclear. Here, the metabolome of mycelial exudates of two Chinese 
Armillaria biological species, C and G, co-cultured or cultured separately was analysed to discover 
the candidate biomarkers and the key metabolic pathways involved in Armillaria antagonists. 
A total of 2,377 metabolites were identified, mainly organic acids and derivatives, lipids and lipid- 
like molecules, and organoheterocyclic compounds. There were 248 and 142 differentially 
expressed metabolites between group C-G and C, C-G, and G, respectively, and fourteen common 
differentially expressed metabolites including malate, uracil, Leu-Gln-Arg, etc. Metabolic pathways 
like TCA cycle and pyrimidine metabolism were significantly affected by C-G co-culture. 
Additionally, 156 new metabolites (largely organic acids and derivatives) including 32 potential 
antifungal compounds, primarily enriched into biosynthesis of secondary metabolites pathways 
were identified in C-G co-culture mode. We concluded that malate and uracil could be used as the 
candidate biomarkers, and TCA cycle and pyrimidine metabolism were the key metabolic pathways 
involved in Armillaria antagonists. The metabolic changes revealed in this study provide insights 
into the mechanisms underlying fungal antagonists.
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1. Introduction

Armillaria (Fr.) Staude, also known as honey mush-
room or zhen-mo, belongs to the family of 
Physalacriaceae (Matheny et al. 2006; Collins et al. 
2013). Since the first discovery of Armillaria biological 
species (Korhonen 1978), nearly 40 biological species 
of Armillaria have been identified, mainly distributed 
in the tropical and temperate forest areas of North 
America, Europe, and Northeast Asia (He et al. 2019; 
Zhao et al. 2008). Armillaria can be facultatively para-
sitic or saprophytic on plants and have an indispen-
sable symbiotic relationship with Gastrodia elata and 
Grifola umbellata, which are precious Chinese medic-
inal materials (Yuan et al. 2018). As an edible and 
medicinal macrofungi, Armillaria is rich in nutritional 
and functional compounds (Wu et al. 2012; Chen et al. 
2014). For example, sesquiterpenoids are the charac-
teristic components of Armillaria, with bioactivities of 
immunomodulation and anti-tumour (Misiek et al. 

2009; Bohnert et al. 2014); polysaccharides are the 
main material basis for the bioactivities of Armillaria, 
with the function of liver-protection, hypoglycaemic, 
and anti-oxidation (Sun et al. 2009); adenosines are 
highly correlated with energy metabolism and phy-
siological regulation, such as arrhythmias prevention 
and improvement of blood circulation (Watanabe 
et al. 1990).

Antagonism between co-cultured mycelia of differ-
ent fungal species has been widely observed (Barbosa 
et al. 2001; Raziq and Fox 2003; Qualhato et al. 2013). 
The mechanisms underlying fungal antagonism often 
include nutrient and space competition, and the pro-
duction of antifungal metabolites (Gloer 1995; 
Heilmann-Clausen and Boddy 2005; Peay et al. 2008; 
Lorito et al. 2010). For example, abundant antifungal 
metabolites such as caffeic acid and eugenol were 
identified from the co-cultured liquid media of 
Leclercia adecarboxylata WT16 and Aspergillus flavus 

CONTACT Fuqiang Yu fqyu@mail.kib.ac.cn; Yanliang Wang wangyanliang@mail.kib.ac.cn
#co-first authors

Supplemental data for this article can be accessed online at https://doi.org/10.1080/21501203.2023.2238753

MYCOLOGY                                                   
2023, VOL. 14, NO. 3, 264–274 
https://doi.org/10.1080/21501203.2023.2238753

© 2023 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.  
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (http://creativecommons.org/licenses/by-nc/4.0/), which 
permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. The terms on which this article has been 
published allow the posting of the Accepted Manuscript in a repository by the author(s) or with their consent.

http://orcid.org/0000-0001-6095-8235
https://doi.org/10.1080/21501203.2023.2238753
http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/21501203.2023.2238753&domain=pdf&date_stamp=2023-08-11


(Xie et al. 2021); 1H-pyrrole-2-carboxylic acid that 
separated from the metabolites of Streptomyces gri-
seus exerted strong antagonistic effect on 
Phytophthora capsici (Nguyen et al. 2015); volatile 
organic compounds including monoterpene eucalyp-
tol and 1,8-cineol produced by Nodulisporium sp. 
GS4d2II1a showed antifungal activities against 
Aspergillus parasiticus, Aspergillus niger, and 
Sclerotinia sclerotiorum (Sanchez-Fernandez et al. 
2016). Furthermore, the mycelial growth of certain 
species could be significantly inhibited when the 
antagonism occurred (Anith et al. 2021; Rajani et al. 
2021; Hyder et al. 2022). The confrontation culture 
experiment (Mallett and Hiratsuka 1986; Hopkin 
et al. 1989) indicated that there was usually an inter-
specific black antagonistic line at the site of contact 
between two colonies of different Armillaria biologi-
cal species. Currently, studies on the metabolic com-
position of Armillaria primarily focused on the mycelia 
of Armillaria cultured separately or their fruiting 
bodies (Yang et al. 1989; Donnelly et al. 1997; 
Cremin et al. 2000). It is unclear how the metabolic 
changes in response to co-culture of different 
Armillaria biological species with antagonism zones.

Metabolomics analysis has been widely used in phar-
macology, biology, and many other research fields to 
accurately reflect the physiological responses of organ-
isms to biotic and abiotic stimuli (Seo and Shin 2022). 
Various metabolomics analysis strategies have their 
own advantages and application scopes (Saude et al. 
2006; Beckonert et al. 2007). Compared to metabolo-
mics analysis strategies such as GC-MS and NMR, LC-MS 
/MS shows good performance in sensitivity, reproduci-
bility, and coverage of analytes (Plumb et al. 2004; He 
and Aga 2019). It can greatly improve the separation 
effect of small-molecule substances, which thus makes 
it suitable for biomarker identification (t’Kindt et al. 
2009; Shi et al. 2021). In this study, two biological 
species of Armillaria, Chinese Biological Species C (C) 
and Chinese Biological Species G (G) (Qin et al. 2007), 
were co-cultured (C-G) or cultured separately (C, G) on 
agar media to see if an antagonistic line could form. 
Then, they were cultured in liquid media, and the 
metabolites in the liquid media (mainly mycelial exu-
dates) were analysed by LC-MS/MS to reveal the meta-
bolic responses of Armillaria species with antagonism 
zones. The obtained data will provide a reference for 
exploring the candidate biomarkers and the key meta-
bolic pathways involved in Armillaria antagonist.

2. Materials and methods

2.1. Experimental materials

Two biological species of Armillaria from the study of 
Qin et al. (2007) were used in this study: Chinese 
Biological Species C (C), which was collected from 
Changbai Mountain in Jilin Province; Chinese 
Biological Species G (G), which was collected from 
Taiwan Province.

2.2. Experimental design

An antagonistic experiment on agar media was con-
ducted as follows: mycelia of C and G were cultured on 
PDA media (200 g potato, 20 g glucose, and 20 g agar 
in 1,000 mL water), respectively, for 15 days firstly. 
Then, punches with a diameter of 1 cm were used to 
transfer mycelia to new PDA media under three cul-
ture modes: C-G co-culture, C and G separate culture, 
with at least three replicates. Two mycelial plugs were 
placed on each plate with a distance of 3 cm, and the 
antagonism zones between colonies were observed 
after incubation at 25 °C in the dark for 45 days.

The co-culture experiment in liquid media was con-
ducted as follows: mycelia of C and G were cultured on 
PDA media, respectively, for 15 days. Subsequently, 
a total of 20 mycelia plugs were transferred to 300  
mL of MYA liquid media (20 g malt extract, 5 g yeast 
extract, 30 g sucrose, and 13 g agar in 1,000 mL water) 
under the same three culture modes (C-G co-culture, 
C and G separate cultures), with four replicates. The 
flasks were incubated in the dark at 25 °C, shaking at 
100 r/min in the first week, then were placed under 
static conditions but were shaken for 30 s manually 
every 2 days. After 45 days, the flasks were slightly 
shaken to mix homogeneously and 10 mL of culture 
solution from each flask was sampled for filtration, and 
the filtrate was frozen with liquid nitrogen and stored 
at −80 °C until metabolome analysis.

2.3. Metabolomics analysis

2.3.1. Metabolites extraction
The liquid samples (1 mL) were freeze-dried, added 
with 100 μL of precooled ethanol/acetonitrile/water 
solution (2:2:1, v/v/v), vortex mixed, low- 
temperature ultra-sounded for 30 min, stayed at 
−20 °C for 10 min, 14,000 ×g, 4 °C for 20 min. The 
supernatant was further vacuum dried and added to 
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100 μL of acetonitrile aqueous solution (acetonitrile: 
water = 1:1, v/v), following vortexing, samples were 
then centrifuged (14,000 ×g) at 4 °C for 15 min, and 
the supernatant was used for subsequent analysis.

2.3.2. Chromatographic conditions
The samples were separated by HILIC column of ultra- 
high performance liquid chromatography, with col-
umn temperature at 40 °C, flow rate of 0.4 mL/min, 
and injection volume of 2 μL. Mobile phase A: water, 
25 mmol/L of ammonium acetate, and 25 mmol/L of 
ammonia; mobile phase B: acetonitrile. The gradient 
elution procedure was set as 95% B for 0–0.5 min; 
B changed linearly from 95% to 65% within 7 min, 
then from 65% to 40% within 8 min, and maintained 
at 40% for 8–9 min; subsequently changed linearly 
from 40% to 95% within 9 min, and maintained at 
95% for 9–12 min (Yang et al. 2020).

2.3.3. Q-TOF mass spectrometry conditions
The ESI source conditions were set in according to 
Yang et al. (2020): ion source gas I 50, ion source 
gas II 50, curtain gas 30, source temperature of 500 
°C, ±5,500 V for ion spray voltage floating in the 
negative and positive ion modes. The product ion 
scan was acquired using information-dependent 
acquisition (IDA) with high-sensitivity mode. The 
collision energy was fixed at 35 ± 15 eV, and ±80 V 
for declustering potential in the negative and posi-
tive ion modes.

2.4. Data processing

The raw MS data (wiff.scan files) were converted to . 
mzXML files using ProteoWizard MSConvert (Shen 
et al. 2016). Peak alignment, retention time correction, 
and peak area extraction were performed by XCMS. 
CAMERA (Collection of Algorithms of MEtabolite 
pRofile Annotation) was used for annotation of iso-
topes and adducts. Compound identification of meta-
bolites was performed by comparing accuracy m/z 
value (<10‰), and MS/MS spectra with databases of 
mzCloud (www.mzcloud.org/), mzVault, and Masslist.

2.5. Statistics analysis

After normalised to total peak intensity, the processed 
data were analysed by SIMCA 14.1 and Origin 2022, 
where it was subjected to multivariate data analysis, 

including Pareto-scaled principal component analysis 
(PCA) and orthogonal partial least-squares discrimi-
nant analysis (OPLS-DA). The VIP (variable importance 
in the projection) value of each variable in the OPLS- 
DA model together with the Student’s t-test was per-
formed to screen significantly differentially expressed 
metabolites (VIP value＞1, FC＞1.2 or FC＜0.833, and 
P value＜0.05). The differentially expressed metabo-
lites were then qualitatively hierarchical clustered and 
submitted to KEGG (www.genome.jp/kegg/) and 
MetaboAnalyst (www.metaboanalyst.ca/) for meta-
bolic pathway analysis.

3. Results

3.1. Antagonism zone between Armillaria C and G

When Armillaria species of C and G were paired in 
culture on agar medium, an antagonistic line was 
observed at the confronting margins of the colonies, 
but not when the same species were cultured sepa-
rately. Moreover, the mycelial growth of C was likely 
inhibited in the co-culture plate (Figure 1).

3.2. Overview of metabolome analysis

Quality control analysis showed that the response 
strength and retention time of each chromatographic 
peak of QC samples basically overlapped, and the corre-
lation coefficients were all higher than 0.9, indicating 
that the experimental process was stable and reliable 
(Figure S1). A total of 741 metabolites in the negative ion 
mode and 1,636 metabolites in the positive ion mode 
were identified (Table S1). These metabolites were clas-
sified into 18 superclasses, mainly including 709 organic 
acids and derivatives, 348 lipids and lipid-like molecules, 
292 organoheterocyclic compounds, etc. (Figure 2). PCA 
analysis could define the differences among the three 
culture modes, where PC1 explained more than 43% of 
the variance for modelling. However, some overlap in 
the samples could be seen and high variation within the 
samples of the same culture mode could be observed 
[Figure S2(a,c)]. After filtering out the orthogonal vari-
ables irrelevant to categorical variables, OPLS-DA analy-
sis could nicely define the differences among these three 
culture modes [Figure S2(b,d)]. These results suggested 
that the C-G co-cultured mode had significantly different 
metabolic characteristics, compared to their separate 
culture modes.
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3.3. Differentially expressed metabolites induced 
by co-culture of C and G

There were a total of 248 differentially expressed meta-
bolites (20 up-regulated and 228 down-regulated) 
between group C-G and C, 142 differentially expressed 
metabolites (31 up-regulated and 111 down-regulated) 
between group C-G and G, and 297 (104 up-regulated 
and 193 down-regulated) between group G and 
C (Tables 1, S2, and S3). Among these differentially 
expressed metabolites, the largest number of metabo-
lites belonged to organic acids and derivatives (343), 
followed by lipids and lipid-like molecules (65), and 
organoheterocyclic compounds (63) (Figure 3). The dif-
ferentially expressed metabolites were categorised into 
three major metabolic pathways: organismal systems, 

metabolism, and environmental information processing, 
with the largest number of metabolites, were cate-
gorised into metabolism pathway. Within the metabo-
lism pathway, 1,836 metabolites were categorised into 
global and overview maps (Figure 4).

Wayne analysis found 14 common differentially 
expressed metabolites among the three culture 
modes in the negative and positive ion modes: 
lithosprmoside, (+)-.gamma.-tocopherol, Glu-His, 
malate, Leu-Arg, uracil, 2-chloro-2”-hydroxy-4”- 
methylbenzophenone, His-His-Arg, 4-hydroxyquino-
line, cucurbitacin i, arenobufagin, Leu-Gln-Arg, 
4-piperidinecarboxamide, and physcion [Figure 5(a, 
c)]. Hierarchical clustering analysis showed that the 
samples of each culture mode were clustered 
together, indicating that metabolic characteristics 

Figure 2. Superclasses of the identified metabolites.

Figure 1. Observation of antagonistic zone of different species of Armillaria. (a) C and G paired in culture on agar medium. (b) C and 
C paired in culture on agar medium. (c) G and G paired in culture on agar medium.
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Table 1. Quantitative statistics of differentially expressed metabolites.

Comparison groups
Number of differentially  
expressed metabolites

Up-regulated 
metabolites

Down-regulated 
metabolites

C-G vs C neg 67 7 60
C-G vs C pos 181 13 168
C-G vs G neg 62 12 50
C-G vs G pos 80 19 61
G vs C neg 70 38 32
G vs C pos 227 66 161

Figure 3. Number of differentially expressed metabolites in different superclasses in the negative (a) and positive (b) ion modes, 
respectively. Different superclasses in y axis are distinguished with different colours.

Figure 4. KEGG pathways for the differentially expressed metabolites.
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in the same group were similar. Eleven of the 14 
common differentially expressed metabolites 
(except lithosprmoside, his-his-arg, and 4-hydroxy-
quinoline) were generally greater in the culture 
solution of C than G and were repressed in co- 
culture mode C-G [Figure 5(b,d) and Figure S3].

KEGG topology analysis showed a total of 29 
significantly enriched metabolic pathways in 
group C-G versus C. Based on the P values, the 
top five metabolic pathways were protein diges-
tion and absorption, ABC transporters, aminoacyl- 
tRNA biosynthesis, mineral absorption, and bio-
synthesis of amino acids (Figure 6a, Table S4). In 
group C-G versus G, 25 metabolic pathways were 
enriched significantly, with the top five metabolic 
pathways were: TCA cycle, carbon fixation path-
ways in prokaryotes, pyruvate metabolism, taste 
transduction, glyoxylate, and dicarboxylate meta-
bolism (Figure 6b, Table S5). Among these meta-
bolic pathways, TCA cycle, taste transduction, 
glyoxylate and dicarboxylate metabolism, 

pyrimidine metabolism, carbohydrate digestion 
and absorption, and mineral absorption were over-
lapped between these two comparison groups. 
Common differentially expressed metabolites and 
categorised metabolic pathways, malate and TCA 
cycle, as well as uracil and pyrimidine metabolism, 
were highly correlated, which could be speculated 
as the candidate biomarkers and the key metabolic 
pathways involved in fungal antagonists of 
Armillaria.

3.4. New metabolites induced by co-culture of 
Armillaria C and G

Compared to the separate culture modes, a total of 
156 new metabolites induced by C-G co-culture were 
identified, which were classified into nine super-
classes (Figure 7). These new metabolites covered 80 
metabolic pathways, and 15 new metabolites were 
categorised into the biosynthesis of secondary meta-
bolites. Among these new metabolites, 32 potential 

Figure 5. (a), (c) Wayne diagrams of differentially expressed metabolites among the comparison groups in the negative and positive 
ion modes, respectively. (b), (d) Cluster heat maps of common differentially expressed metabolites in the negative and positive ion 
modes, respectively. The colour bar in heat maps indicates the content levels (represented as the transformed intensity of original 
peak); red indicates the high content level and blue indicates low content level. Numbers on the axis represent Z-score, Z=(x-μ)/σ: 
x represents the intensity of original peak; μ represents average; σ represents standard deviation. The colours of the differentially 
expressed metabolites in y axis correspond to the colours of superclasses in Figure 3, the same colour represents the affiliation. Same 
below.
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antifungal metabolites were found, primarily enriched 
into organic acids and derivatives (10 metabolites) 
(Table S6).

4. Discussion

Numerous studies on the chemical components of 
Armillaria mycelia cultured separately or their fruiting 
bodies have been reported from the late 1970s, and 

compounds like protoilludane sesquiterpenoids, poly-
saccharides, sterols, etc. were rich in Armillaria 
(Obuchi et al. 1990; Momose et al. 2000; Puzyr et al. 
2017; Li et al. 2020a; Erbiai et al. 2021). In this study, 
a large number of metabolites (709) belonging to 
organic acids and derivatives were identified from 
mycelial exudates and differentially expressed meta-
bolites belonging to organic acids and derivatives 
changed mostly among different culture modes, indi-
cating that organic acids and derivatives were the 
dominant components in mycelial exudates of 
Armillaria. Sixteen metabolites belonging to sesqui-
terpenoids were identified, but they were not signifi-
cantly affected by co-culture mode. Moreover, 
metabolites like lignans, neolignans, and polyketides 
were identified in our study, but were rarely identified 
from the mycelia and fruiting bodies in previous stu-
dies (Muszynska et al. 2011; Zhang et al. 2015; Li et al. 
2016; Ren et al. 2022), showing the metabolic differ-
ences between mycelial exudates, mycelia and fruit-
ing bodies. Furthermore, compared to the separate 
culture modes, polyketides were generally repressed 
in C-G co-culture, which might be due to metabolic 
changes in response to biotic stimulus in the co- 
culture of Armillaria species with antagonism effect 
(Nicoletti et al. 2004; Arredondo-Santoyo et al. 2018; 
Dullah et al. 2021). Lignans and neolignans, which 
were newly identified in our study, had significant 
bioactivities: lignans could inhibit the formation and 
growth of hormone-dependent cancer cells and pro-
tect the human body against oestrogen-related 

Figure 7. Superclasses of the new metabolites induced by 
C-G culture.

Figure 6. KEGG pathways of differentially expressed metabolites in group C-G versus C (a) and group C-G versus G (b), respectively. In 
the bubble diagram, each bubble represents a metabolic pathway (top 20 with significance).
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diseases, such as osteoporosis and breast cancer 
(Ionkova 2011). Polyketides, which could be isolated 
from the co-culture of Armillaria and Phoma sp. 
YUD17001 showed bioactivities of antibacterial, anti-
parasitic, anticancer, hypolipidemic, and immunosup-
pressant (Das and Khosla 2009; Li et al. 2020b).

Common differentially expressed metabolites can 
be used as the candidate biomarkers (Kalantari et al. 
2019; Shi et al. 2021). In this study, common differen-
tially expressed metabolites malate and common 
categorised metabolic pathways TCA cycle showed 
high correlation, thus could be speculated as the 
candidate biomarker and key metabolic pathway 
involved in interspecies antagonism of Armillaria. 
Malate can be an antibacterial substance and can 
induce chemotaxis and biofilm formation of antago-
nistic bacteria specifically (Jog et al. 2014; Wang et al. 
2021). Organic acids including malate are the inter-
mediate products of the TCA cycle, which can affect 
TCA cycle as energy and/or signal substances 
(Goldberg et al. 2006). Compared with group C and 
G, 91.3% of organic acids and derivatives were signifi-
cantly repressed in group C-G, suggesting that the 
TCA cycle might be inhibited or blocked (Raimundo 
et al. 2011), and hereby restricted mycelial growth in 
the co-culture mode. Uracil, as an important compo-
nent of pyrimidine metabolism (commonly cate-
gorised metabolic pathways), could be used as 
another candidate biomarker in our study. Uracil aux-
otrophic mutants of Pichia anomala strain K showed 
inferior antagonism and colonisation activities 
(Grevesse et al. 2003).

A total of 70 enriched metabolic pathways over-
lapped between group C-G versus C (119 meta-
bolic pathways) and group C-G versus G (86 
metabolic pathways), suggesting that C and 
G might have similar metabolic characteristics. 
However, the most significantly enriched metabolic 
pathways were exclusive between the comparison 
groups when C and G were paired in culture, 
which indicated that significantly differentially 
metabolic characteristics might be produced by 
C-G co-culture. In this study, a total of 156 new 
metabolites were induced by the co-culture of 
C and G, and 32 metabolites with potentially anti-
fungal activities. Leucine, an antifungal metabolite 
belonging to organic acids, was separated from the 
fermentation broth of an unidentified fungus 
(Hedge et al. 2001). In the composition of 

differentially expressed metabolites, new metabo-
lites, and antifungal metabolites induced by 
C-G co-culture, the number of organic acids and 
derivatives was the largest, indicating that organic 
acids and derivatives might affect some metabolic 
pathways involved in fungal antagonists of 
Armillaria (Hirozawa et al. 2023). 2,4-di-tert- 
butylphenol, an antifungal secondary metabolite 
produced by Aspergillus flavus YRB2, exhibited 
strong antagonistic activity against Fusarium solani 
in vitro (Rashad et al. 2022). In this study, the new 
metabolites induced by C-G co-culture were mostly 
enriched into the biosynthesis of secondary meta-
bolites. It might be correlated with the mechan-
isms involved in antagonism between different 
Armillaria biological species, which need further 
study. Thymine isolated from Penicillium chryso-
genum sp. ZZ1151 showed antimicrobial activity 
against Escherichia coli and Candida albicans 
(Newaz et al. 2022). Furthermore, thymine was an 
important component of pyrimidine metabolism, 
which was speculated as the key metabolic path-
way involved in fungal antagonists of Armillaria in 
our study. These results on metabolites from 
Armillaria antagonists could enrich our understand-
ing of the metabolic responses of Armillaria species 
with antagonism zones and help to discover anti-
fungal metabolites, the candidate biomarkers, and 
the key metabolic pathways involved in metabolic 
mechanisms underlying fungal antagonists of 
Armillaria, which provided references for its poten-
tial application as a biocontrol agent.

The content of fungal metabolites shall be related 
to the mycelial biomass. The biomass of mycelia was 
not measured in the current study due to the pre-
sence of agar on mycelia and the difficulty in col-
lecting all mycelium in a liquid culture system. The 
mycelial growth of Armillaria C in the co-culture 
mode might be negatively affected. However, the 
same number of mycelia-containing agar plugs with 
the same diameter were put into each flask, making 
the data still comparable and the results might still 
reflect the relative differences among different cul-
ture modes. Furthermore, the targeted metabolo-
mics analysis shall be used to verify the findings in 
this study, and the activities and functions of differ-
entially expressed metabolites, as well as the new 
metabolites induced by co-culture mode need 
further study.
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5. Conclusion

This study analysed metabolites in the mycelium cul-
ture solution of Armillaria species with an antagonistic 
line. We found that the contents of organic acids and 
derivatives in the culture solutions changed greatly, 
and some new metabolites were produced in the co- 
culture mode. Furthermore, malate and uracil could 
be used as the candidate biomarkers, and TCA cycle 
and pyrimidine metabolism might be the key meta-
bolic pathways involved in fungal antagonists of 
Armillaria.
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