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Abstract The developing nervous system is highly suscepti-
ble to methylmercury (MeHg), a widespread environmental
neurotoxic contaminant. A wide range of morphological and
functional outcomes have been described; however, there are
still open questions regarding the mechanisms behind the de-
velopmental neurotoxic effects induced by low-level expo-
sure. In the present study, we have examined the effects of
nanomolar concentrations of MeHg on primary fetal human
progenitor cells (WNPCs) with special focus on the role played
by developmental stage and sex on the neurotoxic outcome.
We found that neurospheres derived from earlier gestational
time points exhibit higher susceptibility to MeHg, as they
undergo apoptosis at a much lower dose (25 nM) as compared
to neurospheres established from older fetuses (100 nM). At
subapoptotic concentrations (10 nM), MeHg inhibited neuro-
nal differentiation and maturation of hNPCs, as shown by a
reduced number of Tujl-positive cells and a visible reduction
in neurite extension and cell migration, associated with a
misregulation of Notchl and BDNF signaling pathways.
Interestingly, cells derived from male fetuses showed more
severe alterations of neuronal morphology as compared to
cells from females, indicating that the MeHg-induced
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impairment of neurite extension and cell migration is sex-de-
pendent. Accordingly, the expression of the CDKLS5 gene, a
major factor regulating neurite outgrowth, was significantly
more downregulated in male-derived cells. Altogether, gesta-
tional age and sex appear to be critical factors influencing
in vitro hNPC sensitivity to low levels of MeHg.
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Introduction

Methylmercury (MeHg) is a widespread environmental con-
taminant well known to be particularly harmful during ner-
vous system development. The developmental neurotoxicity
in humans has been recognized after poisoning catastrophes
(Harada 1995), where children with neurological impairments
were born by seemingly symptom-free women, highlighting
that the developing nervous system is much more vulnerable
than the adult one. Histopathological examinations during au-
topsies of MeHg exposed infants have shown alterations in
specific brain areas, such as cerebellum and cerebral cortex
(Roegge et al. 2006; Johansson et al. 2007), and signs of
defects in neuronal organization and migration (Choi et al.
1978; Wilson et al. 2005; Fahrion et al. 2012).
Epidemiological data and behavioral studies on experimen-
tal animals exposed in utero have established that subcytotoxic
doses that do not induce apoptosis or major histopathological
signs still cause long-lasting impairments (Onishchenko et al.
2007; Johansson et al. 2007; Castoldi et al. 2008; Onishchenko
et al. 2008). Moreover, behavioral studies in experimental ani-
mals, prenatally exposed to MeHg, showed in males but not in
females reduced motor activity (Rossi et al. 1997; Giménez-
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Llort et al. 2001) and depression-like behavior (Onishchenko
et al. 2007; Onishchenko et al. 2008).

The molecular mechanisms behind low-level MeHg-in-
duced developmental neurotoxicity have been studied in dif-
ferent experimental models both in vivo and in vitro, and
neural stem and progenitor cells have been shown to be
among the most sensitive targets (Tamm et al. 2006;
Johansson et al. 2007; Tamm et al. 2008). We have found that
rat embryonic NPCs exposed to very low concentrations of
MeHg undergo alterations in proliferation capacity and in-
creased susceptibility to oxidative stress and that these chang-
es are heritable as they are present in daughter cells never
directly exposed to the neurotoxicant (Bose et al. 2012).
These cellular alterations are accompanied by changes in
DNA methylation, suggesting the involvement of epigenetic
mechanisms (Bose et al. 2012). In addition, we found that
male mice exposed to low levels of MeHg in utero exhibited
reduced hippocampal neurogenesis even as adults and had
fewer granule neurons in the dentate gyrus (Onishchenko
et al. 2008).

To further investigate the mechanisms involved in low
doses of MeHg neurotoxicity, we examined putative sex-
related differences in the susceptibility to MeHg in primary
human progenitor cells (hNPCs), with special focus on neu-
ronal differentiation and maturation. Our data show that
10 nM MeHg inhibits neuronal differentiation and that the
underlying mechanism probably targets the Notch signaling,
a key regulator of neurogenesis (Louvi and Artavanis-
Tsakonas 2006; Imayoshi et al. 2010).

There are several studies showing that MeHg disrupts neu-
ronal migration (Heidemann et al. 2001; Moors et al. 2007;
Moors et al. 2009; Guo et al. 2013), which may represent one
of the main factors mediating MeHg developmental neurotox-
icity. However, the mechanisms involved need to be further
elucidated. Here we show that subapoptotic concentrations of
MeHg induce an impaired migration associated to
misexpression of cyclin-dependent kinase-like 5 (CDKLS), a
key gene regulating neuronal morphogenesis and dendritic
arborization by a mechanisms involving BDNF-Rac1 signal-
ing (Chen et al. 2010). Moreover, MeHg interferes with neu-
ronal maturation in a sex-dependent manner, as the observed
alterations are more pronounced in cultures established from
male fetuses.

Material and Methods

Chemicals

All chemicals were and reagents were obtained from Life
Technologies and Sigma-Aldrich unless otherwise stated.

MeHg hydroxide was purchased from ALFA, Johnson
Matthey, Karlsruhe, Germany.
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Cell Culture

Postconception week (PCW) 8.5 hNPC cultures were
established from human fetal central nervous system tissue.
The Regional Ethics Committee, Stockholm, Sweden (nos.
2008/158-33/3, 2011/1101-32) approved the procedure.
Briefly, cortical forebrain tissue was collected from clinical
first trimester routine abortions, after obtaining informed con-
sent by women undergoing termination of pregnancy. The
human tissue was homogenized with a glass-Teflon homoge-
nizer and cultured at 100,000-200,000 cells/ml in NS medium
supplemented with 20 ng/ml epidermal growth factor (EGF),
20 ng/ml bFGF, and 10 ng/ml ciliary neurotrophic factor
(CNTF) (all from R&D), as previously described (Akesson
et al. 2009). Neurospheres cultures were passaged every 7—
14 days by using TrypLE Express (Life Technologies), and
fresh medium was added twice a week. hNPC was expanded
as free-floating neurospheres in Corning® non-treated culture
dishes or Corning® ultra-low attachment culture dishes
(100 mm x 20 mm, Sigma-Aldrich) and maintained in a hu-
midified atmosphere at 37 °C and 5% CO,. All the following
experiments were performed in hNPCs between passages 5
and 10.

hNPCs from PCW 16 were obtained from Lonza (Verviers
SPRL) and cultured as previously described (Moors et al.
2009; Moors etal. 2012) at 37 °C and 5% CO, as a suspension
culture in defined serum-free media composed of Dulbecco’s
modified Eagle medium (DMEM) and Hams F12 (3:1), sup-
plemented with penicillin/streptomycin (50 U/ml), B27 1:50
(Invitrogen), 20 ng/ml EGF and 20 ng/ml recombinant human
fibroblast growth factor (FGF; R&D Systems). Passaging was
performed mechanically by cutting large spheres into smaller
pieces using a Mcllwain tissue chopper (Svendsen et al.
1998). Growing the human neural progenitor cells as
neurospheres allows large numbers of cells to be expanded
in small volumes of medium. However, to achieve homoge-
nous levels of MeHg exposure for proliferation or differenti-
ation assays, we dissociated the neurospheres to single cells
before exposing them to MeHg containing medium. For mi-
gration assays, we used intact neurospheres.

All the experiments were performed using doses and times
of exposure that do not induce apoptosis. For proliferation
analyses, single cells were plated onto poly-D-lysine (PDL)
and laminin coated glass coverslips (diameter 12 mm, placed
in Nunclon® A Multidishes, 24 wells, flat bottom) and kept in
DMEM/F12/ N2 (DFN) medium (DMEM/Hams F12 3:1,
supplemented with N2, 1:100,Invitrogen), supplemented with
FGF and EGF. The next day, cells were exposed to 10—
100 nM MeHg in FGF/EGF-supplemented DFN medium for
24 h (see also supplementary material). The exposure was
performed by replacing the culture medium with FGF/EGF-
supplemented DFN medium containing MeHg. In the control
cell cultures, no MeHg was added to the replacement medium.
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For the proliferation studies, more than 5100 cells/nuclei per
treatment (in total) were counted.

For differentiation analyses, dissociated cells were plated
on PDL and laminin coated glass coverslips (placed in
Nunclon® A Multidishes, 24 wells, flat bottom) at a density
of 40.000 cells per 12 mm coverslip, in MeHg-containing
(10 nM MeHg) or MeHg-free DFN medium. Gene expression
analysis, immunostaining, neurite length quantification, and
apoptosis assays were performed after 96 h of differentiation.
For the apoptosis studies, more than 3.300 cells/nuclei per
treatment (in total) were counted.

Sex Determination

For sex determination, genomic DNA was harvested from
about 50 neurospheres using a genomic DNA extraction kit.
The DNA was eluted in water and subjected to PCR with two
primer pairs against the AMELX/AMELY gene (Nakahori
et al. 1991). AMELX/AMELY is a single copy gene, located
on the X and Y chromosomes. X- and Y-specific products
with different sizes were simultaneously detected because of
difference in the lengths of corresponding introns (Fig. 1b).

Immunohistochemistry, Fluorescence Microscopy,
and Quantification

Cell cultures were fixed in 3% paraformaldehyde for 30 min at
room temperature, then washed, and stored in phosphate-
buffered saline (PBS). Apoptotic nuclei were detected by
staining with Hoechst 33342, 1 pg/ml. Primary antibodies
were rabbit anti-Ki67 (1:1000 Novcastra), (III)tubulin
(1:500, Covance), and rabbit-antiglial fibrillary acidic protein
(GFAP; 1:500, DAKO).

Images were collected from random fields by a Nikon
inverted fluorescent microscope (Nikon Eclipse Ti-S)
equipped with a Nikon Digital Sight DS-QilMC camera.
For quantitative analysis, the images were batch processed
(to avoid bias) using the Volocity image analysis software
(Demo-version, PerkinElmer) or ImageJ (http://imagej.net/
ImageJ).

Migration Assay

For migration assay, neurospheres were plated in PDL and
laminin-coated multi-well plates (24 or 48 wells, Nunc) and
left to attach overnight in DFN medium. The following morn-
ing, cultures were switched to MeHg-containing DFN medi-
um (10 nM MeHg) or fresh MeHg-free DFN medium and
placed in a Cell-IQ incubator (Chip-Man Technologies) for
live imaging over the next 26 h. Phase contrast images of each
neurospheres were collected every 30 min.

RNA Extraction, cDNA Synthesis, and Quantitative
RT-PCR

For mRNA extraction and quantification, total RNA was iso-
lated using the peq Gold Microspin Total RNA Kit (peqLab
GmbH, Erlangen, Germany). Complementary DNA (cDNA)
was synthetized from at least 1 pg RNA by using Superscript
II First-Strand cDNA Synthesis Kit according to the manufac-
turer’s protocol. Amplification reactions were set up, and
product accumulation was measured by quantitative real-
time (qRT) PCR analyses based on SYBR Green detection
via ABI Prism 7000. Sequence Detection System with SDS
software (version 2.1; Applied Biosystems, Foster City, CA).
The qRT-PCR cycle conditions were 50 °C for 2 min, 95 °C
for 10 min, 95 °C for 15 s, and 60 °C for 1 min (40 cycles).
Expression levels were normalized to the housekeeping genes
-actin and ribosomal protein-like 13 (ACt = Ct (target
gene) — Ct (housekeeping gene), which showed no MeHg-
induced changes in gene expression (data not shown).
Relative expression levels were calculated as
AACt = ACtMeHg — ACtcontrol, and expression changes
were calculated as 2—AACt. Primers were used at a final
concentration of 4 M. Primer sequences and annealing tem-
peratures used for qRT-PCRs were as follows:

HES5 fw 5-ACATCCTGGAGATGGCTGTC-3’
HES5 rev 5'-AGCAGCTTCATCTGCGTGT-3',
Ta=58°C

BDNF fw 5-CAGTTGCGCGTTCTGAAATA-3'
BDNF rev 5'-CAGGGCTCTACCTTTTGCTT-3',
Ta=58°C

CDKLS fw 5'-ATCCAAAACCGTCTGAAGGA-3'
CDKLS5_rev 5'-CCTGCTAGAAGTGGGGGACT-3/,
Ta=58°C

AMXY 1 fw 5'-CCCTGGGCTCTGTAAAGAAT-3’
AMXY 1 rev 5-TTATTCCTTTCTGAACAGTATA-3',
Ta=54°C

AMXY 2 fw 5-CTCTGATGGTTGGCCTCAGG-3’
AMXY 2 rev 5'-TTGCTCATATTATACTTGAC
AAAGCA-3', Ta=58 °C.

Product specificity was determined via melting curve anal-
yses (temperature ramp from 60 to 95 °C) and agarose gel
electrophoresis. All experiments were done on three replicate
samples from two independent cell preparations from different
donors.

Statistics
All experiments were performed on cells from at least three
different fetuses in at least two replicate cultures (see Table 1).

For statistical analysis, ANOVA followed by Tukey’s post hoc
test was used for comparisons between control and cultures
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Fig. 1 Human neural progenitor A
cell characterization. a Human
NPCs were isolated from the
dorsal cortex from terminated
fetuses at PCW 8.5-16. b Cells
were grown as neurospheres that
can be expanded in vitro for
multiple passages. Chromosomal
XX or XY karyotypes of hNPCs
were identified by PCR
amplification of the amelogenin
gene. ¢ In the presence of EGF
and FGF, cells showed typical
morphology and gene expression
pattern of radial glia. NESTIN is
in green, PAX6 in red. d Eighteen
hours after growth factor C
withdrawal, beta tubulin III
(green)-positive neurons
emerged. Scale bars represent

50 puM (e, d) (color figure online)

P

GWS85-16
dorsal cortex

exposed to different concentrations of MeHg. Factorial (two-
way) ANOVA was used to relate MeHg exposure and sex
differences. Student’s ¢ test was used for comparisons of two
groups. The significance value was set at p < 0.05. Values are
shown as mean + SEM unless otherwise stated.

Results

Fetus Developmental Age Influences Cytotoxicity
of MeHg

The developing nervous system is particularly sensitive to
insults during the first trimester of pregnancy (Miodovnik
2011). Therefore, as a first aim of the present study, we wanted
to evaluate neurodevelopmental effects of low doses of MeHg
in human neurospheres derived from PCW 8.5 fetuses (four
male and four female), representative of an early stage of
neurogenesis (Stiles and Jernigan 2010) (Fig. 1a).
Neurospheres generated from 8.5-week-old fetuses are
characterized by the expression of well-established radial glia
associated markers, namely Sox2, Pax6, and Nestin (Lendahl
et al. 1990; Gotz et al. 1998; Graham et al. 2003) (Fig. 1c).
Clonal neurospheres are composed by heterogeneous cellular
populations including neural stem cells and neuronal and glial
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amelogenin PCR
primer pair 1 primer pair 2
S 740bp 740bp
- -
700bp —> W - ) 540bp 540bp
, S
500bp —> — 560bp e
- - —-——
300bp —}> 27008
XX XY XX XY
primer pair 1 primer pair 2

AMXY_1Fw: CCCTGGGCTCTGTAAAGAAT  AMXY_2Fw CTCTGATGGTTGGCCTCAAG
AMXY_1R  : TTATTCCTTTCTGAACAGTATA AMXY_2R  TTGCTCATATTATACTTGACAAAGCA

progenitors in different stages of differentiation (Suslov et al.
2002; Jensen and Parmar 2006). Therefore, when dissociated
neurospheres are differentiated, the progenitor population will
rapidly initiate neuronal and glial differentiation (Fig. 1d),
while the neural stem cell population will keep a radial glia-
like morphology (Fig. 1c; supplementary Movie 1).

To assess whether MeHg toxicity is influenced by the de-
velopmental stage, we used hNPC cultures also from PCW 16
fetuses and assayed the effects of four MeHg concentrations
(in the range 2.5-100 nM) on the apoptosis rate. To this pur-
pose, we evaluated chromatin condensation and quantified

Table 1 Number of fetuses employed for each type of experiment
Marker/assay Fetuses XY XX
Ki67 staining 6 3 3
Tujil staining 8 4 4
GFAP staining 3 2 1
Neurite length assay 8 4 4
Hes5 qRT-PCR 8 4 4
BDNF qRT-PCR 8 4 4
CDKLS qRT-PCR 8 4 4
Migration assay 8 4 4
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nuclei with apoptotic morphology (Darzynkiewicz et al. 1992)
(Fig. 2a, b).

In hNPC cultures from PCW 8.5-week fetuses, we found
significantly increased apoptosis after exposure to 25 nM
MeHg (Fig. 2c), while cultures established from 16 weeks
fetuses (PCW 16) showed a comparable amount of apoptotic
cells only after exposure to 100 nM MeHg (Fig. 2d), indicat-
ing that the susceptibility of hNPCs to MeHg is related to the
developmental stage.

Subapoptotic Doses of MeHg Affect Neuronal
Differentiation of PCW 8.5 hNPCs

Next, we wanted to evaluate the effect on neuronal differenti-
ation of 10 nM MeHg, a subtoxic concentration that does not
affect the proliferation of PCW 8.5-derived hNPCs (see Suppl.
Fig. 1). After 4 days of spontaneous differentiation, MeHg-
treated hNPCs showed a significant reduction in the number
of newly formed neurons (Tujl-positive) (Fig. 3a, b, ¢). It is
known that MeHg is able to activate the Notch signaling path-
way by regulating ADAM metalloproteases (Bland and Rand
2006; Tamm et al. 2008); therefore, we looked at the expres-
sion of the well-known Notch signaling target HESS.
Consistently, MeHg exposure induced an upregulation of
HESS, as shown in Fig. 3d.

We next looked at the glial compartment and found no
changes in the number of GFAP expressing cells (Fig. 3a, b,
e), suggesting that MeHg stalls neuronal differentiation rather
than causing a shift toward the glial fate. To assess whether the
observed MeHg-induced inhibition of neuronal differentiation
was sex-related, we compared the expression level of the same
neuronal and glial markers in hNPCs from male and female
fetuses in the presence of MeHg but we could not find any
significant change (data not shown). Due to its crucial role in
regulating neuronal differentiation (Numakawa et al. 2010),
we quantified BDNF expression on differentiating PCW 8.5
hNPCs and found it to be significantly lower in cultures ex-
posed to MeHg (Fig. 4a). There was no sex-related change in
BDNF expression when comparing MeHg-treated male cells
to female cells (Fig. 4b).

MeHg Exposure Affects Neurite Extension and Neuronal
Migration in a Sex-Related Manner

We next measured the neurite length of immature neurons
in cultures treated with 10 nM MeHg and found a signifi-
cant difference after 4 days of spontaneous differentiation,
as compared to control (Fig. 5a). Importantly, when com-
paring male versus female cultures, neurite length was sig-
nificantly reduced in cultures of developing neurons with
male karyotype (80% of control in females and 59% of
control in males; Fig. 5b).

Moreover, MeHg exposure reduced cell migration over a
period of 18 h to about 77% of control (Fig. 5c, d), and the
male-karyotype cultures were more affected as compared to
cultures from female karyotype (86% of control in females
and 63% of control in males; Fig. 5e). In light of the
CDKLS5 (cyclin-dependent kinase-like 5) role as a critical reg-
ulator of neuronal morphogenesis (Chen et al. 2010), we
looked at its expression in MeHg-exposed and control cultures
of differentiating PCW 8.5 hNPCs. CDKLS5 expression was
significantly decreased in MeHg-treated cultures, and the ex-
pression was even lower in cultures with male karyotype, as
compared to female karyotype cells (Fig. 4c, d).

Discussion

In the present study, we show that the cytotoxicity of low
doses of MeHg in human neurospheres is influenced by ges-
tational age and that subapoptotic concentrations of MeHg
impair neuronal maturation in a sex-dependent manner.

We found that hNPCs from an earlier fetal period are more
susceptible to low doses MeHg as compared to cells from
older fetuses, suggesting that MeHg toxicity is influenced by
fetal developmental age and it is tempting to speculate that the
molecular mechanisms involved may be related to the antiox-
idative enzymes expression level.

Previous studies from our group have shown that prenatal
exposure to MeHg in the nanomolar range can inhibit neuro-
nal differentiation (Tamm et al. 2008; Bose et al. 2012). In
close accordance, the present data indicate that exposure to
subapoptotic concentrations of MeHg interferes with neuronal
differentiation of hNPCs, as shown by a decreased number of
Tujl-positive cells. It is well established that Notch signaling
plays a key role in neurogenesis as its activation induces the
expression of transcriptional repressor genes, including Hes/
and Hes), leading to the inhibition of neuronal differentiation
(Imayoshi et al. 2010). In light of its role as Notch effector, the
increased expression of HESS observed in our cells exposed
to MeHg suggests that the molecular mechanism underlying
the decreased neuronal differentiation involves an over-
activation of Notch signaling that keeps progenitor cells in
their undifferentiated state. This is further supported by our
data showing that the inhibition of neuronal differentiation is
not associated with an increase in the number of glial cells,
indicating that MeHg does not induce a shift toward the glial
fate and non-neuronal cells retain their progenitor identity as a
consequence of Notch signaling activation.

In the attempt to identify additional factors mediating
MeHg detrimental effects on hNPC, we analyzed BDNF ex-
pression, a key factor for neuronal differentiation and survival
(Numakawa et al. 2010). According to previous studies, peri-
natal exposure to MeHg induces an increase in DNA methyl-
ation and a concomitant decrease of H3 acetylation in the
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Fig. 2 Assessment of hNPC susceptibility to MeHg at different
gestational time points. a, b Apoptotic index in control and MeHg-
treated cultures was evaluated after 4 days of differentiation using
Hoechst 33342 to count nuclei with normal morphology and nuclei
exhibiting apoptotic chromatin condensation. ¢ In PCW 8.5 cultures,
significantly increased levels of apoptosis were found after exposure to

BDNF promoter region, leading to the repression of its ex-
pression (Tsankova et al. 2006; Onishchenko et al. 2008).
Consistently, we found a decreased BDNF expression level
in MeHg-exposed hNPC, suggesting that alterations in this
pathway may be directly involved in the disruption of hNPC
differentiation following MeHg treatment.

After a deeper characterization of differentiated hNPC, we
found a reduced neurite extension and cell migration follow-
ing exposure to MeHg. As previously shown, exposure to nM
concentration of MeHg disrupts neuronal migration and in-
hibits axonal morphogenesis of NPCs in vivo and in vitro
(Heidemann et al. 2001; Moors et al. 2007; Moors et al.
2009; Guo et al. 2013); however, the underlying mechanisms
are still not clearly identified. A study by Guo et al. showed
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25 nM and 100 nM MeHg. Control cultures exhibited 3.4% apoptosis
(177 out of 5273 counted nuclei). d In PCW 16 cultures, only 100 nM
MeHg increased apoptosis. Control cultures exhibited 5.4% apoptosis
(305 out of 5682 counted nuclei). Scale bars represent 50 uM (a, b).
Error bars represent SEM, ***¥p < 0.001 (¢, d)

that exposure to low levels of MeHg suppresses the expres-
sion of three key proteins involved in the regulation of neuro-
nal migration, namely Racl, Cdc42, and RhoA (Guo et al.
2013). Another reasonable molecular mechanism may involve

Fig.3 MeHg-induced impairment of hANPC neuronal differentiation. a, b P
Immunohistochemical stainings showing newly formed beta tubulin IIT
(Tujl)-positive neurons (green) and GFAP-positive astrocytes (red) in
control and 10 nM MeHg-treated cultures, after 4 days of spontaneous
differentiation. ¢ Quantification of Tujl-positive cells expressed as
percentage of total cell numbers. d qRT-PCR quantification of HES5
expression level in control and MeHg treated cells. e Percentage of
control and MeHg-treated cells immunoreactive for GFAP after 4 days
of differentiation. Scale bars represent 50 uM (a, b). Error bars represent
SEM, ##* p <0.001 (¢, d)
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the BDNF-activated pathways. Indeed, it is known that after
BDNF binding to TrkB receptor, several signaling pathways
are activated, including the MAPK/ERK1/2, a crucial path-
way promoting cell migration (Huang et al. 2004; Moors et al.
2007). Thus, the BDNF downregulation observed in our sam-
ples after MeHg exposure may contribute to the migration
impairment.

Neuronal process elongation and maintenance are regulat-
ed by nerve growth factor (NGF) in a microtubule-dependent
manner (Drubin et al. 1985), and it is known that MeHg

Fig. 4 Effects of MeHg on A
BDNF and CDKLS expression. a, 1.2-
b qRT-PCR quantification :
revealed BDNF gene
downregulation following 10 nM
MeHg exposure. No significant <
difference in BDNF expression 2
level emerged by comparing male _::
and female hNPC. ¢ qRT-PCR .g
experiment showing CDKL5 4 Ea;
gene downregulation after 10 nM z £
MeHg exposure. d The % =
expression level of CDKLS5 gene < =
is affected differently in male é §
versus female hNPCs after 10 nM = ~
MeHg treatment. Error bars [
represent SEM, Z
#p < 0.05;7%%p < 0.001 (a, b) g
control
C
14 -
1.2 4
°
£ -
o)
= o0
2 5 08 4
*
v =
5) é 0.6 -
2
@) 0.4
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0 4

control
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interferes with the axonal outgrowth process by poisoning
microtubule assembly (Miura et al. 2000; Heidemann et al.
2001). A recent study by Fujimura et al. (2016) showed that
prenatal exposure to low-dose MeHg was associated with a
significant downregulation of eukaryote elongation factor
1A1 (eEF1Al), a key factor regulating neurite outgrowth,
through NGF/TrkA activated pathway (Fujimura et al.
2016). According to other studies (Inamura et al. 2005), addi-
tional mechanisms involving BDNF-mediated regulation of
eEF1A activity play a role in the MeHg-induced inhibition
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Fig. 5 MeHg-induced disruption A

of neurite extension and cell 140 —
migration. a Quantification of
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treated with 10 nM MeHg 100 4
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In vitro, human neural progenitors C
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control and 10 nM MeHg treated
neurospheres. MeHg treatment
caused a significant reduction in
migration. e Relative to controls,
there was a significant difference
in the reduction of migration
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between female and male D
neurospheres. Scale bars 180 -
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of neurite extension. Indeed, it has been shown that BDNF
promotes eEF1A phosphorylation and that the consequent in-
creased eEF1A activity leads to an enhanced protein synthesis,
resulting in the promotion of neurite extension in cortical neu-
rons (Inamura et al. 2005). Therefore, it is likely that the BDNF
downregulation observed in MeHg-exposed cells results in a
further decrease of EF1A activity, which may crucially contrib-
ute to the detrimental effects on neurites extension. However,
more experiment is needed to further support this hyphotesis.
It is worth noting that in our study, MeHg induced a reduc-
tion in the expression level of CDKLS5, a critical gene regulating
neuronal morphogenesis which is mutated in the Hanefeld
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variant of Rett syndrome (Chen et al. 2010). CDKLS5 has been
shown to exert different effects within neuronal cells depending
on its subcellular location, i.e., cytoplasmic or nuclear (Rusconi
et al. 2008). In the cytoplasm, CDKLS5 regulates neuronal mor-
phogenesis and dendritic arborization by a mechanism involv-
ing BDNF-Racl signaling (Chen et al. 2010). Indeed, it has
been suggested that BDNF activates CDKLS that, in turn, trig-
gers Racl activity to regulate neuronal morphogenesis through
the actin cytoskeleton remodeling (Chen et al. 2010). Thus, it is
likely that the downregulation of CDKLS5 observed in our
MeHg-exposed cells prevents the BDNF-mediated activation
of Racl, leading to the defective axonal morphogenesis.
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An interesting phenomenon observed in this study is
the sex dependence of the MeHg-induced defects in
neurite extension and cell migration, which were more
pronounced in cultures established from male fetuses.
This is in agreement with epidemiological and experimen-
tal studies showing that males are more susceptible to
MeHg neurotoxicity as compared to females (McKeown-
Eyssen et al. 1983; Rossi et al. 1997; Grandjean et al.
1998; Giménez-Llort et al. 2001; Bjorklund et al. 2007).
As reported in previous studies, there are sex-related dif-
ferences in the antioxidant defense system activity and in
the peroxide production (Carrillo et al. 1992; Borras et al.
2003). Indeed, it has been shown that mitochondria from
female rats produce less peroxide than those from male
rats of the same age (Borras et al. 2003). Moreover, both
gene expression level and enzymatic activity of Mn-
superoxide dismutase and glutathione peroxidase were
found to be significantly higher in female as compared
to male rats (Borras et al. 2003). In this regard, it is im-
portant to underline that a major event mediating MeHg-
induced neurotoxicity is represented by its interaction
with thiols from GSH (Sumi 2008; Farina et al. 2010).
The subsequent decreased capacity of the entire antioxi-
dant GSH system (Shanker et al. 2005; Stringari et al.
2008) may likely lead to the increased susceptibility to
MeHg observed in cells from male fetuses.

In conclusion, the present study shows that the gestational
age is a critical factor influencing hNPC sensitivity to low
levels of MeHg. Subcytotoxic doses of MeHg impair neuronal
differentiation and maturation of hNPC in a sex-dependent
manner as shown by the more pronounced inhibition of
neurites outgrowth and cell migration in MeHg-exposed cells
from male fetuses. Our data point to Notch, CDNKS, and
BDNF as critical players in the cascade of intracellular events
leading to MeHg-induced in vitro neurotoxicity.
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