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Fully automated detection 
and segmentation of intracranial 
aneurysms in subarachnoid 
hemorrhage on CTA using deep 
learning
Rahil Shahzad1,2,6*, Lenhard Pennig1,6, Lukas Goertz1,3, Frank Thiele1,2, 
Christoph Kabbasch1, Marc Schlamann1, Boris Krischek3,4, David Maintz1, 
Michael Perkuhn1,2,6 & Jan Borggrefe1,5,6

In aneurysmal subarachnoid hemorrhage (aSAH), accurate diagnosis of aneurysm is essential for 
subsequent treatment to prevent rebleeding. However, aneurysm detection proves to be challenging 
and time-consuming. The purpose of this study was to develop and evaluate a deep learning 
model (DLM) to automatically detect and segment aneurysms in patients with aSAH on computed 
tomography angiography. In this retrospective single-center study, three different DLMs were trained 
on 68 patients with 79 aneurysms treated for aSAH (2016–2017) using five-fold-cross-validation. 
Their outputs were combined to a single DLM via ensemble-learning. The DLM was evaluated on 
an independent test set consisting of 185 patients with 215 aneurysms (2010–2015). Independent 
manual segmentations of aneurysms in a 3D voxel-wise manner by two readers (neurosurgeon, 
radiologist) provided the reference standard. For aneurysms > 30 mm3 (mean diameter of ~ 4 mm) on 
the test set, the DLM provided a detection sensitivity of 87% with false positives (FPs)/scan of 0.42. 
Automatic segmentations achieved a median dice similarity coefficient (DSC) of 0.80 compared to the 
reference standard. Aneurysm location (anterior vs. posterior circulation; P = .07) and bleeding severity 
(Fisher grade ≤ 3 vs. 4; P = .33) did not impede detection sensitivity or segmentation performance. 
For aneurysms > 100 mm3 (mean diameter of ~ 6 mm), a sensitivity of 96% with DSC of 0.87 and FPs/
scan of 0.14 were obtained. In the present study, we demonstrate that the proposed DLM detects and 
segments aneurysms > 30 mm3 in patients with aSAH with high sensitivity independent of cerebral 
circulation and bleeding severity while producing FP findings of less than one per scan. Hence, 
the DLM can potentially assist treating physicians in aSAH by providing automated detection and 
segmentations of aneurysms.
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ACA​	� Anterior cerebral artery
aSAH	� Aneurysmal subarachnoid hemorrhage
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DLM	� Deep learning model
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FP	� False positive
FN	� False negative
ICA	� Internal carotid artery
ISD	� IntelliSpace Discovery
MCA	� Middle cerebral artery
TOF-MRA	� Time-of-flight magnetic resonance angiography
UIA	� Unruptured intracranial aneurysm
RIA	� Ruptured intracranial aneurysm
STAPLE	� Simultaneous truth and performance level estimation

Aneurysmal subarachnoid hemorrhage (aSAH) is caused by spontaneous rupture of an intracranial aneurysm 
and represents a severe neurological condition with mortality ranging between 8 and 67%1,2. In patients with 
non-traumatic SAH, accurate and reliable diagnosis of aneurysm is essential for subsequent treatment to prevent 
re-bleeding and further neurological deterioration3,4. Usually, CT-angiography (CTA) is performed immediately 
upon radiological proof of SAH with sensitivity rates for detection of aneurysms ranging between 85–98% 
compared to digital subtraction angiography (DSA), which is considered as the gold standard for aneurysm 
imaging5,6. Due to advances in imaging and diagnostic quality over the last decades as well as its non-invasive-
ness, CTA has the potential to replace DSA in pre-treatment assessment of aSAH in selected patients7,8. Timely 
aneurysm occlusion by endovascular or surgical means represents a key concept in modern aSAH management 
with selection of most suitable treatment depending on various factors such as aneurysm localization, size, and 
shape3,4,9.

With the introduction and advancements of convolutional neural networks (CNN) over the last decade, deep 
learning algorithms have shown great potential in performing diagnostic and analyzing tasks on medical imaging 
in different subspecialties10–12. Aneurysm detection on CTA, especially for smaller ones, proves to be challeng-
ing and misdiagnosis of aSAH can be associated with a poor clinical outcome13–15. Hence, the development of a 
deep learning model (DLM) to automatically detect and segment intracranial aneurysms would be of valuable 
assistance to the radiologist. This is of particular interest due to the growing workload and consequent fatigue 
of radiologists, which correlates with increased risk to miss relevant findings16.

Previous studies have proposed several approaches for (semi-) automated detection of intracranial aneurysms 
on CTA​10 and time-of-flight magnetic resonance angiography (TOF-MRA)17,18. However, these studies focused 
on unruptured intracranial aneurysms (UIAs) and did not include patients with aSAH. Hence, it remains unclear, 
how DLM algorithms perform on patients with acutely ruptured intracranial aneurysms (RIAs) and whether the 
extent of hemorrhage impedes detection sensitivity.

The objective of this study was to develop and validate a DLM for automatic detection and segmentation 
of aneurysms on CTA in aSAH. Furthermore, we evaluated the performance of the algorithm with regard to 
aneurysm size, location, and bleeding severity using an independent test set of patients with aSAH.

Materials and methods

Patient population.  All consecutive patients treated for aSAH at our tertiary-care university hospital set-
ting between January 2010 and December 2017 were reviewed and served as our dataset (n = 340). Exclusion 
criteria were: (1) unavailable CTA scans, (2) no distinct aneurysm finding in CTA, (3) severe motion artifacts 
on CTA, (4) insufficient contrast of CTA, and (5) previously treated aneurysms. There were no exclusions due to 
aneurysm size. Consequently, 87 patients were excluded, resulting in 253 patients (mean age: 54.7 ± 13.9 years, 
67.6% female) with 294 aneurysms for analysis. All included scans between 2016 and 2017 (n = 68 patients/79 
aneurysms) served as the training dataset, whereas scans before 2016 were allocated to the independent test set 
(n = 185 patients/215 aneurysms). Figure 1 provides an overview of patient selection. CTA source images were 
anonymized and exported to IntelliSpace Discovery (ISD, v3.0, Philips Healthcare, Best, the Netherlands).

Imaging.  Included examinations were performed on different multidetector-CTs, namely iCT (n = 229), 
Brilliance 64 (n = 8), and Brilliance 16 (n = 14) (Philips Healthcare, Best, the Netherlands). On all of these scan-
ners, our institutional standard clinical protocol for head and neck (n = 222) or head (n = 29) CTA was used 
with slice thickness ranging between 0.62 to 1.25 mm. Two CTA datasets of the head from referring hospitals 
were included. These were acquired using Siemens Somatom Definition AS (Siemens Healthineers, Erlangen, 
Germany) and Toshiba Aquilion 64 (Canon Medical Systems Corporation, Otawara, Japan). (Pre-) interventional 
DSA was performed on a biplane angiography system (AlluraClarity FD 20/15 or FD 20 C-arm system, Philips 
Healthcare, Best, the Netherlands). Two-hundred-thirty-four patients received (pre-) interventional DSA.

Reference standard.  To establish the aneurysm count and location, aneurysms were confirmed by a neu-
rosurgeon with four years, a radiologist with three years, and a board certified neuroradiologist with twelve years 
of experience in neurovascular imaging. Together, they conducted a review of the original radiology report of 
the CTA and double reviewed the CTA as well as DSA images (if available). Further, they collectively reviewed 
non-enhanced CT scans to determine respective Fisher grade of aSAH in consensus. Reference standard for 
aneurysm segmentations were provided by the above-mentioned neurosurgeon and radiologist, who performed 
semi-automatic 3D voxel-wise segmentations of aneurysms on ISD in consensus.
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Image preprocessing.  To enable DLM-based automatic aneurysm segmentation workflow, a number of 
preprocessing steps were involved. First, a brain extraction algorithm was developed to compute the brain mask, 
using Statistical Parametric Mapping software package version 8 (SPM8; Wellcome Trust Centre for Neuroimag-
ing)19. Second, a multi-scale vessel enhancement filter was applied to the brain masked images to enhance the 
arteries from the background of CTA scans20. In this context, two vessel-enhanced images were computed; one 
with scale 0.5–5 voxels and the other with scale 5–15 voxels. The two vessel-enhanced images together would 
help to distinguish between blood vessels and aneurysms. Third, image standardization was performed by resa-
mpling to isotropic resolution of 0.5 × 0.5 × 0.5 mm and intensity normalized. The original CTA image was nor-
malized between 5–95% of its intensity values and the vessel enhanced images were Z-score normalized. The 
fully automatic image pre-processing workflow is shown in Fig. 2.

Deep learning model development.  In this study, a 3D CNN was used. The CNN is based on Deep-
Medic (Biomedical Image Analysis Group, Department of Computing, Imperial College London) consisting of a 
deep 3D CNN architecture with 2 identical pathways that apply different image resolutions to capture contextual 
information21. 3D image-segments centered at the same image location provide inputs to the two pathways. 
However, for the second pathway, the image is down-sampled to a third of its original size. The model comprises 
of 11 layers with kernels of size 33. The model also consists of residual connections for layers 4, 6, 8, and 10 
whereas layers 9 and 10 are fully connected.

A number of preliminary experiments were carried out to define the model training strategy. Based on this 
work, we found it most promising to use three different training procedures, henceforth referred to as DLM-
Orig, DLM-Vess and DLM-LDim.

(I) For DLM-Orig, the input to the CNN is a single channel original CTA image with the size of extracted 
image-segments for training being set to 253 voxels. (II) For DLM-Vess, the input to the CNN is multi-channel 
comprising of the CTA source images and the two vessel enhanced images. The size of the extracted image-
segments was set to 253 voxels. (III) For DLM-LDim, CTA source images represent the input, but the size of the 
extracted image-segments was increased from 253 to 453 voxels.

To increase the amount of training samples for all three models, image augmentation was employed by flip-
ping the images along their axes. Training batch size was set to 15, batch normalization was applied and para-
metric rectified linear unit was used as the activation function, Dice similarity coefficient (DSC) was provided 
as the loss function and the number of training epochs was set to 30.

The three DLMs were trained on the training-set by a five-fold-cross-validation approach using an 80–20% 
training-validation split without overlapping data. Similar to the work of Kamnitsas et al.22, we created an 
ensemble model by combining the outputs of the three separate DLMs. We refer to this combination strategy 
as DLM-Ens.

During inference, the trained DLMs (DLM-Orig, DLM-Vess and DLM-LDim) were applied to the test dataset. 
Each trained DLM consisted of five individual sub-models from the five-fold-cross-validation training approach. 
Outputs from these five sub-models were fused together using simultaneous truth and performance level esti-
mation (STAPLE)23. Subsequently, STAPLE outputs from the three DLMs were passed to DLM-Ens to produce 
final aneurysm segmentation prediction.

Statistical analysis.  Statistical analysis was performed with SPSS (V22.0; IBM Armonk, NY, USA), with 
P < .05 considered statistically significant. Categorical variables (e.g. scale results) are presented in form of per-
centages, frequencies, and medians. Comparison of paired nonparametric variables was performed with Wil-
coxon signed-rank tests. Normally distributed variables are given as mean ± standard deviation with compari-
sons being conducted using Student’s t-test.

Following measures were computed in order to determine the detection sensitivity of the aneurysms with TP 
being true positives, FP false positives and FN false negatives:

Figure 1.   Flow chart for patient selection and inclusion scheme. aSAH = aneurysmal subarachnoid 
hemorrhage, CTA = CT-angiography.
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Since no CTA scans without aneurysms were included, a true specificity cannot be determined; hence, preci-
sion was calculated, as usually conducted in machine learning tasks. To evaluate the segmentation performance 
of the DLMs, the automatically obtained segmentations (SDLM) were compared to the manual annotations (SRS) 
with spatial overlap measure between the segmentations being computed using DSC:

Resulting DSCs are reported as median. For quantitative volumetric measurements, Pearson’s correlation 
coefficient (r) was calculated.

Ethics approval and consent to participate.  The local institutional review board approved this retro-
spective, single-center study (reference number: 19-1329; Ethikkomission der Medizinischen Fakultät der Uni-
versität zu Köln) and waived the requirement for written informed patient consent. All methods were conducted 
in accordance with the relevant guidelines and regulations.

Sensitivity = Recall =
TP

TP + FN
∗ 100

Precision = PositivePredictiveValue =
TP

TP + FP
∗ 100

F1score = 2 ∗

(

Sensitivity ∗ Precision
)

(

Sensitivity + Precision
)/100

DSC(SRS , SDLM) =
2|SRS ∩ SDLM |

|SRS| + |SDLM |

Figure 2.   Image preprocessing workflow in a patient with an aneurysm of the right middle cerebral artery 
(arrow) and Fisher 4 bleeding (intraventricular hemorrhage indicated by *) with mid-line shift. Fully automated 
brain mask computation, overlaid in green, from acquired head and neck CTA​ source images (a). Extracted 
brain image (b). 3D rendered computed vessel enhanced images with scale 0.5–5 voxels (c) and 5–15 voxels (d).
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Results
Baseline patient and aneurysm characteristics were comparable between the training and validation groups, as 
outlined in Table 1.

Evaluation of the different DLMs on the training data.  In the training set, 79 aneurysms were identi-
fied as the reference standard.

Using five-fold-cross-validation for each of the three DLMs (DLM-Orig, DLM-Vess, and DLM-LDim), an 
overall sensitivity of 76%, 76%, and 70%, a DSC of 0.54, 0.58, and 0.69, and average false positives (FPs)/scan of 
2.10, 2.00, and 0.71 were observed.

In contrast, the DLM-Ens provided a sensitivity of 72% with median DSC of 0.74, precision of 80% and FPs/
scan of 0.21. For aneurysms > 30 mm3 (n = 64) and > 50 mm3 (n = 55), the DLM-Ens achieved higher sensitivity 
(84%, 94%) and higher DSC (0.79, 0.81) with high precision (88%, 94%) and decreased number of FPs/scan (0.1, 
0.05). In this context, Table 2 and Fig. 3a provide detailed results of the different DLMs.

Evaluation of the DLM‑Ens on the test cohort.  Based on manual 3D segmentations, 215 aneurysms 
with a mean volume of 145.8 ± 230.3 mm3 were identified as the reference standard on the independent test set.

Table 1.   Patient and aneurysm characteristics of training and test sets. WFNS = World Federation of 
Neurosurgical Societies. SD = standard deviation.

Characteristic
Training set
(n = 68)

Test set
(n = 185) P value

Patient age (years; mean ± SD) 53.0 ± 12.8 55.1 ± 13.8 .31

Gender .75

Female 47 (69.1%) 124 (67%)

Male 21 (30.9%) 61 (33%)

WFNS grade .46

1 21 (30.9%) 54 (29.2%)

2 12 (17.6%) 23 (12.4%)

3 6 (8.8%) 27 (14.6%)

4 6 (8.8%) 26 (14.1%)

5 23 (33.8%) 55 (29.7%)

Fisher grade .18

1 2 (2.9%) 0 (0%)

2 3 (4.4%) 13 (7%)

3 24 (35.3%) 83 (44.9%)

4 39 (57.4%) 89 (48.1%)

Aneurysm volume (mm3; mean ± SD) 187.1 ± 296.3 145.6 ± 223.5 .26

Aneurysm location .64

Internal carotid artery 20 (25.3%) 46 (21.4%)

Anterior cerebral artery 24 (30.4%) 80 (37.2%)

Middle cerebral artery 24 (30.4%) 66 (30.7%)

Posterior circulation 11 (13.9%) 23 (10.7%)

Table 2.   Sensitivity, median dice similarity coefficient (DSC), precision, F1 score, and average false positive 
(FPs)/scan for five-fold-cross-validation results of the different DLMs as well as results for DLM-Ens in relation 
to aneurysm volume.

DLM-Orig DLM-Vess DLM-LDim DLM-Ens
DLM-Ens
 > 30 mm3

DLM-Ens
 > 50 mm3

Sensitivity
(detected/missed) 76% (60/19) 76% (60/19) 70% (55/24) 72% (57/22) 84% (54/10) 91%

(50/5)

DSC (median) 0.54 0.58 0.69 0.74 0.79 0.81

Precision
(detected/FP) 30% (60/142) 31% (60/136) 53% (55/48) 80% (57/14) 88%

(54/7)
94%
(50/3)

F1 score 0.43 0.44 0.59 0.76 0.86 0.93

FPs/scan
(FP/number of scans) 2.10 (142/68) 2.00 (136/68) 0.71 (48/68) 0.21 (14/68) 0.10

(7/68)
0.05
(3/68)
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Overall volumetric correlation with the reference standard.  For true positive aneurysm findings, the DLM 
achieved a mean volume of 154.4 ± 236.0 mm3, thus achieving a significant correlation with manual segmenta-
tions (r = 0.95, P < .001). The strongest correlation between manual annotations and automatic DLM segmenta-
tions was observed for large aneurysms, while correlation was insignificant (P = .810) for small aneurysms, as 
detailed in Table 3 and Fig. 3b.

Volume correlation plots between manual and automatic segmentations of training and test set using the 
DLM are presented in Fig. 4.

Overall sensitivity in relation to aneurysm volume.  Overall, the DLM achieved a sensitivity of 82% (DSC 0.75, 
precision 54%) and FPs/scan of 0.81. For aneurysms > 30 mm3 (n = 171), sensitivity was 87% (P = 0.23, median 
DSC 0.80, precision 65%) with FPs/scan of 0.42 (P < .001). Considering aneurysms with volumes of > 50 mm3 
(n = 124) and > 100 mm3 (n = 73), corresponding sensitivities of 90% (P =.05, median DSC 0.84, precision 71%) 
and 96% (P = .004, median DSC 0.87, precision 73%) were noted. Table 4 provides detailed results.

Figure 3.   Performance of the different DLMs on the training set using five-fold-cross-validation (a). 
Segmentation performance of the DLM-Ens on the independent test set with respect to aneurysm volumes (b). 
Magenta circles represent the total number of false positives and green circles indicate the total number of false 
negatives.

Table 3.   Overall correlation between manual reference standard (RS) and DLM-Ens in the combined test 
cohort in relation to aneurysm volume using Pearson correlation (r).

RS DLM-Ens r P value

Volume

overall (mm3; mean ± SD) 145.8 ± 230.3 154.4 ± 236.0 0.95  < .001

 < 30 mm3 (mm3; mean ± SD) 18.7 ± 7.0 38.4 ± 25.7 -0.05 .810

30–100 mm3 (mm3; mean ± SD) 54.5 ± 17.9 49.7 ± 32.8 0.46  < .001

 > 100 mm3 (mm3; mean ± SD) 345.8 ± 309.9 317.3 ± 308.2 0.94  < .001
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Overall sensitivity in relation to aneurysm location.  Pairwise comparison indicated a correlation between detec-
tion sensitivity and parent artery location. The sensitivity to detect middle cerebral artery (MCA) aneurysms 
(88%) was significantly higher than for internal carotid artery (ICA) aneurysms (70%, P = .02). Likewise, ante-
rior cerebral artery (ACA) aneurysms (84%) and posterior circulation aneurysms (87%) were associated with 
higher detection sensitivity than ICA aneurysms. However, these differences did not reach statistical signifi-
cance. When comparing detection rates of anterior (ICA, ACA, and MCA) with posterior circulation, no statisti-
cal significance was found (P = .07).

Overall sensitivity in relation to Fisher grade.  Detection sensitivity for aneurysms was not significantly impeded 
by the presence of intracerebral or intraventricular hemorrhage (Fisher ≤ 3: sensitivity 80%, FP/scan 0.74 vs. 
Fisher 4: sensitivity 85% (P = .33), FP/scan 0.85 (P = .49)).

Exemplary images on the test set regarding detected and missed aneurysms as well as FP findings using the 
DLM are shown in Figs. 5 and 6. 

Figure 4.   Aneurysm volume correlation plots per patient between manually defined reference standard and the 
automatically obtained segmentations for validation (a) and test set (b) of DLM-Ens using Pearson correlation 
(r).
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Discussion
In the present study, we developed and trained a DLM for automatic detection and segmentation of intracranial 
aneurysms on CTA in patients with aSAH and evaluated its performance on an independent test set. As a major 
finding of the study, the DLM achieves a detection rate of 87% for aneurysms > 30 mm3 with high segmentation 
performance and less than one FP finding per scan.

Previous studies have investigated DLMs for detection of UIA providing detection rates between 83 and 95% 
on TOF-MRA17,18 and CTA​10, respectively. However, these studies reported FPs/scan of 618 and 1017 or did not 
report them10, which questions their usefulness in clinical routine. The present study is the first to evaluate the 
performance of a DLM for automatic detection and segmentation of aneurysms in patients with aSAH. In the cur-
rent study, the DLM provided a sensitivity of 87% for aneurysms > 30 mm3 (~ mean diameter of 4 mm), which is 
comparable to aforementioned studies by Ueda et al. (83–95% for UIAs > 3 mm on TOF-MRA)17, Park et al. (95% 
for UIAs > 3 mm on CTA)10, and Sichtermann et al. (90–93% for UIAs on TOF-MRA)18. For aneurysms > 100 
mm3 (~ mean diameter of 6 mm), sensitivity of the DLM increased to almost 100%.Since aneurysms > 7 mm 
bear the highest risk of rupture24–26, the proposed DLM enables accurate detection of the clinically most relevant 
aneurysms in aSAH.

Achieving an overall DSC of 0.75 for aneurysm segmentation and of 0.87 for aneurysms > 100 mm3, the 
proposed DLM yields high segmentation performance (superior to the DLM provided by Sichtermann et al.18, 
who reported a DSC of 0.53) despite the small lesion size. Therefore, the DLM can be of assistance to treating 
physicians regarding treatment planning, e.g. providing 3D geometrical characterization of aneurysms.

Using ensemble learning of three different DLMs, an average number of FPs of less than one per scan was 
observed, being lower than in aforementioned studies17,18. Concerning detection of larger aneurysms (> 100 
mm3), FPs were almost zero per scan. For remaining findings, majority of FPs were found in venous vessels or 
adjacent to bone and usually not associated with arterial vessels. Therefore, most of them were easily identifiable 
as an incorrect finding.

There was no significant difference between the anterior and posterior circulation regarding aneurysm detec-
tion. However, ICA aneurysms showed the lowest detection rates with a significant difference compared to the 
MCA. This discrepancy is most likely due to presence of calcified plaques, dilatation and elongation of the ves-
sel due to hypertension, complex anatomy of aneurysms, and, in particular, proximity to the skull27. In future, 
additional training methods identifying bone geometry might help the DLM to better distinguish bone from 
adjacent vessels and aneurysms.

Furthermore, we evaluated whether the presence of aSAH would impede the sensitivity of the DLM. Remark-
ably, the algorithm performed independently of the Fisher grade with additional presence of parenchymal or 
intraventricular hemorrhage neither decreasing detection rates nor increasing FPs/scan. Therefore, the DLM 
provides high feasibility and detection sensitivity even in severe aSAH with potential hydrocephalus or midline 
shift possibly leading to an overall complex image of the brain28.

CTA-based detection of intracranial aneurysms can be time consuming and challenging and shows a large 
variability among physicians, especially for small aneurysms. They present a highly variable interrater agreement 
depending on various factors, e.g., localization and subspecialty training, hence resulting in a lower detection 
rate than larger aneurysms even for experienced clinicians13,14. In this study, we aimed to overcome these limita-
tions by establishing a robust reference standard based on review of CTA scans and reports by three readers as 
well as availability of DSA in the majority of patients to find aneurysms potentially not been described in the 
initial CTA report.

As proof of concept, the results of this study indicate that deep learning is able to provide sufficient detection 
of aneurysms in aSAH, especially of larger ones, which are bearing the highest risk of rupture24–26. With an overall 
detection rate of 82%, the DLM enables detection rates comparable to a human reader (e.g., sensitivity 83% for 
UIAs > 3 mm in the study by Park et al.10). In this context, the DLM may provide support to physicians that lack 
concentration due to fatigue or lack of training. This is important in the setting of aSAH if the treating physician 
detects one aneurysm, preferably the one causing the bleeding, but potentially misses a second aneurysm caused 
by decreased concentration due to the “satisfaction of search” phenomenon16,29,30. Nevertheless, the DLM should 
be further improved to achieve 100% detection sensitivity, which is required to guarantee patient safety in aSAH.

Table 4.   Sensitivity, median dice similarity coefficient (DSC), precision, F1 score, and average false positive 
(FP)/scan of the DLM-Ens in the combined test cohort in relation to aneurysm volume.

All aneurysms  > 30 mm3  > 50 mm3  > 100 mm3 P value

Sensitivity (detected/missed) 82%
(178/37)

87%
(148/23)

90%
(112/12)

96%
(70/3) .015

DSC (median) 0.75 0.80 0.84 0.87

Precision
(detected/FP)

54%
(178/149)

65%
(148/81)

71%
(112/45)

73%
(70/26)  < .001

F1 score 0.66 0.75 0.80 0.84 .019

FP/scan
(FP/number of scans)

0.81
(149/185)

0.42
(81/185)

0.24
(45/185)

0.14
(26/185)  < .001
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Limitations
Besides its retrospective design, our study has a few limitations. Although scans from five different CT scan-
ners were included in this study, 91% were acquired using the iCT, hence the true performance of the DLM on 
CTA images acquired on different scanners besides the iCT is unknown and the evaluation of generalizability is 
limited. This limitation should be addressed in future studies. Being a single-center study, only two scans were 
included from referring institutions, therefore a multi-center study investigating the performance of the DLM on 
other CT scanners using different protocols should be conducted. Further, we did not include previously treated 

Figure 5.   (a) Fifty-one-year-old male with Fisher 4 bleeding (* = intraventricular bleeding on axial unenhanced 
CT) and an aneurysm of the right middle cerebral artery (arrow) on axial CTA​ source images. The DLM-Ens 
(green) detects and segments the aneurysm (volume based on manual segmentation: 424.7 mm3) with high 
overlap (DSC of 0.94) compared to manual segmentations (red). (b) Sixty-three-year-old female with aSAH on 
axial unenhanced CT and an anterior communicating artery aneurysm (arrow) on axial CTA source images. 
Albeit being of small size (volume based on manual segmentation: 25.5 mm3), the DLM-Ens (green) detects and 
segments (DSC of 0.72) the aneurysm with high overlap compared to manual segmentations (red). (c) Fifty-
one-year-old male with aSAH on axial unenhanced CT and a large basilar tip aneurysm (arrow; volume based 
on manual segmentation 419.6 mm3) on axial CTA source images. Compared to manual segmentations (red), 
the DLM-Ens (green) provides accurate detection and segmentation (DSC of 0.90).
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aneurysms; hence, the detection performance in these patients (with additional artifacts potentially impeding 
detection) still needs to be investigated.

Conclusions
In conclusion, we developed a DLM able to provide sufficient detection of aneurysms in aSAH with almost 100% 
sensitivity for aneurysms > 100 mm3 (~ mean diameter of 6 mm). Furthermore, high volumetric correlation to 
human segmentations and a low number of FPs/scan were obtained. Confounders such as cerebral circulation 
and bleeding severity did not significantly affect the performance of the DLM. Additional training is required to 
increase sensitivity for smaller aneurysms; however, the DLM may already be of assistance to treating physicians 
by providing automated detection of aneurysms in aSAH.
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